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Both non-He~tian Dyson and He~tian !l0lstein-Primakoffrepresentations of the Sp(2d,R) 
algebra are obtamed when the latter IS restncted to a positive discrete series irreducible 
representation (Ad + nI2, ... ,A.I + nI2). For such purposes, some results for boson 
repr~ntati~ns, recently deduced from a study of the Sp(2d,R ) partially coherent states, are 
combmed wIth some standard techniques of boson expansion theories. The introduction ofUsui 
operators enables the establishment of useful relations between the various boson representations. 
Two Dyson representations of the Sp(2d,R ) algebra are obtained in compact form in terms of 
v = d (d ~ 1)/2 pairs.ofbos~n creation and annihilation operators, and of an extra U(d) spin, 
charactenzed by the IrreducIble representation [At" .. Ad ]. In contrast to what happens when 
A I = ... = Ad.= A,!t is shown that the Holstein-Primakoffrepresentation of the Sp(2d,R ) algebra 
cannot.be wntten 10 such a co~pact form fo~ a generic irreducible representation. Explicit 
expansIons are, however, obtamed by extend10g the Marumori, Yamamura, and Tokunaga 
method ofboso~ expansion theories. ~e Hol~tein-Primakoff representation is then used to prove 
t~at, when restncted to the Sp(2d,R) IrreducIble representation (Ad + nI2, ... ,A.I + n/2), thedn
dImensional h~onic oscillator Hamiltonian has a U(v) X SU(d ) symmetry group. Finally, the 
results are apphed to the Sp(6,R ) nuclear collective model to demonstrate the existence of a hidden 
U(6)X SU(3) symmetry in this model. 

I. INTRODUCTION 

During the last few years, the real symplectic group 
Sp(2d,R ) has played an ever-increasing role in physical appli
cations. Its importance is largely due to the fact that it is the 
main component of the d-dimensional harmonic oscillator 
dynamical groUp.I,2 The Sp(2d,R ) irreducible representa
tions (irreps) encountered in applications are positive dis
crete series,3,4 characterized by their lowest weight 
(Ad + nI2, ... ,A.I + nI2), where [A IA2···Ad] is a partition, 
and n is an integer greater than or equal to 2d. 

In various fields, such as the theory of collective motion 
in nuclei,5-17 and the study of liN expansions in quantum 
mechanics and field theory,18-20 it is important to obtain 
boson realizations (somewhat improperly called boson re
presentations in the literature) of the Sp(2d,R ) algebra when 
it is restricted to a given irrep representation space. These 
boson realizations include both non-Hermitian Dyson21 and 
Hermitian Holstein-Primakoff (HPf2 representations. 

The boson representations of a restricted Lie algebra are 
closely related to its realizations as an algebra of differential 
operators acting in a space of analytic functions in some 
complex variables.23,24 The transition from the latter to the 
former can be achieved by simply replacing the complex var
iables Zj' and the corresponding differential operators a I azj, 
by boson creation and annihilation operators, aT and aj' re
spectively. However, in such a process, the Hermitian differ
ential operator realizations are generally converted into non
Hermitian Dyson representations since aj is the Hermitian 

aJ Maitre de recherches F.N.R.S. 

. f t conjugate 0 a j , whereas, except for the Bargmann represen-
tation,23 a I aZj is not the Hermitian conjugate of Zj with re
spect to the scalar product defined in the space of analytic 
functions. Consequently, ifit is rather easy to obtain one of 
the infinitely many Dyson representations, it is by far much 
more difficult to get the (up to a unitary transformation) 
uniquely defined HP representation. 

For the case where AI = ... = Ad = A, Rosensteel and 
Rowe3 considered in 1977 a realization of the restricted 
Sp(2d,R ) algebra in a space of analytic functions on the Siegel 
half-plane.25 In 1982, Kramerl6 constructed an essentially 
equivalent26 realization in a space of analytic functions on 
the origin-centered unit ball, by using Perelomov generaliza
tion of coherent states (eS).27 This same year, we proposed a 
realization in a space of analytic functions on the whole com
plex space,6,28 shown later on by us7 to be related to Barut
Girardello generalization of es. 29 When translated in terms 
of boson representations as explained above, all these three 
realizations would give rise to Dyson representations, which 
are not Hermitian. By 1982, we obtained the corresponding 
Hermitian HP representation by extending to Sp(2d,R ) some 
results previously demonstrated for Sp(2,R ),5,18,30,31 and 
Sp(4,R ).18,32 Later on, we reformulated our derivation of the 
HP representation in terms of es. 7 

For the more difficult case of a generic positive discrete 
series irrep, Rosensteel and Rowe3 considered in 1977 Gode-

t 1·· 33 f men genera Izatton 0 the above-mentioned Siegel con-
struction, valid when AI = ... = Ad = A. However, they did 
not explicitly give the corresponding Sp(2d,R ) algebra real
ization. By 1983, we derived an explicit Sp(2d,R ) algebra 
realization8 in a space of analytic functions, later on shown 
by us9 to be connected with Barut-Girardello generalization 
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ofCS. In terms of boson representations, both these realiza
tions give again rise to Dyson representations. 

To study the transition from the Dyson representations 
to the HP one, the theory of generalized CS did provide an 
appropriate framework. To extend to a generic positive dis
crete series irreps the CS considered in Ref. 7 for the 
Al = ... = Ad = A case, by 1984 we introduced a new con
cept, namely that of partially coherent states (PCS), charac
terized by both continuous and discrete labels.9 We consid
ered three classes of PCS, respectively, generalizing the 
Perelomov27 and Barut-Girardell029 CS, as well as the inter
mediate CS introduced in Ref. 7, then we related them to 
three boson representations of Dyson type in the first two 
cases, and of HP type in the last one. 

A rather similar generalization of Perelomov CS was 
proposed independently by Rowe,15 who also analyzed the 
transition from the corresponding Dyson representation to 
the HP one by a method close to that used in Ref. 6 for the 
Al = ... = Ad = A case. He did obtain an approximate HP 
representation, giving rise to a very accurate analytic expres
sion for the Sp(6,R) generator matrix elements for those 
Sp(6,R ) irreps relevant to the nuclear collective model. 

The aim of the present paper is to further study the 
Sp(2d,R ) boson representations along the guidelines of Ref. 
9, then to apply them to the Sp( 6,R ) nuclear collective model. 
This approach parts from those of Refs. 6 and 15, but uses 
the standard techniques of boson expansion theories. 34-36 

More specifically, we wish to show that the relations 
between the various boson representations can be displayed 
in a straightforward way by using Usui operators.37 We also 
wish to prove that by applying the techniques of Marumori, 
Yamamura, and Tokunaga34 the Sp(2d,R ) generator HP rep
resentation can be written as an explicit expansion in terms 
of v = d (d + 1 )/2 pairs of boson creation and annihilation 
operators, and of an extra U(d) spin, characterized by the 
irrep [A IA2···Ad]. Since the two Dyson representations of 
the Sp(2d,R ) generators, introduced in Ref. 9, were obtained 
in the same reference, this completes the determination of 
the Sp(2d,R ) boson representations for a generic positive dis
crete series. There is. however. an essential difference with 
respect to the special caseA I = ,12 = ... = Ad = A. in that. as 
a general rule. the HP representation cannot be written in a 
compact form similar to that obtained in Ref. 6 for this case. 

This paper is organized as follows. In Sec. II. three Usui 
operators are defined. and their properties are listed. These 
operators are used in Sec. III to prove various properties of 
boson representations. which are then applied in Sec. IV to 
the case of the Sp(2d,R ) generators. In Sec. V. explicit expan
sions are obtained for the HP representation of the latter. In 
Sec. VI. some properties demonstrated in the previous sec
tions are employed to determine the dn-dimensional har
monic oscillator symmetry group. when the oscillator Ha
miltonian is restricted to the Sp(2d,R ) irrep 
(Ad + n12 •... ,A.I + nI2). Finally. in Sec. VII. the results are 
applied to the Sp(6.R ) nuclear collective model. 

II. DEFINITION AND PROPERTIES OF USUI 
OPERATORS 

In the present work. we shall use the following well
known realization of the Sp(2d.R) algebral: 
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n 

DL =Dt = L TJisTJjs. 1 <.i<J<.d. 
s= I 

n 

Dij = Dji = L SisSjS' 1 <.i<J<.d. (2.1) 
s= I 

n 
= Cij + 2~ij' ij= 1 •...• d. 

where 
n 

Cij = L TJisSjS' ij = 1, ... ,d. (2.2) 
s= I 

and TJis'Sis' i = 1, ...• d, s = 1 •... , n, denote dn pairs of boson 
creation and annihilation operators. The operators Eij gen
erate the U(d) subgroup of Sp(2d,R ). In the following. we 
shall use instead the operators Cij' which satisfy the same 
commutation relations. Since we wish to consider a generic 
positive discrete series irrep (Ad + nI2, ... ,A.l + n12) of 
Sp(2d,R ). we assume that n is greater than or equal to 2d. As 
we did show in Ref. 9, it is interesting to introduce various 
bases in this irrep representation space Y. For simplicity's 
sake, we shall restrict ourselves here to U(d I-uncoupled 
bases, and only briefty outline in Sec. IV the advantages that 
could result from the use ofU(d I-coupled bases. It should be 
realized, however, that all the properties demonstrated in 
this section, as well as in Secs. III and V, can be extended to 
U(d I-coupled bases in a straightforward way. 

The (Ad + n12 •... ,A.I + n12) lowest-weight state be
longs to a A-dimensional irrep of the U(d ) subgroup. charac
terized by [,11···,1 d ] • From the basis states I (A ) of [ ,11···,1 d ] • 

where (A ) denotes a Gel'fand pattern.38 all the states of Y 
can be obtained by acting with the generators D L. Basis 
states of Y may therefore be defined by the relation 

(2.3) 

where FN (Dt) is the following function of the d X d matrix 

Dt= IIDLII: 

FN(Dt)= II (Nij!)-1/2[(1 +~ij)-I/2DLtij. (2.4) 
i<J 

and the quantum numbers Nij' 1 <.i<J<.d. run over all non
negative integers. The states IN;(A) donotformanorthogo
nal basis. Let us denote their overlap matrix by M 

MN'(A'),N(A) = (N';(A ')IN;(A I). (2.5) 

Another interesting basis of Y is the dual basis. whose 
states IN;(A)) are defined by the relation 

(N';(A ')IN;(A) = ~N"N~(A')'(Al' (2.6) 

and are given in terms of the states IN';(A ') by 

IN;(A)) = ~ IN';(A ')(M-I)N'(A'),N(Al' 
N(A') 

(2.7) 

where M- I is the inverse of the overlap matrix. They satisfy 
the following unity resolution relation: 

L IN;(A ))(N;(AJI = I. (2.8) 
N(A) 

where I denotes the unit operator in Y. 
Finally. we may also consider an orthonormal basis in 
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Y, whose states are defined by 

IN;(A)J = ~ IN';{It ')RN'(.A'),N(.A) 
N'tt') 

= ~ IN';(A '))(MR)N'(.A'),N(.A)' (2.9) 
N'tt') 

From Eq. (2.6) and the orthonormality property of IN;(A ) J, 
R must satisfy the following condition: 

RtMR = I, (2.10) 

or equivalently, 

RRt=M- I
• (2.11) 

From Eq. (2.11), it follows that R differs from the square root 
ofM- 1 by some unitary matrix S, i.e., 

R = M- 1/2S, where sst = I. (2.12) 

When choosing S = I, thence R = M- 1
/2, we obtain the in

termediate orthonormal basis considered in Ref. 9. In the 
present work, we shall, however, make no specific choice for 
S, and let it be arbitrary. 

According to Ref. 9, to each of the three bases (2.3), (2.7), 
and (2.9), we can associate a set of PCS as follows: 

IU;(A) = L FN(u*)IN;(A I), (2.13a) 
N 

IU;(A )) = L FN(u*)IN;(A )), (2.13b) 
N 

and 

IU;(A)J = LFN(U*)IN;(A)], (2.13c) 
N 

where 

FN(U*) = IT (Nij!)-1/2[(1 + ~ij)-1/2uttij· (2.14) 
;<J 

These PCS are, respectively, referred to as Perelomov, 
Barut-Girardello, and intermediate PCS. Note that in con
trast to Ref. 9, in Eq. (2.13) we use the same symbols uij to 
denote the complex variables the various PCS depend on, 
although their domain of variation is different. This does not 
matter here since the PCS will essentially be used as generat
ing functions for the corresponding discrete basis states. 

Let us now introduce the boson states 

IN] = IT (Nij!)-1/2(aLtijI0], (2.15) 
;<J 

built from'll = d (d + 1)/2 independent boson creation oper
atorsaL = a);, ij = 1, ... ,d, acting upon the vacuum state 10]. 
As in Ref. 9, we take their direct product with the U(d I-spin 
states 1{It )],39 characterized by the irrep [Ae"Ad]' and ob
tain the extended boson states 

IN;(A)] = IN] ® I(A I]· (2.16) 

The latter are orthonormal and span a Hilbert space, which 
is the direct product of a standard boson space fJB with the A
dimensional representation space Y of the U(d) irrep 
[AI"'A d ]. It will prove convenient to use non-normalized 
b . -t -t (1 ~ )1/2 t h oson creatIOn operators aij = aj ; = + Vij aij' w ose 
commutation relations with their corresponding annihila
tion operators aij are given by 
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[aij,aId = ~;k~j1 + ~i1~jk' (2.17) 

In their terms, the extended boson states can be rewritten as 

IN;(A)] = FN(at)IO;(A I], 
where 

IO;(A)] = 10] ® I(A I], 

(2.18) 

(2.19) 

and FN (at) is defined by Eq. (2.4) with Dt replaced by at. 
Note the close similarity between Eqs. (2.3) and (2.18). 

Extended Glauber CS are defined by 

IU;(A)] = LFN(u*)IN;(A)], 
N 

or 

IU;(A)] = lu] ® i(A I], 

where lu] is a standard Glauber CS40 

lu] = exp(! tr u*at)IO]. 

(2.20) 

(2.21) 

(2,22) 

Either of the three discrete bases (2.3), (2.7), and (2.9) of 
Y can be mapped in a one-to-one fashion onto the basis 
(2.16) of fJB ® Y. The operators performing these mappings 
are known as Usui operators37 in boson expansion theor
ies.34-36 They are, respectively, given by 

A 

U= ~ IN;(A)](N;(A)I, (2.23a) 
N( ) 

U = L IN;(A)] (N;(A )1, 
N(.A) 

(2.23b) 

and 

v 

U= ~ IN;(A)JlN;(A)I. (2.23c) 
N( ) 

A 

From Eq. (2.6), it is indeed obvious that U maps the basis 
states IN;(A ) onto the extended boson states IN;(A )] as fol-
lows: 

UIN;(A) = IN;(A)]. 

In a similar way, it can be shown that 

UIN;(A)) = IN;(A)] 

and 
v 

UIN;(A)] = IN;(A I]· 

(2.24a) 

(2.24b) 

(2.24c) 

Let us also introduce the operators from fJB ® Yto Y de
fined by 

and 

ut = L IN;(A ))[N;(A )1, 
N(.A) 

ut = L IN;(A) [N;(A )1, 
N(.A) 

'fIt = ~ IN;(A)] [N;(A )1. 
rtt) 

(2.25a) 

(2.25b) 

(2.25c) 

By using Eqs. (2.6) and (2.8), as well as similar relations 
for IN;(A) J and IN;(A)], it is straightforward to prove the 
following equations: 

I 

(2.26a) 
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and 

(2.26b) 

(2.26c) 

IYIJ ®Iy , 

= UU t 

=UU t 

= 'fj'(jt 

(2.27a) 

(2.27b) 

(2.27c) 

where I YIJ and I y are the unit operators in &6' and Y, respec
tively, 

For subsequent purposes, it is convenient to introduce 
an operator T acting on &6' ® Y, whose matrix elements 
with respect to the basis states I N;(A )] reproduce the overlaps 
ofthe corresponding Y basis states IN;(A I), i.e., 

[N';(A ')lTIN;(A)] = (N';(A ')IN;(A I). (2.28) 

This operator can be expressed in terms of the Usui operator 
U. By multiplying Eq. (2.24a) by U t from the left, and by 
taking Eq. (2.26b) into account, IN;(A) can indeed be ex
pressed in terms of IN;(A)] as follows: 

IN;(A) = UtIN;(A I]. (2.29) 

When introducing Eq. (2.29) and its Hermitian conjugate 
into Eq. (2.28), we obtain 

T = UUt, (2.30) 

which is a positive definite, Hermitian operator, as it should 
be. Owing to Eqs. (2.26a), (2.26b), (2.27a), and (2.27b), this 
operator has an inverse, given by 

T- 1 = UU t . (2.31) 

III. BOSON REPRESENTATIONS IN TERMS OF USUI 
OPERATORS 

As shown in Ref. 9, the boson representations, in 
&6' ® Y, of any operator X acting in Y can be obtained from 
its PCS representations. We shall therefore start to summa
rize the relevant results of Ref. 9, and then reformulate them 
in terms ofUsui operators. 

In each ofthe three PCS representations, defined in Eq. 
(2.13), X is represented by a matrix differential operator, ac
cording to the following definitions: 

and 

(u;(A )IX I"') = L X(A 1.(A 'I (u;(A ')1"'), 
WI 

(U;(A )IX I"') = ) X(AI.(A'I(u;(A ')1"'), 
it1 

(3.1a) 

(3.lb) 

I u;(A )IX I"') = L X(A I.wd u;(A ')1"'), (3.1c) 
WI 

where I"') denotes any vector of Y. For instance, IIX(AI.(A'III 
is the A X A matrix of differential operators representing X 
in the Perelomov PCS representation. 

Each of the three PCS representations of X can be 
viewed as the representation of some operator acting in 
&6' ® Y, in the extended Glauber CS representation defined 
in Eq. (2.21). For the first two PCS representations, the oper-

2708 J. Math. Phys., Vol. 26, No. 11, November 1985 

ators so obtained are Dyson representations of X,21 that we, 
respectively, denote by Xo andXo , while for the last one, it 
is an HP representation,22 that we call X HP' Hence we have 
the following three definitions: 

(3.2a) 

(3.2b) 

and 

v 

[u;(A )IXHP I"'] = ) X(AI.(A'I [u;(A ')1"'], (3.2c) 
it1 

where I"'] denotes any vector of &6' ® Y. To explicitly obtain 
Xo,xo, and XHP 'from the corresponding PCS representa
tions, all we have to do is to replace (i) the complex variables 
uij and the corresponding differential operators 
au. = (1 + Oi;.)J/Juij by the non-normalized boson creation 
and annihilation operators aij and Qij' respectively, and (ii) 
the A X A matrices in Y by the operators they represent. 
This procedure will be illustrated for the Sp(2d,R ) generators 
in the next section. 

Let us now express the boson representations of X, as 
defined above, in terms of the Usui operators introduced in 
the previous section. Starting with X 0' we first note that Eq. 
(2.29) implies for the CS the relation 

IU;(A) = Utlu;(A I]. (3.3) 

Introducing then the Hermitian conjugate of Eq. (3.3) into 
Eq. (3.1a), and dropping I"') in the latter, we obtain 

[u;(A)1 UX = L X(AI.wdu;(A ')IU· (3.4) 
WI 

Finally, by multiplying Eq. (3.4) by Ut from the right, and by 
taking Eq. (2.27a) into account, we get the following equa
tion: 

'" '" [u;(A )IUXU t = LX(AI,wdu;(A ')1, (3.5) 
WI 

which, when compared with Eq. (3.2a), leads to the relation 

Xo = UXU t . (3.6a) 

Proceeding in the same way for the remaining two boson 
representations, we obtain 

Xo = UXU t (3.6b) 

and 
v v

t XHP = UXU . (3.6c) 

Equation (3.6) enables us to easily derive the Hermiticity 
properties of the boson representations. By taking the Her
mitian conjugate of Eq. (3.6b), we get the relation 

(Xo)t = uxtu t, (3.7) 

which is nothing else than the Dyson representation (X t)o of 
xt 

(3.8) 

In the same way, we obtain 

(3.9) 
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We therefore recover the well-known fact that the Dyson 
representations do not preserve the Hermiticity properties, 
while the HP representation does. However, Eq. (3.8) also 
tells us that both Dyson representations are intimately con
nected with one another through Hermitian conjugation. 

Some important relations between the boson represen
tations X 0' Xo , and X HP of the same operator X can also be 
inferred from Eq. (3.6). Let us start with the relation between 
Xo andXo ' We note that by using Eq. (2.26b), Eq. (3.6b) can 
be inverted to express X in terms of Xo as follows: 

X = utxo U. (3.10) 

By introducing Eq. (3.10) into the right-hand side of Eq. 
(3.6a), we then obtain 

Xo = uutxo UUt, 

or equivalently 

(3.11) 

Xo = TXoT- I, (3.12) 

where use has been made ofEqs. (2.30) and (2.31). 
Let us now establish a relation between X 0 and X HP • By 

introducing Eq. (3.10) into the right-hand side of Eq. (3.6c), 
the latter becomes 

v t AV t 
X HP = UU XoUU , (3.13) 

or 

X HP = WXo W- I
, (3.14) 

where the operator W, acting in q; ® Y, is defined by 
v 

W= uut. (3.15) 

From Eqs. (2.26c) and (2.30), it follows that W satisfies the 
relation 

WtW=T. (3.16) 

It can therefore be written as 

W= VT 1/2, (3.17) 

where Vis some unitary operator in q; ® Y, i.e., 

vtv = 19w ®1y . (3.18) 

Equation (3.14) becomes 

X HP = VTI/2XoT-1/2Vt, (3.19) 

so that XHP is determined by T 1/2Xo T -1/2, up to some 
unitary transformation V. 

We shall now proceed to show that V may be chosen to 
be the unit operator in q; ® Y. For such purposes, let us 
remember that X HP is obtained by mapping the orthonormal 
basis IN;(A) J of Y onto the orthonormal basis IN;(A)] of 
q; ®Y. Hence T 1

/
2X o T- 1

/2 results from the mapping of 
IN;(A)J onto another orthonormal basis of q; ®Y, whose 
states are defined by VtIN;(A )].Denotingby Vy the unitary 
operator in Y which has the same action on IN;(A ) J as the 
operator Von I N;(A )], it is then obvious that the mapping of 
IN;(A)j onto VtIN;(A )] is equivalent to that of V yIN;(A ) J 
onto IN;(A)]. Neglecting Vand vt in Eq. (3.19) therefore 
merely reduces to a change of orthonormal basis in Y. Since 
the latter has been left arbitrary, we may incorporate V y 

into the definition of IN;(A)j, which amounts to setting 
V = 19w ®1y . Equation (3.19) finally becomes 

(3.20) 
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By combining it with Eq. (3.12), we also get the following 
relation between X 0 and X HP : 

X HP = T- 1/ 2Xo T I /2. (3.21) 

We conclude that the operator T, that relates both Dy
son representations of a given operator, also determines, 
through its square root, the links between any of them and 
the HP representation of the same operator. 

IV. BOSON REPRESENTATIONS OF THE Sp(2d,R) 
ALGEBRA 

The purpose of the present section is to apply the results 
demonstrated in Sec. III to the case of the Sp(2d,R ) genera
tors. 

The matrix differential operators representing the latter 
in both the Perelomov and Barut-Girardello PCS represen
tations were determined previously, and are given in Eqs. 
(6.11) and (6.21) of Ref. 9. Proceeding as explained in the 
previous section, we obtain from them the following two 
Dyson representations of the Sp(2d,R ) algebra: 

and 

(D &)0 = L (ark ® Cjk + al ® C;d 
k 

+ [(ata + n - d - l)at L:; ®1y , (4.1a) 

(Dij)i5 = aij ®1y , (4.1b) 

(Eij)O = (Cij)fi + (n/2)8ij1~ ®1y , 

(Cij)o = (ata)ij ®1y +1~ ®Cij' (4.1c) 

(Dij)o = L (a;k ® Ckj + ajk ® Ck;) 
k 

(4.2a) 

+ [a(ata + n - d - 1)]ij ®1y , (4.2b) 

(Eij)o = (Cij)o + (n/2)t5ij1&I ®1y , 

-1";; 0 

(Cij)o = (a a)ij ®1y + 1&1 ® Cij' (4.2c) 

where we have explicitly exhibited the direct product struc

ture of the operators. In Eqs. (4.1) and (4.2), Cij denotes the 
U(d )-spin operators, i.e., the U(d ) generators restricted to Y. 
The o~rators (ata)ij ®1y +1~ ®Cij' or in short 
(ata)ij + Cij' generate a U(d) group acting in q; ® Y, and 
represent the U(d) subgroup generators Cij in both Dyson 
representations. Note that the Hermitian conjugation prop
erty Eq. (3.8) can be directly checked on Eqs. (4.1) and (4.2). 

In contrast, the intermediate PCS representation of the 
Sp(2d,R ) generators is not explicitly known, except in the 
case of the «(A + n/2)d) irreps.6.28 We may, however, try to 
derive their HP representation for a generic Sp(2d,R ) irrep 
from Eq. (3.20) or (3.21), i.e., by first determining the opera
tor T, then calculating its square root. 

To obtain the operator T, or equivalently its matrix ele
ments, two procedures are at our disposal. We can start from 
the definition of T, given in Eq. (2.28), and determine its 
matrix elements by calculating the overlap matrix M. For 
such purposes, the bases IN;(A ) and IN;(A )] are, however, 
not quite appropriate. It is more convenient to use, in Y and 
q; ® Y, basis states classified according to the U(d) groups 
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generated by C/} and (ata)/} + C/}, respectively. Let us denote 
them by 

1([1] [A ])a[h ](h) 

and 

= [P[l)(Dt)X I( ) ]~I~) 

= )' ([I ](l),[A ](A )Ia[h ](h) 
(/irt ) 

XP[l)(I) (Dt)I(A ) 

I([/][A ])a[h ](h)] 

= [P[l)(at)X 10;( )J]~I~) 

= )' ([I](l),[A](A)la[h](h) 
(Itt) 

XP[l)(I) (at)lO;(A )], 

(4.3) 

(4.4) 

where P[l)(I) (at) is a polynomial in the boson creation opera
torsob,characterized by a definite U(d )irrep [I] = [/t'"ld ], 

and a given row (I); P[l)(/) (Dt) is the same polynomial func
tion as P[/)(I)(at) but with ob replaced by Db; the symbol 
( , I ) is a U(d) Wigner coefficient; and a distinguishes 
between repeated irreps [h ] in the reduction of the product 
representation [/] X [A]. We assume that P[l)(/) (at) and a are 
chosen in such a way that the states defined in Eq. (4.4) are 
orthonormal. However, those ofEq. (4.3) are in general only 
orthogonal with respect to [h) and (h ). Let us denote by MIll ) 

the submatrix of their overlap matrix, corresponding to a 
given U(d) irrep [h) and a given row (h ), i.e., 

MWla·.I/)a = «([I'] [A ])a'[h ](h )1([1] [A ])a[h](h ). 
(4.5) 

In terms of these U(d )-coupled states, the definition of Tmay 
be rewritten as 

[([1'][A ])a'[h ](h )ITI([I][A ])a[h](h)] = M!7·la·.I/)a· 
(4.6) 

The advantage of U(d )-coupled bases is therefore that Tis 
already diagonal with respect to [h ] and (h ), and that its ma
trix elements are independent of (h ). 

Alternatively, Tcan be determined from Eq. (3.12) relat
ing the Dyson representationsXD andXiS of the same opera
tor X, and the fact that for the Sp(2d,R ) generators the latter 
are explicitly known. By taking X = E/} or Dij, we obtain the 
following two equations for T: 

[T,ata + e] = 0 (4.7) 

and 

ratT- I = ate + Cit + (ata + n - d - l)a\ (4.8) 

where use is made of a compact IIlatrix notation. Owing to 
the Hermiticity property (3.8), the remaining generators D/} 
do not give rise to an independent condition for T. Equation 
(4.7) tells us that T is invariant under the U(d) group in 
fIB ® Y, generated by the operators (ita)/} + C/}, To solve 
Eq. (4.8), it is therefore again convenient to use the U(d)
coupled basis states defined in Eq. (4.4). By taking the matrix 
elements ofEq. (4.8) between two such states, we obtain re
cursion relations for the matrix elements of T that can be 
solved in terms of one of them, the latter fixing the normali-
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zation of T. This was actually the procedure that we imple
mented in Ref. 6 to determine the HP representation of the 
Sp(2d,R ) algebra when Al = ". = Ad = A.28 In such a case, 
C/} reduces to Ac5/}Iy , so that Eq. (4.8) becomes 

TitT- I = (ata + n + U - d - l)a\ (4.9) 

which is indeed equivalent to Eq. (6.13) of Ref. 6. An exten
sion of the latter work to a generic irrep (A3 + n12, A2 + nl 
2,A I + n12) ofSp(6,R) was recently carried out by Rowe,'s 
who derived an equation similar to Eq. (4.8) [cf. Eq. (2.13) of 
Ref. 15]. 

Once T has been determined by either of the two above
described methods, it remains to calculate its square root 
T I/2 to be used in Eqs. (3.20) or (3.21). We first note that from 
Eq. (4.7), it results that 

[TI/2,ita + e] = o. (4.10) 

Hence, the HP representation of E/} coincides with its two 
Dyson representations 

(E/})HP = (E/})D = (E/})iS 

= [(ata)/} + (nI2)c5/}Ioi' ] ®Iy + loi' ® C/}, (4.11) 

Equations (3.20) or (3.21) will therefore be used only for 
X = D ij, since the HP representation of D/} will then follow 
by Hermitian conjugation. 

When AI = ... =Ad =A, the calculation of TI/2 is an 
easy task since from Eq. (4.6), Tis then diagonal in the U(d)
coupled basis (4.4). There is indeed only one irrep [I] for any 
given [h), namely that corresponding to Ii = hi - A, i = 1, 
... , d, and moreover there is no need for additional quantum 
numbers a, so that MIll) is one dimensional, and therefore 
trivially diagonal. This explains why in Ref. 6 we were able 
to express the HP representation of the Sp(2d,R ) algebra in 
an analytic and compact form when Al = ... = Ad = A.28 

In contrast, when AI' ... , Ad are not all equal, except in 
some very special cases, Tis no longer diagonal in the U(d)
coupled basis. We have then first to diagonalize T, since 
from the equation 

T = ADA \ (4.12) 

whereD is diagonal andA unitary, we can then obtain T 112 as 

(4.13) 

The diagonalization of T, however, requires the solution of 
some algebraic equations, which in general are of a higher 
than four degree. Since the latter can only be performed nu
merically, we conclude that for a generic irrep (Ad + n12, 
... , AI + n12) of Sp(2d,R), the HP representation of the 
Sp(2d,R ) algebra cannot be written in an analytic and com
pact form as was the case for «(A + nl2)d ). 

Nevertheless, as we shall proceed to show in the next 
section, explicit, though noncom pact expressions can be ob
tained for the HP representation by resorting to a method 
well known in boson expansion theories, and due to Maru
mori, Yamamura, and Tokunaga (MYT).34 

V. HOLSTEIN-PRIMAKOFF REPRESENTATION OF THE 
Sp(2d,R) ALGEBRA 

The purpose of the present section is to present the basic 
ideas of the MYT method in the simple case where uncou-
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pled basis states are used, and to apply them to the determin- L (-)l:,.;rVij F
N

" (at)FN" (a)IN] 
ation of the Sp(2d,R ) algebra HP representation. N" 

As shown in Sec. III, the HP representation X HP of an {[ (N )]} 
oper~or Xis given by Eq. (3.6c) in terms of the operators U = lJ NL'fr (_)Nij N~: FN(at)IO]. 
and U t, defined in Eqs. (2.23c) and (2.25c), respectively. ...." ' 

(5.9) 

Hence, it can be written as The latter can be rewritten as 

XHP = L L IN';(A ')]{N';(A 'liX IN;(A )j[N;(A )1, 
N(A)N'(A') 

(5.1) 

or equivalently 

XHP = L L {N';(A')IXIN;(A)} 
N(A)N'(A') 
XFN, (at)IO] [OIFN(a) ® I(A ')] [(A )1, (5.2) 

where we have used Eqs. (2.18) and (2.19). The operator X HP 

is therefore a linear combination of products of operators 
acting in f!lJ, F N' (at) 10] [0 IF N (a), by operators acting in Y 

P/f,I(A) = I(A ')][(A )1. (5.3) 

We shall first find explicit expressions for both operators, 
then calculate the coefficients of the linear combinations, 
i.e., the matrix elements {N';(A ')IX IN;(A I}. 

Let us start with the boson operator FN,(aT)IO] [OIFN(a). 
The key technique of the MYT method consists in expand
ing the vacuum projector 10][01 into boson creation and 
annihilation operators. For such purposes, let us first estab
lish the two following auxiliary equations: 

FN(at)FN' (at) = [II (NIj + Nij)] 112 FN+N,(at) (5.4) 
IQ NIj 

and 

(5.5) 

where (~) denotes a binomial coefficient. Equation (5.4) di

rectly follows from the definition of FN , given in Eq. (2.4), To 
prove Eq. (5.5), let us rewrite its left-hand side as follows: 

FN,(a)FN(at)IO] = LFN"(at)IO] [OIFN" (a)FN,(a)FN(at)IO], 
N" 

(5.6) 

by using the unity resolution relation 

L IN"][N"I =191}. (5.7) 
N" 

By applying the Hermitian conjugate of Eq. (5.4) to 
FN"(a)FN,(a), and the orthonormality of the states IN), the 
right-hand side of Eq. (5.6) is transformed into that of Eq. 
(5.5), thus completing the proof of the latter. 

It is now straightforward to demonstrate that the vacu
um projector can be expressed as 

10] [01 = L (-)l:i.;rVij FN " (at)FN" (a). (5.8) 
N" 

The proof of Eq. (5.8) is based on the fact that both sides of 
this relation have the same action on an arbitrary state I N] of 
f!lJ. By successively using Eqs. (5.5) and (5.4), we indeed ob
tain the following result: 
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(5.10) 

by taking the well-known combinatorial relation 

(5.11) 

into account. 
When we replace the vacuum projector by the right

hand side of Eq. (5.8) in the boson operator 
FN,(at)IO] [OIFN(a), and apply Eq. (5,4) as well as its Hermi
tian conjugate, we finally obtain for the boson operator the 
following expansion: 

FN,(at)IO] [OIFN(a) 

= 4 [0 (_tii(Nij +"Nii)1I2(NIj +,~ii)1I2] 
N lQ NIj Nij 

XFN , + N" (at)FN + N" (a). (5.12) 

In the same way, the operators p(lt,I(A)' acting in Y, can be 
written in terms of the U(d I-spin operators C .. Detailed ex-, Y 
pressions for P It,l(A dC) are given in the Appendix. We con-
clude thatXHP can be expanded as follows: 

X _ ~ ~ {~[ N"(Nij)1I2(NIj)1I2] 
HP - k k II (-) q N" N" N(A) N'( ') N" IQ Ij Ij 

X (N' - N";(A ')IX IN - N";(A)}} 

XFN,(at)FN(a) ® Plt,I(A) (C). (5.13) 

It now remains to calculate the matrix elements of X 
between orthonormal basis states. From Eqs. (2.9) and (2.10), 
the latter can be expressed as 

(N';(A')IXIN;(A)} = L L (R-1)N'(A'),N'(1') 
N(l)N'(l') 

X (N';(A ')IX IN;(A )RN(x).N(Al' 

(5.14) 

in terms of the matrix R defining the orthonormal basis, and 
of its inverse R - I. The matrix elements of X between the 
n~n0!1hogonal basis states IN;(A) and their dual ones 
IN' ;(A ')) can be determined from the definition of X, and Eqs. 
(2.3) and (2,6). For the generators D ij, we get the following 
result: 
-'. -, t - -(N ,(A liD Ij IN;(A ) 

= [(; 8(kl).(In!Nkl + 1)1/28N·.N + e1kll ]8(1')(1» (5.15) 

where 

8(kl),(1J) = (1 + 8 k1 )-1/2[ 8 k18/j + 8kj811 ] 

and 
(kl) ~ ~ •• 

e/j = Uk/U/j' 1<:J. 
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ThecombinationofEq. (5.13) withEqs. (5.14) and (5.15) 
finally leads to the sought-for HP representation of D j 

{[ "(N~.)1/2(N.)1/2] (Dt.) = I I II (-)Ny IJ IJ 

IJ HP N(A.) N~') N0 i<;j Nij Nij 

x [ I I 8(k/),(ij) (Nkl + 1)1/2 

N(l) k<.1 

X(R-
1
)N' _N°(A.').N +elkll(l)RN(l).N -NO(A.)]} 

XFN,(at)FN(a)®PINA.)(C)' (5.18) 

In conclusion, Eqs. (3.9), (4.11), and (5.18) show that the 
HP representation of any Sp(2d,R) generator can be ex
pressed as an explicit expansion in terms of v pairs of boson 
creation and annihilation operators, and of the U(d )-spin op
erators. In such a formulation, the difficulties resulting from 
the nonorthogonality ofthe basis IN;(A ) are hidden in the 
coefficients of the expansion, which in general will have to be 
calculated numerically. As a final point, let us note that the 
treatment presented in this section can be extended in a 
straightforward way to the case where U(d )-coupled states 
are used. 

VI. THE RESTRICTED dn-DIMENSIONAL HARMONIC 
OSCILLATOR HAMILTONIAN AND ITS SYMMETRY 
GROUP 

In some physical applications, such as the Sp(6,R ) nu
clear collective model to be discussed in the next section, one 
has to deal with a dn-dimensional harmonic oscillator Ha
miltonian restricted to the representation space Y of a single 
Sp(2d,R) irrep (Ad + nI2, ... ,A.l + nI2). Taking units in 
which Ii and the oscillator frequency Cd are equal to one, this 
harmonic oscillator Hamiltonian can be written in terms of 
the boson creation and annihilation operators TJ is and Sis' 
i = 1, ... , d, s = 1, ... , n, introduced in Sec. II, as 

d n 1 
H osc = I I TJisSis + -dn. (6.1) 

i= 1 s=1 2 

When HOse acts in the whole space of states built from 
the dn operators TJ is' its symmetry group is well known to be 
U(dn).41 However, when HOse is restricted to Y, the degen
eracy of its eigenvalues is considerably reduced, and the 
symmetry group responsible for this residual degeneracy is 
different from U(dn). The purpose of the present section is to 
determine this symmetry group. In the d = 3 case, a prelimi
nary account of the following results was given in Ref. 8, and 
the same problem was also recently discussed by Castanos 
and Frank, 12 and Moshinsky. 13 

By comparing Eq. (6.1) with Eqs. (2.1) and (2.2), we note 
that 

d d 1 
HOse = I Eii = I Cii + - dn 

i=1 i=1 2 
(6.2) 

is just the first-order Casimir operator of the U(d ) subgroup 
ofSp(2d,R ). All the basis states IN;(A ) of Y, corresponding 
to a given value of N = ~i<;jNij' are eigenstates of H-08e with 
the same eigenvalue N + ! dn. Since they can be put into 
one-to-one correspondence with the extended boson states 
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1 N;(A )], for which N = ~i<;jN ij' the degeneracy ofthe eigen
value N + ! dn of the restricted harmonic oscillator Hamil
tonian is equal to the number of such extended boson states. 
The boson states 1 N], built from v boson creation operators 
oj, and subject to the condition N = ~i<;jNij' span the repre
sentation space of the symmetric irrep [N] of a U(v) group. 
The residual degeneracy of the eigenvalue N + ! dn is there
fore equal to the product of the dimension, dim[N], of the 
U(v)irrep [N] by the dimension A of the U(d)irrep [A1· .. Ad ]. 

From this result, we may expect that the restricted harmonic 
oscillator symmetry group is the direct product group 
U(v)XU(d). 

To prove this assertion, it remains to explicitly carry out 
the restriction of Hose to Y. This can be done in an elemen
tary way by considering the HP representation of Hose. 

From Eq. (4.11), it is given by 

H~ = [tr(ata) +! din + U)/aI] ®Iy , (6.3) 

where 
d 

A =d- 1 I Ai' (6.4) 
i=1 

Let us now introduce in f!lJ a harmonic oscillator Hamilton
ian, whose frequency is twice that of Hose, 

H~=2~(ajaij + ~lal) 
= tr(ata) + vIal' (6.5) 

Equation (6.3) can then be rewritten as 

H~ = [H~ + !d(n + U - d - l)/aI] ®Iy . (6.6) 

Apart from a constant term, the restricted harmonic oscilla
tor Hamiltonian is therefore mapped onto the direct product 
of a v-dimensional harmonic oscillator Hamiltonian in f!lJ by 
the unit operator in Y. 

It is now obvious that the symmetry group of H ~~ is the 
direct product of the symmetry group of H~ by the U(d)
spin group. The former is the U(v) group generated by the 
operators'!Lakl , 1 <J<j<.d, 1 <.k<.l<.d, while the latteris gen
erated by Cij' i,j = 1, ... , d. More precisely, if we eliminate 
the U(d )-spin group first-order Casimir operator, which re
duces to the constant dA, we obtain the direct product group 
U(v) X SU(d). 

As it was discussed by Moshinsky for the d = 3 case in 
Ref. 13, it would be of great interest to obtain explicit expres
sions of the symmetry group generators, or equivalently of 
aj,aij' and tij' in terms of the Sp(2d,R) generators. This 
could be done in principle by inverting the HP representa
tion. From Eqs. (3.6c) and (2.26c), the operator X in Y corre
spond!ng to an operator X HP = aj ®Iy,aij ®Iy , or 
IdJ ® Cij in f!lJ ® Y, is given by the following equation: 

X = I I IN';(A ')J[N';(A ')IXHP IN;(A)] {N;(A )1, 
N(A.)N'(A.') 

(6.7) 

in a U(d )-uncoupled basis, or a similar equation in a U(d)
coupled one. The obtaining of an explicit expression for X 
therefore amounts to rewriting IN';(A'll (N;(A )1, oritscoun
terpart in the U(d )-coupled basis, in terms of the Sp(2d,R ) 
generators. Due to the complicated form of the orthonormal 
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states IN;(A) J, as compared with that of .the. boson states 
IN;(A )], the inversion of the HP representation is m~ch ~ore 
difficult than the obtaining of the HP representatlOn itself, 
and it still remains unsolved. In this connection, it is worth 
noting that the inversion ofthe Dyson representations, pro
posed by Moshinsky in Ref. 13, seems easier because such 
representations admit the compact forms (4.1) and (4.2). 
However, the functions of the Sp(U,R ) generators so deter
mined would have the right commutation relations, but not 
the required Hermiticity properties. 

VII. APPLICATION TO THE Sp(6,R) NUCLEAR 
COLLECTIVE MODEL 

In this concluding section, we wish to point out how the 
results of the previous sections can be applied to the Sp( 6,R ) 
nuclear collective model.42

-44 In such a model, we have to 
deal with a translationally invariant A nucleon system, de
scribed in terms of its 3n relative Jacobi coordinates Xis' 
i = 1, 2, 3, s = 1, ... , n = A-I, and their conjugate mo
menta Pis = - ialaxu' To these coordinates and momenta, 
we associate 3n boson creation and annihilation operators 
1]is and Sis' given in appropriate units by the following rela
tions: 

1]is = 1/{i (xu - ipis), Sis = 1/{i (Xis + iPis)' (7.1) 

In terms ofthe latter, the Sp(6,R ) generators are defined by 
Eq. (2.1), where we now set d = 3. . 

Much of the physical interest of the Sp(6,R ) collective 
model comes from the fact that it is a natural generalization 
of Elliott's SU(3) model,45 including many major oscillator 
shell excitations. For light nuclei, the ground-state band of 
Elliott's model has a definite number N of quanta, and be
longs to a definite SU(3) irrep (AJl), or equivalently to a defi
nite U(3) irrep [..1.1"1,:03]' The representation space of the 
Sp(6,R) irrep (,13 + n/2, ,12 + n/2, AI + n/2), based upon 
the lowest weight state of [A 1,1:03]' then contains both the 
ground-state band and the bands obtained therefrom by ap
plying the 2-1Uu collective excitation operators D ij any num
ber of times. For medium and heavy nuclei, various proce
dures, consistent with the Pauli principle, have been 
described to select the ground-state band, and consequently 
the Sp( 6,R ) irrep based on it.46-49 It turns out that for closed
shell nuclei, the Sp(6,R ) irrep so chosen is characterized by 
equal values of AI' ,12' and ,13' while for open-shell nuclei it 
corresponds to not all equal values of them. 

The Sp(6,R ) collective model can also be formulated in 
terms of an O(n) group if we realize that Sp(6,R ) is but a 
subgroup of the Sp(6n,R) group generated by 

D r.,jt = 1] is 1]jt' Dis,jt = SisSjt' 

Eis,jt = 1]isSjt + ~ DijDst ' (7.2) 

where i,j = 1,2,3, and s, t = I, ... , n. For the latter, we may 
consider the following group chain l

: 

Sp(6n,R PSp(6,R )XO(n), 

where the O(n) generators are given by 

Ast = - i(Cst - Ct.), 

in terms of the generators 
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(7.3) 

(7.4) 

3 

Cst = L 1]isSit (7.5) 
;=] 

of a U(n) group. From the complementarity relationship 
between Sp(6,R ) and O(n), 1,50,51 it results that the basis states 
ofthe Sp(6,R) irrep (..1.3 + n12, ,12 + n12, AI + n12) trans
form under a definite O(n) irrep, characterized by (..1.1..1.:03)' 
The Sp( 6,R ) model, as defined above, is therefore completely 
equivalent5-7,IO,13 to the approach followed by various auth
ors,46,48 wherein collective states are constrained to a definite 
O(n) irrep (..1.1..1.:03)' 

In view of the great phenomenological success encoun
tered by both the Bohr-Mottelson models2 and the interact
ing boson approximation (IBA) introduced by Arima and 
Iachello,53 there have been many attempts to justify them 
microscopically. This led various authors to look for boson 
representations or approximations in the framework of the 
Sp(6,R ) model.5- 17 

As it is customary in nuclear physics, it is convenient to 
consider an oscillator shell model Hamiltonian H osc [given 
in Eq. (6.1) wherein d = 3], which will provide us with a 
complete set of states. 10 In Ref. 6, we showed that, when it is 
restricted to an Sp(6,R ) irrep «(A + n/2f),z8 as it is the case 
for closed-shell nuclei, Hose can be mapped onto a six-di
mensional boson oscillator Hamiltonian Ho; with double 
frequency, and has therefore a U(6) symmetry group. More
over, we were able to write down explicit and compact ex
pressions for the boson operators 

at = [C + (n - 4)1] -1/2Dt, a = D[C + (n - 4)1] -112, 
(7.6) 

in terms of the Sp(6,R ) generators, and hence for the symme
try group generators aijakl • 

When Hose is restricted to an Sp(6,R ) irrep correspond
ing to not all equal A I' ,12' ,13 values, i.e., for open-shell nu
clei, the results of Sec. VI, for the special case d = 3 and 
v = 6, show that H osc can still be mapped onto H ,;c, but that 
there appears an additional SU(3) symmetry group, the 
SU(3)-spin group. The full symmetry group is now the direct 
product group U(6)XSU(3). There is another essential dif
ference between the open-shell case and the closed-shell one. 
Although, as shown in Secs. V and VI, in the former case it is 
possible to expand the Sp(6,R) generators in terms of the 
boson operators and the SU(3)-spin operators, the converse 
is not true in general; ajortiori, there are no compact expres
sions similar to Eq. (7.6). The origin of these difficulties is to 
be found in the lack of a simple orthonormal basis in the 
Sp(6,R ) irrep representation space whenA I,A2,A3 are not all 
equal. In the A I = ,12 = ,13 = A case, U(3)-coupled states 
form an orthonormal basis because the chain Sp(6,R ) ~ U(3) 
is then multiplicity-free. This property, however, fails to ex
tend to the case where A I' ..1.2, and ..1.3 are not all equal. 

In a recent paper, 12 Castaiios and Frank determined the 
symmetry group of the restricted 3n-dimensional harmonic 
oscillator, in the limit of a very large nucleon number A, 
claiming that it is the semidirect product group U(6) A SU(3). 
Since their conclusion seems to contradict our result, valid 
for arbitrary A, a few comments are needed. Comparison 
between both works is made difficult by the fact that 
Castaiios and Frank use an entirely different, and less tracta-
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ble approach, based upon the Dzublik-Zickendraht trans
formation54,55 and a contraction of the Sp(6,R ) generators, 
As in Eq, (4,11), their U(3) subgroup generators, in theA- 00 

limit, separate into two terms. The first ones are the genera
tors (ata)ij of the U(3) subgroup of U(6), as in the present 
work, while the second ones are rather complicated expres
sions, depending, among others, upon the vortex spin. In 
spite of this separation, they take the sums of the two terms 
for the generators of their U(3) symmetry group. As a conse
quence, the latter do not commute with the U(6) generators, 
hence both sets of generators give rise to a semidirect pro
duct group (after eliminating the U(3) first-order Casimir 
operator). Had we taken the sums (ata)ij + Cij for our U(3) 
symmetry group generators, we should have arrived at the 
same conclusion. An interesting open question is whether 
the second terms in Castaiios and Frank's U(3) generators 
can be related to the U(3)-spin operators Cij in the A-oo 
limit. 

As a final point, we would like to comment on the phys
ical significance of the U(6) symmetry arising in the Sp(6,R ) 
model. Although the search for such a microscopic hidden 
symmetry was partly motivated by the success ofthe IBA, its 
physical content is rather different from that of the IBA U(6) 
symmetry. In the present case, in the so-called U(3)-boson 
limit,14 the sand d bosons indeed describe 21itu collective 
excitations, i.e., giant resonances, instead of the low-energy 
collective excitations considered in the IBA. However, it 
should be appreciated that, in spite of this, some recent nu
merical calculation,s suggest that the high-energy sand d 
bosons of the Sp(6,R) model may have a rather great influ
ence on low-energy spectra through the admixture of many 
major shell excited states.49 
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APPENDIX: CONSTRUCTION OF THE OPERATOR 
plJ,kA) (C) 

The purpose of this appendix is to find the explicit form 
of the operator P I[f./IA) (e), defined in Eq. (5.3), in terms of the 

U(d )-spin operators Cij' 
From its definition, it follows that P l[f,IIA) can be entirely 

characterized by its transformation property under Hermi
tian conjugation 

[P [A I ] t _ P [A I 
W)IA) - IA )IA')' (AI) 

and its action upon the basis states of .Y 

Plf'/IA) I(A ")] = 8IA ).IAN) I(A ')]. (A2) 

Let us introduce the projection operator PIA) onto the 
one-dimensional subspace .YIA ) of.Y spanned by I(A )J.1t is 
defined by the two following equations: 

[PIA,]t = PIA) (A3) 

and 

(A4) 
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Let us also consider the transition operator T If'/IA) from 
.YIA ) to .YIA ,), specified by the two conditions 

and 

[T [A] ]t - T[A] IA')lA) - IA)lA') (AS) 

(A6) 

From Eqs. (A3)-(A6), it is then obvious that both Eqs. (AI) 
and (A2) are satisfied if P l!f'/IA) is written as follows: 

P [A] P T[A] P IA')lA) = IA') IA')lA) IA)' (A7) 

The construction of P 1!f,IIA I therefore amounts to that of PIA) 

d T [A] 
an IA')lA)' 

Now PIA) can be easily built by extending to U(d) the 
LOwdin-Shapiro construction of SU(2) projection opera
tors.S6

•
S7 Denoting by P[Ak)k the projection operator onto 

the representation space of the U(k) irrep [Ak ] k 
= [AlkA2k"'Akk ], we obtain for PIA) the following result: 

where 

k ( (/>t)-~t)). 
P[Ak)k = II JJ ~----:~ 

""J\k) - "'J\k) j= I ~) I 'I' 'I' 

(AS) 

(A9) 

Here (/> t) is the jth-order Casimir operator of the U(k ) sub
group of the U(d )-spin group 

..h Ik) _ tr CO if _ 
'Pj - Ik) - (AW) 

tP t) denotes its eigenvalue corresponding to the irrep [A k ] k' 

and ~ t) runs over the eigenvalues associated with the U(k ) 
irreps appearing in the reduction of the U(d) irrep [A ]. Ex
plicit expressions of tP )k) can be found in Ref. 5S. The order
ing of the operators P[Ak)k in Eq. (AS) does not matter since 
they all commute with one another. 

Let us now turn to the construction of the transition 
operator T l!f'/IA)' defined in Eqs. (AS) and (A6), and factorize 
it into a product of operators as follows: 

T [A] 
IA')IA) 

_ [ IT T[Ak]. 1tT !A] 
- k=~!-I [Ak]._I[Ak_.)k_1 [Ad_.)d_I[Ad_.)d_1 

(All) 

Here [Ak h-I denotes the U(k - 1) irrep 
[A IkA2k ... Ak _ I.k ] , and the symbol II~ = d _ I means that the 
operator corresponding to k is on the left of the operator 
corresponding to k - 1. Equations (AS) and (A6) will be sat
isfied provided that 

[ 
T!A I ] t _ T [A I 

[Ad_ .)d_I[Ad_ dd- I - [Ad_ .)d- I[ Ad_ .)d- I' 

T!1:l:_ I [Ak _ dk_,I(A )k- d = I(A)k]' 

and 

(A12) 

(A13) 

(A14) 

where (A )k denotes the Gel'fand pattern obtained from (A ) by 
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replacing the U(I), U(2), ... , U(k - 1) irreps by the highest 
ones, i.e., 

ItI,d_1 A2,d_ I Ad_I,d_1 

AI,k+ I A2,k + I Ak+I,k+1 

(A)k = Alk A2k Akk (AI5) 

Alk A2k Ak_ I,k 

Alk 

and 

Finally, explicit expressions of both the operators 

T[Ak)k 
[Ak)k_I[Ak_ .)k-I 

fulfilling Eqs. (AI2HAI4), can be constructed from the 
known matrix elements of the unitary group genera
tors.38,59,60 For the former, we obtain 

(AI6) 

For the latter, we first separate the set ofdifferencesAk,d_1 - A k,d- 1> k = 1, ... , d - 1, into three classes: (i) the positive ones 
corresponding to k = i 1,i2, .•. , ip; (ii) the negative ones corresponding to k = j l,j2' .. "j,; and (iii) those equal to zero. We then in
troduce the symbol [ld _ 1 ] d _ 1 to denote the U(d - 1) irrep which differs from [A d _ 1 ] d _ 1 by the replacement of A ;"d _ 1 , 

... , A ;,.d _ 1 by Ai"d _ 1> ••• , Ai,.d _ 1> or equivalently the U(d - 1) irrep obtained from [Ad _ 1 ] d _ 1 by substituting A j"d _ 1> ••• , 

A; d-l for AJ"d-l' .•. , Ai d-l' The explicit expression of TI[:I, 1 [A ) , is given by 
9' 9' d-I d-l d-l d-l 

TIA] - TIA] T[A] 
[Ad_dd_I[Ad_.)d_1 - [Ad_dd_l[ld_.)d_1 [ld_.)d_.[Ad_.)d_I' 

where 

and 

I {j, 
T\1;_ .)d- .[Ad _ .)d-I = ,II JI(Ak - A j"d- I + jr - k)! [(Ak - Aj"d_ I + jr - k )!] -I 

d 

X II (Aj"d_I-A/+l-jr-I)![(Aj,.d_I-A/+I-jr-I)!]-1 
/=j,+ I 

r-I 

X II (Aj .. d_1 -Aj"d_1 +jr -js)![(Aj"d_1 -Aj,.d_1 +jr -js)!]-I 
s= 1 

j,-I 
X II (Am,d_1 -Aj"d_1 +jr -m)![(Am,d_1 -Aj,.d_1 +jr _m)!]-I 

m=1 

d-I } 112 
X II (A j,.d-I - An.d_ 1 + n - jr)![(Aj"d_1 -An,d_1 + n - jr)!] -I 

n =i,.+ 1 

TIA I _ [TIA I ] t 
[Ad_dd_l[ld_.)d_1 - [ld_.)d_I[Ad_dd_l· 

This completes the construction of P [f'/(A) as a function of the U(d )-spin operators Cij' 
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Coordinate-independent formulations are derived for the conditions satisfied by the elastic 
modulus tensor of materials with trigonal, hexagonal, and cubic symmetry. Analogous results for 
two-dimensional modulus tensors are also derived. 

I. INTRODUCTION 

The conditions satisfied by a material property tensor 
invariant under a crystallographic symmetry group are 
usually stated in a coordinate system adapted to the symme
try type in question; the coordinate planes and axes are cho
sen to coincide with the material planes and axes of symme
try. But it is not unreasonable to ask whether these 
conditions cannot be restated in a coordinate-independent 
fashion, in principle as algebraic relations among invariants 
of the material property tensor. This restatement would 
solve an inverse problem: given a material property tensor 
and a symmetry group, determine whether the tensor is in
variant under some conjugate of the symmetry group. In this 
problem, the planes and axes of symmetry, if they exist, are 
unknown. 

Apart from theoretical interest, such coordinate-inde
pendent symmetry formulations might have applications to 
the study of materials having randomly distributed flaws, 
voids, or filler particles; the mechanical properties of such 
materials could well be symmetric despite the lack of appar
ent structural symmetry. With this potential application in 
mind, this paper will treat the problem posed for the elastic 
modulus tensor; in any case, this is the simplest tensor for 
which the problem is not trivial. Three symmetry types will 
be characterized invariantly: trigonal symmetry; hexagonal 
symmetry, equivalent for modulus tensors to the existence of 
a threefold axis and a perpendicular plane of symmetry; and 
cubic symmetry. Analogous results for the much less diffi
cult two-dimensional problem will also be obtained. Consid
erable use will be made of results found in the first part of 
Klein's Lectures on the Icosahedron, 1 especially in the char
acterization of cubic symmetry. 

II. REDUCTION TO THE STUDY OF ALGEBRAIC FORMS 

The elastic modulus tensor is a fourth-rank tensor hav
ing the index symmetries 

(2.1) 

The transformation of its components by coordinate rota
tions defines a 21-dimensional representation of the rotation 
group, the twice-symmetrized Kronecker product of the or
dinary three-dimensional representation. The decomposi
tion of this representation into irreducible subspaces, begin
ning with the tensors with vanishing pair traces, is routine.2 

The identity representation occurs twice, on 

Aijkl = (8ij8ktl, Bijkl = (8ik 8 jl ), 

where the surrounding parentheses indicate symmetrization 
by the relations (2.1). The five-dimensional representation 
occurs twice, on tensors of the form 

e~} = (ali)8d, D~"lJ = (a};;»8jl ), 1<m<5, 
where the a(m) have trace zero. The quantities e(m) and D (m) 
all transform like second-order harmonic polynomials 
p(m) (x, y, z). The nine-dimensional representation occurs on 
the tensors 

The E(n) transform like fourth-order harmonic polynomials 
Q(n) (x, y, z). Explicit expressions for the tensors elm), Dim), 

and Eln) , and for the polynomials plm) and Q In) appear in the 
Appendix. 

Given a modulus tensor, express it as the sum 

The polynomials 

p(x,y,z) = Iclm)plm)(x,y,z), 

q(x,y, z) = Idlm)plm)(x,y, z), 

r(x, y, z) = Ieln)Q In)(x, y, z) 

are covariants of the modulus tensor and are therefore invar
iant under the same symmetry operations. 

It is convenient to introduce the two-valued complex 
representation of the rotation group by setting3 

x = 2uv, y = u2 
- v2

, Z = (u2 + v2)/i. (2.2) 

Then p, q, and r are replaced by binary forms p(u, v), q(u, v), 
and r(u, v) of degrees 4, 4, and 8, respectively. 

III. MODULUS TENSORS WITH A THREEFOLD AXIS 

In the complex representation, the symmetry group 
contains the six operations (Ref. 1, p. 40) 

u' = e1k
'IT13u, v' = e- ik'IT/3v, k = 0,1, ... ,5. (3.1) 

The most general form which transforms into a scalar multi
ple of itself under these operations is (Ref. 1, p. 52) 
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The only invariant quartic is 

F=uV, (3.2) 

and the general invariant form of degree eight is 

G = UV( 8au6 + (!)bUV + 8cV6
). (3.3) 

The general modulus tensor with trigonal symmetry con
tains seven arbitrary constants.4 When such a tensor is writ
ten as a sum of irreducible representations, two constants 
multiply identity representations, two constants multiply a 
term from the five-dimensional representation, and three 
constants multiply terms from the nine-dimensional repre
sentation. Barring degeneracies, the appearance of these di
mensions constitutes a simple necessary condition for tri
gonal symmetry, although it is not difficult to check that 
they also appear for tetragonal symmetry. 

Compute the covariant of G, the sixth transvectant5 

(G,G)6 = - 8!8!6.5.4.3(2ac + 25b 2)U2V2. 

The following conditions characterize trigonal symmetry in
variandy: (i) the forms p, q, and (r,r)6 are multiples of the 
same form which can be written as the product of two perfect 
squares U 2 V2; and (ii) when r is written in terms of U and V, it 
takes the form (3.3). 

Return to the original variables by setting 

x = 2UV, Y = U 2 - V 2, Z = (U 2 + V2)1i. (3.4) 

The axis of symmetry is perpendicular to the plane X = O. 
Conditions on the invariants of a quartic equivalent to 

condition (i) could be stated; however, it is probably simpler 
to check the condition algebraically in each specific case. 

IV. MODULUS TENSORS WITH A THREEFOLD AXIS 
AND A PERPENDICULAR PLANE OF SYMMETRY 

The symmetry group contains 12 operations: the six of 
(3.1) and 

U' = ie -lk1T'/3V , v' = ie1k1T'/3u, k = 0, ... ,5 

(Ref. 1, p. 40). The form (3.2) remains invariant, but the only 
invariant eighth-order form is U4V4• The general invariant 
modulus tensor contains five arbitrary constants, two in 
identity representations, two in five-dimensional representa
tions, and one in the nine-dimensional representation. The 
invariant description of this symmetry type is (i) p and q are 
multiples ofthe same form U 2V2; and (ii) r is a multiple of 
U4V4. 

Returning to physical variables as in Sec. III, the sym
metry plane is X = o. 

V. MODULUS TENSORS WITH CUBIC SYMMETRY 

From Ref. 1, one finds that there are no invariant quar
tics, and only one invariant form of degree eight, 

W = u8 + 14u4v4 + v8
• 

These results are also easily derived using physical variables. 
The general modulus tensor with cubic symmetry therefore 
contains three arbitrary constants: two in identity represen-
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tations, and one in the nine-dimensional representation. The 
forms p and q vanish, and r must be transformable to a multi
ple of W. The possibility of this transformation can be stated 
invariandy using a sequence of root extractions. As in the 
Galois theory of algebraic equations, this sequence depends 
on the composition series of the cubic symmetry group. In 
the complex representation, this group has order 48 and the 
composition numbers, 2,3,2,2 (Ref. 1, p. 41). The Hessian of 
W, 

H = (W,Wf = 82.72.3u2V2(U4 _ V4)2, 

is a perfect square. Define t by 

t = H 1/2/56{3 = uv(u4 _ v4). 

This is Klein's octahedral form. From it and W, two 

perfect cubes can be derived, (W, t )1 ± 6{3 it 2. Their cube 
roots are Klein's tetrahedral forms 

<I> = u4 + 2i.J3u2v2 + v4, 

'I' = u4 - 2i.J3u2v2 + v4. 

Since u4 + v4 and U
2

V
2 can be expressed in terms of these, 

u4 - v4 and uv can be found by extracting square roots. Once 
u4 ± v4 are known, one more square-root extraction leads to 
u2, v2, and uv. Cubic symmetry can be characterized invar
iandy as follows: (i) the forms p and q vanish; (ii) for the form 
r, the sequence of root extractions described above is possi
ble, and terminates with the forms U 2

, V 2
, and UV; and (iii) 

the variables X, Y, Z of (3.4) are related to x, y, z by a rota
tion. 

VI. REFORMULATION OF THE CONDITIONS FOR 
TRIGONAL SYMMETRY 

The invariant characterization of cubic symmetry just 
given emphasizes the algebraic structure of the symmetry 
group and is therefore more appealing than the somewhat ad 
hoc conditions given for trigonal symmetry. However, these 
can also be stated in terms of root extractions as follows. 
From G of(3.3), compute the transvectants 

(G,G)8 = 8!( - 16ac + 70b 2), 

((G,G )6, (G,G )6)4 = (8!8!6W(2ac + 25b 2)2. 

The combination ac and b can be obtained algebraically 
from these invariants; knowing them and uv, one can com
pute the perfect squares 

au6 ± 2,f{iCu3v3 + cv6
• 

Square-root extractions lead to .{au3 + JCv3
, and cube roots 

to u and v. It is now a simple matter to characterize trigonal 
symmetry by the possibility of a sequence of root extractions. 

The addition of a plane of symmetry to trigonal symme
try causes the modulus tensor to become transversely iso
tropic, that is, invariant under all rotations about the axis of 
symmetry. The symmetry group is continuous instead of dis
crete; therefore, a characterization based on Galois theory 
cannot be expected. 

VII. EXAMPLE 

The nonzero elastic constants of a material with cubic 
symmetry satisfy 
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Cllll = C2222 = C3333' 

C I212 = C2323 = C3131 = ... , (7.1) 

C1l22 = C2233 = C33ll = ... , 
where additional tenns found by applying the index symme
tries (2.1) are indicated by dots (Ref. 4, p. 160). Using the 
notation of the Appendix, this tensor has the fonn 

Cijkl = CI~ij~kl + C2~jk~jl + C3(E~kl + E~kl + E~kl)' 
(7.2) 

where symmetrization by (2.1) is understood. These simple 
expressions arise because the coordinate planes are material 
symmetry planes. Suppose instead that the x-y plane is rotat
ed by 45°. Then C takes the fonn 

C ijkl = CI~ij~kl + C2~ik~jl 
+ C 3(3E\Jkl - 2E~kl - 2E~kl)' (7.3) 

and the relations (7.1) are not valid. In the inverse problem, 
the fonn (7.3) is given; it is required to detennine the symme
try type of C ' and to find the rotation which reduces it to the 
fonn (7.2). 

The first step in solving the inverse problem has already 
been completed: the tensor C' has been decomposed into 
tenns belonging to irreducible representations. Because two 
isotropic tenns, no terms from the five-dimensional repre
sentation, and one tenn from the nine-dimensional represen
tation occur in the decomposition, C' may have cubic sym
metry. The quartic covariant polynomial of C' is 
proportional to 

r'(x,y, z) = X4 + y4 _ 4Z4 _ 18x2y2 + 12r(x2 + y2). 
(7.4) 

If a rotation can be found which transfonns r' into a multiple 
ofthe corresponding polynomial derived from (7.2), 

r(x, y, z) = X4 + y4 + Z4 - 3(X2y2 + y2r + rx2), (7.5) 

then the cubic symmetry of C' will have been demonstrated. 
In the complex representation, r' becomes the fonn 

W' = 3us + 28u6V2 - 14u4v4 + 28u2V6 + 3vs. 

Perfonning the sequence of root extractions of Sec. V leads 
to the results 

(W', W')2 = 56'56.3(u6 - 5U4V2 _ 5U2V4 + V6)2 

= 56.56.3t '2, 

(W',t')1/8 + 6i{3t'2 

= 6i{3(u4 - 4iu3v/{3 + 2U2V2 + 4iuv3/{3 + V4)3 

= 6i{3cf.>,3, 

(W',t')I/S - 6i{3t'2 

= 6i{3( - u4 - 4iu3v/{3 - 2uV + 4iuv3/{3 _ V4)3 

= 6i{3IJ!,3. 

Assume that there are variables U, V linearly related to u,v 
for which, in the notation of Sec. V, 

- 21
/ 3{3icf.>'(u,v) = cf.>(U,V), 

(7.6) 

- 21
/
3{31"IJI'(U,V) = IJ!(U,V). 
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According to a result of Klein (Ref. 1, p. 62), the existence of 
these variables is assured by easily verified equation 
(t ' ,t ')4 = O. The only remaining question is whether the phys
ical variables X, Y, Z corresponding to U, V are related to 
x, y, z by a rotation. Equations (7.6) imply 

_ 21/3(U4 + 2U2V2 + v4) = 2U 2V 2, 

_ 21
/
34uv(u2 _ v2) = U4 + V 4. 

Fonning linear combinations and taking square roots, 

U 2 + V 2 = i21/6(U2 + 2uv _ v2), 

U 2 _ V 2 = 21/6(U2 - 2uv _ v2). 

Ignoring inessential multiplicative constants, the relations 

x = (Y + Z)/ J2, y = ( - Y + Z )lJ2, z = X 

follow. One easily verifies that these equations define a rota
tion which reduces r' in Eq; (7.4) to a multiple of r in Eq. (7.5). 
This rotation therefore reduces C' in (7.3) to the canonical 
form (7.2). The solution is now complete. 

VIII. THE TWO-DIMENSIONAL PROBLEM 

The transfonnation by rotation of the components of a 
two-dimensional modulus tensor defines a six-dimensional 
representation of the circle group. As in the three-dimen
sional problem, the identity representation occurs twice. 
The representations on e ± 2i() and e ± 4i() occur once each. Us
ing real irreducible representations instead, the covariant 
polynomials are 

(8.1) 

q = C(X4 _ 6x2y2 + y4) + 4d (x3y _ xy3). 

Only two types of symmetry are possible. 
Orthotropic symmetry: There are two perpendicular 

lines of symmetry. Some rotation reduces both band d of 
(8.1) to zero. The invarianf condition is 

2 arctan(b fa) = arctan(d Ie), 

or equivalently 

d(a2 
- b 2

) = 2abc. 
Tetragonal symmetry: This is the symmetry type of a 

square. It is invariant1y characterized by the condition 
a=b=O. 

APPENDIX: IRREDUCIBLE SUBSPACES FOR THE 
REPRESENTATION OF THE ROTATION GROUP ON 
ELASTIC MODULUS TENSORS 

Let M (Q) denote the matrix of the quadratic fonn Q. 
Symmetrization by (2.1) is always understood. 

Five-dimensional spaces: 

C~kl = Mij(x
2 - y)c5kl' C~kl = Mij(Y - r)c5kl' 

CIllel = Mij(r - X2)~kl' CIJlel = Mij(2xy)c5kl> 

C~lel = Mij(2yz)~kl' C~kl = Mij(2zx)~kl' 

D~I =C\NI, 
p(l) = x2 _ y2, P(2) = y2 _ r, p(3) = z2 _ x2, 

p(4) = 2xy, p(S) = 2yz, p(6) = 2zx. 
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Nine-dimensional spaces: 

E~ll = Mij(x2 - y2)Mkl (2xy), 

E~ll = Mijly2 -r)Mk/(2yz), 

E~ll = Mij(Z2 - X2)Mkl(2zx), 

E~ll = Mij(x2 - y2)Mkl(X2 - y2) - Mij (2xy)Mkl (2xy), 

E~ll = Mijly2 _z2)MkI1y2 - r) - Mij(2yz)Mkd2yz), 

E ~ll = Mij(Z2 - X2)Mkdz2 - x2) - Mij (2zX)Mkl (2zx), 

E~kl = Mij (2xy)Mkl (2yz) + Mijly2 - z2)Mk/(2zx), 

E~ll = Mij (2YZ)Mkl (2zxj + Mij(r - x2)Mk/(2xy), 

E~ll = Mij (2zx)Mkl (2xy) + Mij (2YZ)Mkl (x2 _ y2), 

Q (J) = 2(x3y _ xy3), Q (2) = 21y3z _ yz3), 

Q (3) = 2(rx _ zx3), 
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Q (4) = X4 _ 6x2y2 + y4, Q (5) = y4 _ 6y2r + Z4, 

Q (6) = Z4 _ 6z2x2 + X4, 

Q(7) = 6xy2z _ 2z3X, Q(S) = 6xyz2 _ 2x3y, 

Q (9) = 6x2yz _ 2y 3Z. 

I F. Klein, Lectures on the Icosahedron and the Solution of Equations of the 
Fifth Degree (Dover, New York, 1956). 
2H. Weyl, The Classical Groups (Princeton U. P., Princeton, NJ, 1946), p. 
150. 

3E. Caetan, The Theory of Spinors (Dover, New York, 1981), p. 41. 
4 A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity (Dover, 
New York, 1944), p. 159. 

~J. H. Grace and A. Young, The Algebra of Invariants (Chelsea, New York, 
1952), p. 46. 
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A combinatoric method for evaluating the inner multiplicity of a central weight is given using 
results from the theory of distributions. A formula for special cases is derived, and a recursive 
algorithm is presented for the general problem. 

I. INTRODUCTION 

The determination of the multiplicity of a weight in a 
representation of a Lie algebra can be accomplished by sev
eral methods. These methods are either direct or recursive. 
For example, Kostant's formula l 

OEW 

is direct and involves a summation over the Weyl group and 
evaluation of Kostant's partition function. This is fine for 
algebras of rank 4 or smaller, but since 1 W 1-n! for rank n 
and no evaluation of P ( ... ) is available, the formula is to be 
avoided for large rank. A useful recursive method is Freu
denthal's formula! 

{(A + <5,..t + <5) - (p + <5"u + <5)}m,d.u) 
00 

= 2 L L m(p + ia)(p + ia,a). 
a>Oi= ! 

(1.2) 

However, one must know all of the weights of a representa
tion in order to use this method. In addition, the number of 
positive roots a > 0 is on the order of n2 for rank n so applica
tion is tedious. One also notices that this formula works from 
the periphery of the weight diagram inward, so the weights 
of highest multiplicity are the last to be be evaluated. 

In this paper we shall explore the connections between 
the multiplicity problem and certain results from the theory 
of distributions. 

Sections II and III outline the properties of the charac
ter function. In Sec. IV we give an integral formula and selec
tion rules for mUltiplicities, and in Sec. V we evaluate the 
integral formula using combinatoric methods. We construct 
generating functions and recursion formulas in Sec. VI A 
and in VI B we develop a formula for the multiplicity ofthe 
zero weight in a tensor representation of rank equal to the 
rank of the underlying algebra plus one. Also in VI B we give 
generating functions for a distribution problem related to 
finding the multiplicity of a fundamental weight in a tensor 
representation. We restrict our attention to the groups 
SU(n). 

II. CHARACTERS 

Explicit expressions for the group character of a repre
sentation will be the basis of our development. Let g be a Lie 
group and A (g) a representation. Then the character is de
fined in the following way: 

x,d g) = Tr A (g), (2.1) 

with the following properties: 

X(..t It..t ') ( g) = X..t ( g)·X..t' (g), 

X(..t~..t ') ( g) = X..t ( g) + X..t' ( g). 

As an example, consider 

X; = LUijxj , U a unitary map. 
j 

Then 3 V, V unitary such that 

V-!UV = diag(€J>"',€n), 

so that there is a basis2 
Xi such that 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

with no sum on i. The €i are clearly the eigenvalues of 
u€SU(n). Now consider a tensor representation spanned by 
products of the form 

XiXj ' i,j = l, ... ,n. 

Let us impose the restriction i < j which gives the irreducible 
representation of dimension n(n - 1)/2 of SU(n), labeled in 
the Young scheme as B . 

n 

Tr U = X _ = L€i€j. (2.6) 
::c i<j 

We recognize X to be the second elementary symmetric func
tion in n variables €i' Now let i<j to give the [n(n + 1)/2]
dimensional representation ofSU(n), rn. 

n 

Tr U =X = ~€.€., 
t:l.J ~ I J (2.7) 

i<j 

which we recognize as the second symmetric function on n 
variables €i' We shall adopt the notation Q p (n) for elementary 
symmetric functions and hp(n) for totally symmetric func
tions. For example, 

Q 2(3) = €!€2 + €!€3 + €2€3, 

h2(3) = E"i + ~ + ~ + €!€2 + €!€3 + €2€3' 

Let dp be the pth fundamental representation labeled by the 
Young diagram 
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and d P be the pth symmetric representation 

I 1···1 I . 
~ 

p 

Let (f;J;, ... ,{,.) designate the representation with diagram 

Weyl's second formula2 then reads 

Xv, .... J.) = det I, Iij = Xd'-J+f,. 

An example is, for SU(3), 

X(21) = X EP = I~LD ~ I 
= u 

= Ih2(3) ho(3)1 
h3(3) hl(3)' 

III. THE PARAMETERS E; 

(2.8) 

Recall V-IUV - diag(EI .,. En)' Unitarity requires 
that 

2";;· 
Ei =e '. (3.1) 

We also note that since SU(n) is composed of matrices of 
determinant 1, 

In any character formula one encounters such things as 

(3.5) 

so one may always add any multiple of tPl + ... + tPn + I = ° 
to such an expression without changing its value. In other 
words, one may add any multiple of (1,1, ... ,1) to a weight ,u 
without changing m . tP. For example, A2 - SU(3) 

z 

a l = (1, - 1,0), a2 = (0,1, - 1), 

c=( 2 
-1 

- 1) (~ ~) 
2' C-

I 
= ~ ~' 

add 113 (\II) 

Al = (i, -!, -!) - (1,0,0)-0, 

add 2/3 (\II) 

A2 = O'!, - n - (1,1,0) - B . 
IV. MULTIPLICITIES 

In addition to our basic definition 

x. = Tr A (g), (4.1) 

(3.2) we have the following relation: 

To discuss arbitrary weights in the future it would be con
venient to relate fundamental weights Ai to diagrams in the 
Young scheme. 

Let us choose a Cartesian basis for the root system of the 
Lie algebra An in an (n + I)-dimensional space: 

for An - SU(n + 1) 

a l = (1, - 1,0, ... ,0), 

a 2 = (0,1, - 1,0, ... ,0), 

a j = (0, .. 0,1, - 1,0 ... 0), 
i i+1 

an = (0, ...... 0,1, - 1). 
n n+ I 

The fundamental weights Ai are given in terms of the roots a i 
by the inverse Cartan matrix I 

Ai = [l/(n + 1)]{(n + 1 - i)al + 2(n + 1 - Ija2 

+ ... + (i - 1)(n + 1 - i)ai _l + i(n + 1 - i)ai 

+ i(n + 1 - (i + l))a i + I + ... + ian} (3.3) 

= _1_ {n + 1 - i,n + 1 - i, . .. , 
n + 1 I 2 .. . 

+ 1 . .. 'J n . - I, - I, - I, ... , - I . 
I ... n+ 1 

Note 

AI + [il(n + 1)](1,1, ... ,1) 

= (1,1, ... ,1,0, ... ,0). 
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(3.4) 

X(A,tP) = L Y .. (m)eim .;, (4.2) 
meVy 

where Y .. (m) is the multiplicity of weight m in representation 
A. Let m' be a weight of V .. 

X(A,tP)e- im" 91 = L y .. (m)ei(m-m')',p, (4.3) 
me VA. 

( 
1 )n- li2

". 21T 0 d cf» X (A,tP )e- im'·,p 

( 
1 )n- li2

". = L y .. (m) - ei(m-m')' 91 dcf» 
mev" 21T 0 

= L y .. (m)8(m - m') = y .. (m'), (4.4) 
meV.,t 

or 

(4.5) 

This result is of little practical value since in general the 
character function X(A,tP) is a complicated function of tP. 
However, one can use Weyt's second formula to express 
X (A,tP ) for A = ifl""'{") in terms of symmetric functions. 

Example: For SU(3), A = (2,1) with diagram ~ 

tPl + tP2 + tP3 =0-E3 = E2-
I
E1-

1
, 
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= 2 + EfE2 + EIE2-
1 + EI~ + E2EI-

1 

+ E I-
2E2-

1 + E I-
IE2-

2, 

( 
1 )2 r21T 

r(0,0) = 211" Jo dt/JI dt/J2 X = 2 

= multiplicity of center. 

An immediate consequence of Eq. (4.5) is a set of selection 
rules. We shall restrict ourselves to the discussion of positive 
weights in order to avoid anomalous Young diagrams. For n 
variables EI, ... ,En with En = En-_II ••• E2- IEI- I we observe 
the correspondence between positive weights and mono
mials: 

weight 

(0, ... ,0) 

(1,0, ... ,0) 

monomial 

(E I,E2•·• En)m 

E'{' + I(E2 ••• En t 
(1,1,0, ... ,0) E'{'+I~+I(E3···En)m. 

Consider a product of symmetric functions 

hxhy ... hz 

in the character of a representation of SU(n). If 

x+y+ ••• +z#mn, mEZ+U{OJ, (4.6) 

there will be no monomials (E IE2'" Ent in the product so 
the multiplicity of the center of the weight diagram of the 
representation will be zero. Continuing with this reasoning 
we obtain the following selection rules. For SU(n) 

yv, .... J.,(O, ... ,O) = 0, 

unless I) + ... + In = mn, 

yv; .... J)1,0, ... ,0) = 0, 

unless I) + ... + In = mn + 1, 
Yv, .... J.)(1,1,0, ... ,0) = 0, 

unless I) + ... + In = mn + 2, 
yv, .... J.,(PI ... Pn) = 0, 

unless I) + ... + In = mn + PI + ... + Pn' 

V. CONNECTION WITH DISTRIBUTION THEORY: 
HAMMOND OPERATORS 

(4.7) 

In order to obtain a useful multiplicity formula for SU(n) 
we must circumvent the integration in Eq. (4.5). This may be 
done by introducing differential operators with a specified 
action on a product of symmetric functions. 

The number of times that a given monomial appears in a 
product hpl (n )hP2 (n) •• , is a classic problem in the theory of 
distributions. Consider a specific example. Let n = 4 and 
examine the product 

h4(E),E2,E3,E4)h3(E),E2,E3,E4), 

(
4+4-1) where h4 has 4 = 35 terms, h3 has 

(3 + ~ - 1) = 20 terms. What is the number of occurrences 

of 

~~E3E4? 

This monomial occurs eleven times 
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~E2' E2E3E4, ~E3' ~E4' ~E4' ~E3' 

Ef~ . EIE3E4, EfE2E3' EIE2E4, EfE2E4 ' E)E2E3' 

EfE3E4 ' E)~, ~EIE3' EfE4, ~EIE4' EfE3, 

~ E3E4 • ~ , E )E2E3E4 . Ef E2, 

which corresponds to a distribution of seven objects 

E I,E I,E ),E2,E2,E3,E4 
into seven parcels, four of one type and three of another. 3 

One does not need to multiply the functions out and collect 
terms. Introduce instead the Hammond3 operators D; 

; 

D;hm =hm_i> D;hmhn = Ihm-jhn-;+i' (5.1) 
j=O 

which acts as convolutions on products of the symmetric 
functions 

D~~ih3h4 

= D~i(hoh4 + h)h3 + h2h2 + h3hl) 

=Di(hoh2 + h)h) + hoh2 + hoh2 + h)h) + h2hO 

+ h)h) + h2hO) 

= D)(hoh) + hoh) + hoh) + h)ho + hohl + hoh) 

+ h)ho + h)ho + hoh) + h)hO + h)ho) = 11. (5.2) 

Using the Hammond operators we can write a very general 
multiplicity formula. Let I/), ... /,,) denote a representation of 
SU(n). The monomial 

E'{"~' ••. E;·, m»m2>'" >mn 

corresponds to the weight 

(m) - m2)A.1 + (m2 - m3)A.2 + .... 
Then the multiplicity of this weight in I/), ... /,,) is 

Dm,Dm," .Dm• det{h;_HI;J. (5.3) 

For an arbitrary weight this is no easier to evaluate than 
Kostant's formula. However, evaluation for weights near 
the center of the weight diagram is very simple. 

VI. EVALUATION FOR CENTRAL WEIGHTS 

A. A Special case 

Consider first the zero weight. Due to the selection 
rules, we need only consider/) + ... + In = mn and the for
mula reduces to 

(6.1) 

We would like to connect our problem with questions arising 
in the theory of distributions, so let us first examine 

mn 
D':,.hyhx = Irq(n,m)hy_qhx_mn+q' 

q=O 
(6.2) 

Clearly rq(n,m) = the number of compositions of q into n 
integers, each no greater than m. It is equally clear that 
r q(n,m) = the number of ways of putting q objects in n boxes 
(distinguishable) with no more than m per box. This is gener
ated by 
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(1 + t + ... + t m)" 

mn (1 t m + I )n = I tqrq(n,m) = ----
q=O 1 - t 

=(I_tm+l)n~(q+:-l )t q 

= i (n) (_t m+l )kI(q+n-l)t q 
k=O~ q q 

= i I( _1)k(n) (q + n -1 )t mk +k+q 
k-O q k q 

= ~L~o( -W~) (q -;~ ~ ~~: - 1 )}t q
• (6.3) 

These numbers have the following recursion relation readily 
derived from the generating function: 

rq(n,m) = rq(n - I,m) + rq-I(n - I,m) 

+ ... +rq- m(n-l,m). (6.4) 

As an example, r q(n,2) are 

I 

1 1 
1 232 
36763 1 

Also noter
q
(n,l) = (:). 

The product of two symmetric functions is the type of 
thing which arises in the character formula for representa
tions ofSU(n) whose Young diagrams are of the form 

I I'" I I x boxes , . _ .. ·1 I y boxes 

(ftJ2', •.. In) = (x,y,O, ... ,O). 

In this case 

I 
hx(n) hy - dn) I 

X(x,y.o ..... O) = hx+ I (n) hy(n) , 

so that the multiplicity of the center is given by 

(Dm)"(hx(n)hy(n) - hx+ I (n)hY_I (n)) 

= k~O( - W(~) (y-;~~~:~ -k) 

(6.5) 

_ ~ (_I)k(n) (y -mk+n - 2 -k) (6.6) 
kf:o k y - k - mk - 1 

= ~ ( _ 1 )k( n ) (y - mk - k + n - 2 ), 
kf:o k n - 2 

for x + y = mn, zero otherwise. 

The multiplicity of the fundamental weights are also easy to 
obtain from the correspondences 

= (1, ... ,1,0, ... ,0) -+ (EI ••• Ei)m + I(Ei + I' •• En)m 
'-1 
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r(x.y.O ..... O) (1, 1, ... ,1,0, ... ,0) 

= (Dm+ tli(Dm)"-i(hx(n)hy(n) - hx+ dn)hy_ dn)) 

= (Dm+ tli {mnimirq(n - i,m)hy_ q(n)hx_ m(n_/1+q(n) 
q=O 

mi+imll-mi 

= I I rq(n - i,m)rp(i,m + 1){hy_ q_ p 
p=o q=O 

Xhx-(mn+/1+q+P - hy_ I_ q_ p 

xhx+ 1-(mn+/1+q+P}' 
(6.8) 

Only values of q and p which give terms proportional to hoho 
do not vanish, therefore 

r(x,y.o ..... O) (1, 1, ... , 1,0 ... ,0) 
mi+i 

= I {rY-P(n - i,m) - ry-I-P(n - i,m)} 
p=o 

xr P(i,m + 1). 

Examples: For SU(4) n = 4 we have the following. 

(i) I I I I I I = (5,4,0), 

x = 5, Y = 4, i = 1, m = 2, 

since 5 + 4 = 2 .4+ 1, 
3 

rl~~: = I {r 4
-

p(3,2) - r 3
-

p(3,2)}r
p
(I,3) 

P=O 

= r 4(3,2) - r O(3,2) = 6 - 1 = 5. 

(ii) C1 I I I I - =(5,1,0), 

i = 2, x = 5, Y = 1, m = 1, 

since 5 + 1 = 1 . 4 + 2, 

4 

rl~lgl = I {r I - P(2, 1) - r - P(2, I)} r P(2,2) 
p=o 

= r 1(2,1)F 0(2,2) - r 0(2, 1)F 0(2,2) + r 0(2, 1) 

Xr l(2,2)=2-1 +2=3. 

B. The general problem 

(6.9) 

It is clear from the preceding section that the solution to 
the general case requires knowledge of the action of some 
Hammond operator raised to a power on a product of an 
arbitrary number of symmetric functions: 

D;hxhy'" hz 

I, + i, + ... + I, = P 

=D pm -
I ~ h.h. ···h I ~ X-I. Y-J. z- I 

i • .. ". 

1,+ ... +I,=p 
= I 

I • .. ". 

a 

= I rb(p,m)hx_ahy_ b " .hz _ c • 
a,b ... ,c c 

(6.10) 
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a 

The coefficient rb(p,m) expresses the number of ways to 
c 

form a,b, ... ,c from k numbers, each no larger thanp with the 
constraints 

i l +jl + .,. +/1 =p, 

(6.11) 

ik + jk + ... + Ik = p. 

To make the connection with combinatoric theory, one 
a 

notes that r: (p,m) enumerates the solutions to the following 
c 

problem. Consider the number of ways of putting integers 
(non-negative) into cells in a rectangular array such that each 
column totals p and the rows total a,b, ... ,c, respectively. 

In the present case 

11 12 . . . i k • 
il J2 . . . Jk 

· · · · · · · · · 
11 1z . . . -\ e 

P P II 

The problem of finding the coefficients r is clearly related to 
the problem of enumerating Latin (or magic) rectangles.3 

The Latin rectangle problem can be solved using the inclu
sion/exclusion principle of combinatorics,4 but we shall 
solve the problem at hand in a different manner by con
structing generating functions and recursion relations. 

r~(N.3) 

FIG. 1. Coefficients r~(N,3) in Eq. (6.13). 
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There is no loss in generality in taking 

kp = a + b + '" + c. (6.12) 

This allows us to eliminate c and later will make the symme
tries of the r coefficients obvious. 

In order to write the generating function, we now equate 
the rectangle problem to a distribution problem. Suppose we 
have a objects of one type, b of another, ... , and c of another 
type. Suppose in addition that we have k distinguishable 
boxes. How many ways are there to place objects into boxes 
such that there will be p objects in each box? Obviously, 

kp = a + b + ... + c. 

If all of the objects are the same type, we already have 
the generating function, Eq. (6.5). The solution to the prob
lem at hand is the most obvious generalization of this pre
vious result. For clarity consider p = 3, and just three types 
of objects a,b,c; then 3k = a + b + c. The generator is 

{1 + (S+ T) + (S2 +ST+ T2) 

+ {S3 + S2T + ST2 + T3)}k 

(6.13) 
x,y 

(See Fig. 1.) Note r has only two indices instead of three 
because of the constraint Eq. (6.12). For the number ofrec
tangles 

p P 
1 2 

8 

b 

d 

• 

with ~7= IPi = a + b + + c + d, the generator is the 
following. Let xI, ... ,xm _ I be m - 1 indeterminants. Then 

k Pj a. n ~hi{m-l)= ~ r: Xf,···x~m~; 
j = 1 i = 0 a •... am _ I am - 1 

(6.14) 
enumerates the possible solutions. 

C. Application to central weights 

A multiplicity formula in terms of factorials can be de
rived for the case PI = P2 = ... = Pk = 1. Then we have 

k 1 n ~ hi {m-l) 
J= I i=O 

= {I +XI +X2 + ... +Xm _ dk 

~ kl (1)ioVi, xim-. = ~ .. AI··· m-l' 
io···im_. ,01 .. "m_1 1 

(6.15) 

so 
i, 

r : (k,l) = kllio!i l !··· im_11, (6.16) 

where 
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This result can be used to write the multiplicity of the 
zero weight in a respresentation with a boxes in row 1. b 
boxes in row 2 ..... c boxes in row n - 1; 

a boxes 

b boxes, 

for SU(n) with a + b + 
1 

a! 

+ c = n = k. namely. 

1 

rl0 ••••• O) _ n' (a + I)! 
la.b •...• c) - • 

(b - I)! 
1 

b! 

(e - I)! 
1 

c! 

(6.17) 

Example: For SU(4). representation = (3.1.0). 

1/3! 1/0! 0 

rlm~ = 4! 1/41 1/1! 0 
1/5! 1/2! 1/0! 

= 4{ ;! ;, - ~! ~! ) = 3. 

FIG. 2. r;(n,2) coefficients of sxP in level m. 
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FIG. 3. r;(n,2) coefficients of sxP in level N. 

It is far more difficult to give a useful formula for cases in 
which a + b ..• + c = np. p > 1. but recursive methods for 
obtaining the r coefficients make graphical techniques pos
sible. Consider 

a+b+c=2n. 

The generating function is 

(1 + (Xl +X2 ) + (X~ +XIX 2 +X~nn 
= l:r:(n.2)X~X~ 

and note that one has 

r:(n.2) =:= r:(n - 1.2) + r:-l(n - 1.2) 

+ r:-2(n - 1.2) + r:_ dn - 1.2) 

(6.18) 

(6.19) 

+ rL2(n - 1.2) + r:=:ln - 1.2). (6.20) 

These coefficients are displayed in Figs. 2 and 3. One merely 
has to have the r's for n = 1 and apply recursion to develop 
the series to any n. Note also the high degree of symmetry in 
the coefficients 

r:(n.2) = r!(n.2) = r~n-a-b(n.2) 

= r~n _ a _ b(n.2). etc. 

Let this be applied to 

~~15.2.1). 
ofSU(4). zero weight. 

Jeffrey R. Schmidt 
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Weyl's second formula gives 

h5(4) h l (4) ° 
X(5,2,1) = h6(4) h2(4) ho(4) 

h7(4) h3(4) h l(4) 

= [5,2,1] + [1,0,7] - [3,0,5] - [1,1,6]. 

From Fig. 2, we have 

rlm: = 36 + 4 - 16 - 16 = 8. 

To obtain the multiplicity of the fundamental weight 
(1,0, ... ,0) we use the coefficients of 

{I + (Xl +X2) + (X~ +XlX 2 +X~) 

+ (X~ +X~X2 +XlX~ +X~)} 

X{1 + (Xl +X2 ) + (X~ +XlX 2 +x~)}n-l, (6.22) 

, for the case a + b + c = 2n + 1. (See, for example, Fig. 4.) 
The coefficients have the same recursion relation as those 
used in the previous example. For the SU(4) representation 

~ ~(5,3,[1, 
Weyl's formula gives 

XIS.3.1) = [5,3,1] + [2,0,7] - [4,0,5] - [1,2,6], 

rl~~: = 58 + 10 - 22 - 37 = 9. 

The generating function which gives the coefficients needed 
for the multiplicity of the fundamental weight 

Ai = (1,1, ... ,1,0, ... ,0) 
i 

will be 

(l+hl(m-l)+ ... +hp+l(m-1W 

X(l+hl(m-l)+ .. , +hp(m-1W-i, 
(6.23) 

where 

h/(m - 1) = h/(XI ,x2, .. ·,xm_ d. 
This should be compared to Eq. (6.22) for the case m = 3, 
p = 2, i = 1. A suggested procedure is to find the coefficients 
in the expansion of 

(1 + hl(m - 1) + ... + hp+ I (m - lW (6.24) 

by recursion and then to do the same for the coefficients of 
(6.23) in terms ofthose for (6.24). This may be done graphi
callyuptom = 4. The generating function (6.23) enumerates 
solutions to the rectangle 

n 

--------------~-------------

p+l p+l' p+l p 

-i p 

Some points to note are the following. 

p 

a 

b 

-. 
c 

(i) The number of indices a,b, ... ,c are the number of rows 
in the Young diagram. For four or more rows, the graphical 
method becomes cumbersome and recursion is the logical 
way to proceed. 

(ii) Multiplicities are found by fixing a weight and vary
ing the representation and the rank n of the group. 

(iii) Multiplicities of weights near the center of the 
weight diagram are easy to find. Weights near the outer 
boundary are rather difficult by this method. 

(iv) The number of terms5 in hm(n) is (n +: -1) so 

that 

dimifl/2''''/n) = det {( n - ; :~ ~/ - j)} (6.25) 

= lim xif ..... /,.). 
£1:_ 1 

£;_1 

(v) Weyl's second formula expressed in terms of sym
metric functions,6 when expressed in expanded form, gives 
all weights and their multiplicities. 

(vi) Formula (6.14) is also the generating function for 
simultaneous compositions of the numbers a,b, ... ,c into no 
more than k parts with restrictions. 

VII. CONCLUSIONS 

We have developed a direct combinatoric method for 
determining the multiplicity of a weight at or near the center 
of a weight diagram in a representation of SU(n). The meth
od makes use of numbers which are solutions to a given com-
binatoric problem and are generated recursively. Actual 

FIG. 4. Coefficients of (1 + (S + T) + (S2 + T2 + ST) + (S3 + T3 multiplicity formulas may be obtained in specific cases. It 
+ S2T+ST2))(I+(S+T)+(S2+T2+ST))N-l. Id be . fi "1 fi h wou amusing to nd a simi ar construction or t e 

2727 J. Math. Phys .• Vol. 26. No. 11. November 1985 Jeffrey R. Schmidt 2727 



                                                                                                                                    

groups Sp(2n), SO(2n + 1), and SO(2n). However, it is to be 
expected that any such method would be more complicated 
than the SU(n) case due to changes in Weyls' second formula 
and the Young labeling scheme. Any connection between 
Kostant's partition function and the r coefficients would 
also be interesting to find. However, the generator for the 
case of SU(4), being 

[(1 - x l )(1 - x2)(1 - x 3 )(1 - x lx2)(1 - X~3) 

(7.1) 

bears little relation to the r generator which is entirely in the 
numerator. 
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It is shown that for polynomial eigenfunctions of an ordinary polynomial differential operator 
with coefficients depending only on the independent variable it is possible to determine the density 
of nodes around the mean without solving the corresponding eigenvalue problem. This is done by 
means of the first few moments, which can be directly expressed in terms of the above-mentioned 
coefficients. Also, very simple expressions for the asymptotic values (i.e., when the degree of the 
polynomial becomes very large) of these quantities are found. For illustration, these results are 
applied to various orthogonal polynomials, which satisfy ordinary differential equations of 
second, fourth, and/or sixth order. 

I. INTRODUCTION 

In many physical and mathematical problems we have 
to face the calculation of eigensolutions of operators (matri
ces, differential operators, integral operators). Generally, 
this is a difficult task. It would be desirable to obtain as much 
information as possible about the eigenvalues and eigenfunc
tions directly in terms of the parameters that characterize 
the operators, that is, without knowing the solution of the 
corresponding eigenvalue problem. 

The collective or global properties of the eigenvalues 
and/or the nodes of the eigenfunctions of the operator are of 
special interest for mathematicians because of their novelty 
and for many-body physicists due to their relevant physical 
meaning. The most important properties of this type are the 
eigenvalue and/or node distribution densities or related 
quantities such as moments, cumulants, etc. Reference 1, for 
example, shows how the moments of the asymptotic eigen
value density of a large class of Hamiltonian matrices can be 
calculated explicitly in terms of the matrix elements, without 
any diagonalization. Particular cases of this class of matrices 
are encountered in several branches of physics.2 Similar 
problems are considered in Ref. 3. 

The purpose of this paper is to obtain spectral properties 
of a collective nature of ordinary differential operators of 
any order without the need of solving the associated eigen
value problem. 

In 1980, Case4 showed a simple method to find sum 
rules of zeros of polynomial solutions of certain ordinary 
polynomial differential operators in terms of their coeffi
cients, and applied them to the classical orthogonal polyno
mials, which, as is well known, satisfy a second-order differ
ential equation. The authorsS have used the same method to 
investigate the distribution of the nodes of the eigensolutions 
of certain fourth-order differential operators that allowed 
them to obtain new properties of zeros of all the families of 
nonclassical orthogonal polynomials, which are eigensolu
tions of such operators. 

Here it is our purpose to extend this investigation to 
ordinary polynomial differential operators (OPDO's in 
short) of any order. Precisely, we want to study the density of 
nodes of the eigenfunctions of the ordinary polynomial dif
ferential operators defined in Eq. (1) of Sec. II directly in 
terms of its coefficients. In particular we give explicit and 

recurrent expressions for the first four moments of the den
sity of nodes. Also the corresponding quantities of the 
asymptotic limit of this density are shown in a simple man
ner. As a corollary we obtain the conditions to be fulfilled by 
the coefficients of the OPDO's so that the asymptotic density 
of the nodes will be Gaussian, rectangular, and semicircular 
around the mean. For the sake of illustration, the previous 
results are applied to systems of orthogonal polynomials, 
which fulfill an ordinary differential equation of second, 
fourth, or sixth order. 

The paper is structured as follows: Section II is devoted 
to a sketch of the method used. Also, the relevant quantities 
are defined and some basic relations are given. Section III 
shows how the first four moments of the density of nodes of a 
polynomial eigenfunction are derived from these relations in 
a recurrent way. Section IV includes the derivation of the 
asymptotic values of these moments from the coefficients of 
Eq. (1) oftheOPDO. In Sec. V the occurrence of some parti
cular densities of nodes is discussed. Several applications to 
various systems of orthogonal polynomials are contained in 
Sec. VI and finally some concluding remarks are given. 

II. METHODS AND BASIC TOOLS 

Let us consider polynomials PN(x) satisfying a differen
tial equation of the form 

n 

Lg;(x)P~(x) = 0, (1) 
;=0 

where P~(x) denotes the ith derivative of PN(x), and 
; 

g;(x) = Lajilxj (2) 
j=O 

is a polynomial of degree no higher than i and such that the 
only coefficient aj" that can be N-dependent is a~l. Further, 
we assume that all zeros of PN(x) are simple. 

Weare interested in the distribution of the zeros or 
nodes of the polynomial P N (x), which is characterized by the 
normalized-to-unity discrete density function defined by 

1 N 
PN(X) = - LO(x-x;). (3) 

N;=l 

The moments about the origin f.L; and the central mo
ments f.Lr or moments around the mean of this function are 
given by 
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1 N 1 
p,;(N) = - LX~= NY" (4a) 

N 1=1 

p,,(N) = ~ f [XI -p,j(N)]' 
N/=I 

= }tJ;)P,;_j(N)[ -p,j(N)]1. (4b) 

Notice that Yo = N, andp,,(N) =p,;(N) ifp,j = 0. It is 
possible to show4 that these quantities can be calculated by 
the recursion relation 

n I 

L i L ayV~)+} = - a~y, - a~ly~l~ I' 
1=2j=0 

r = 0,1,2, ... , (5) 

which allows us to calculate the moment of order r + 1 in 
terms of the moments of lower orders. Indeed the J ~\ 
s = 0,1,2, ... , are sum rules of the zeros of PN(x) defined by 

X' 
J(i)=L I, 

, "" (XI, - Xd{XI, - xi,!"'{XI, - XI;) 
(6) 

(1:"" means to sum over the l's subject to none of them being 
equal), which may be expressed in terms of the y, with 
t<;.s - i + 1. However this is a difficult problem, not yet 
solved for arbitrary values of sand i. Case4 for i = 2 and the 
present authorss for i = 3 and 4 have given sum rules as 
functions of the y,. Also the corresponding expression for 
i = 5 is shown in Appendix A of this paper. Notice that in 
Eq. (5), the erroneous factorial i! ofEq. (4) of Ref. 4 does not 
appear, as already pointed out in Ref. 5. 

Since4 J~) = ° for O<;.s<;.i - 2, Eq. (5) reduces as follows: 

for r = 1,2, .... From this equation one can make three im
portant observations. 

(i) The rth momenty, only depends on the r + 1 ordered 
sequences Sk of coefficients defined by 

So= {a}')} 7= I' Sk = {a}'~d7=k' k= 1,2, ... ,r. (8) 

(ii) This recurrent method cannot be used when all the 
members of sequences So and S 1 are zero. 

(iii) The evaluation of y, previously required that ~ne 
obtaintheJ}'~m,m = -1,O, ... ,r-l,intermsofthey, with 
t,m + 1. The latter is only known for m = - 1,0, and 1. 
Indeed, Case4 has found that 

iJ}l~ 1 = bg\ 
i J}') = b ~)YI' 

iJ}'~1 = [b~)-b~)]Y2+b~)yi. 
where the convention 

1, 
i<j, 
i=j, 

{

o, 

bY) = b Y)(N) = ( IJI - I 

. II (N - t ), i> j, 
] I=} 

(9a) 

(9b) 

(9c) 

(10) 

has been used. Appendix B contains the calculation of J}'~ 2 

and J\'~ 3' In particular it is found that 
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iJ}'~2 = (b~) - 2b~1 + 2b~))y3 
+ (2b ~) - 3b ~))yIY2 + b ~yt , 

I· J (,) - {b (,) - 3b (,) + 6b (,) - 6b ('))y 
;+3- I 2 3 44 

+ (2b~) - 6b~) + 8b ~i))yIY3 

+ (b~) - 3b~) + 3b~)~ 

(lIa) 

+ (3b~) - 6b ~))y2Yi + b ~y~. (lIb) 

Equations (9) and (II) together with Eqs. (4) and (7) al
low us to calculate the first four moments p,;(N), with 
r = 1,2,3,4, of the density distributionpN{x), These quanti
ties give a precise description of the density function around 
the mean and often allow us to obtain a good parametriza
tion of this function. Furthermore these four quantities give 
the centroide, the variance [02 = P,2(N)), the skewness [i.e., 
r I = P,3(N )1 p,~I2(N) ], and the excess or kurtosis [i.e., 
r2 = p,4(N)/p,~(N) - 3] of the density of zeros (nodes) of the 
polynomial eigenfunctions PN{x). 

The centroidep,j (N) and the varianceP,2 (N) were impli
citly calculated in Ref. 4 and for completeness we write them 
up in the next section. Also in Sec. III we show the derivation 
of the third and fourth moments. 

III. THE FIRST FEW MOMENTS 

A. The centrolde p,; (N) = y11N 

Equations (7), (9a), and (9b) yield 

1:7= I a}'~ I b g) 
1:7= I a}')b ~) 

(12) YI= -

B. The second moment p,~ (N) = yziN 

Equations (7) and (9) give the following recurrence rela
tion: 

1:7 2 {a}')b ~Yt + a}') 2b g)} + 1:7= I a\'~ I b ~)YI 

1:7= I a\')(b~) - b ~1) 

C. The third moment /1-3 (N) = yzl N 

Putting r = 3 in Eq. (7) we have 
n 

a(II)"3 -- a(1)" - ~ (a(') J(') + a\') J(') J - OJ2 £.. ;-3 ;-1 ,-2, 
;=2 

+ a(') J (,) + a\'V (,) ) 
;-1 ;+1 ,,+2 . 

(13) 

By means of expressions (9) and (lla), this equation trans
forms as follows: 

(14) 
Y3 = - ~? a('){b (,) _ 2b (,) + 2b (')) , 

6.,=1, I 2 3 

with 

A ( ) ~ (,) (b (,) b ('))y YI'Y2 = £..a;_1 1- 2 2 
;=1 

+ ~ [a(') b (,) + a(') b (iI" + d.'~ I b (2i1Yi £.. ,-3 0 ,-2 IJI , 
;=2 
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D. The fourth momentp4(N) = YtVN 

Putting r = 4 in Eq. (7) and using the relations (9) and 
(11), it is straightforward to obtain the following recursion 
relation for Y4: 

Y4 = - l:? al,.l(b ('1 _ 3b ('1 + 6b ('1 _ 6b ('1) , .= I. I 2 3 4 

with 
n 

B (YI'Y2'Y3) = La\~ I (b~l- 2b~1 + 2b ~llY3 
i=1 

+ al,'l [ (b ('1 _ b ('1\.. + b (1) • .2 ] 
• - 2 I 2 1)'2 2Y I 

+ al,'l [ (2b (.1 _ 3b (·1\,. Y + b (l)y3 ] 
.- I 2 3 VI 2 3 I 

+ a~'l [(2b ~1 - 6b ~1 + 8b ~llYl Y3 

+ (b~l- 3b~1 + 3b~1~ 
+ (3b ~1 - 6b ~llYtY2 + b ~1y! ]). 

(15) 

The convention a~l = 0 for negative values of h is used 
everywhere. Equations (12HI5) confirm that once we know 
the five sets of parameters 

(16) 
I 

the first four moments p; (N) get fixed. 

IV. ASYMPTOTIC MOMENTS 

Here we want to show how to determine the asymptotic 
density of zeros p(x) around the mean of the polynomial 
PN(x). We calculate precisely the asymptotic values of the 
first four moments about the origin of the density functin 
PN(X), that is, 

p; = lim p;(N), r = 1,2,3,4. 
N_", 

(17) 

Due to Eq. (4a), to do that one has to study the asymptotic 
behavior of the correspondingy quantities. According to the 
previous sections, it is clear that this behavior gets fully de
termined by the five sequences S k, k = 0,1,2,3,4. We assume 
that the elements in each sequence are ordered as shown by 
Eq. (16). We denote by a~), a~~ I' a~t'-- 2' a~~ 3' a~~ 4 the last 
nonvanishing element starting from the left in the sequences 
So, SI' S2' S3' and S4' respectively. 

The results are summarized in the form of the following 
theorem. 

Theorem 1: The asymptotic form of the first four Y quan
tities is 

(18a) 

(18b) 

_ [r(s - 3r) _ (s - 1)(18 - 6r - 1)] [a~~ I ]3N3,_ 3s+ I) + o (N k,), 

2 6 sa~) 
(18c) 

Y4= - -_. - u r-s ~ N 2t - 2s + 1 

( 
a~~ 4 N" _ S + I (+ + 1) a~~ I a~~ 3 N U + , _ 2s + I + s - 2t - 1 [att

) 2 ] 2 

sa1S
) [ sa1S

) ] 2 2 sa1S
) 

(2r+t)(s-t-2r)+(s-I)(2t+4r-18+ 1) [a~~d2a~t'--2 N 2'+t-3s+1 
2 [sa~)p 

_ D(r,s) [a~~ I ]4N4,_4s+ I) + o (N k4), 
24 sa~) 

(18d) 

where 

D (r,s) = «(s - r - 1)[ 12r(s - 3r) - 4(s - 1)(18 - 6r - 1)] + 4r(r - 1)(7r - 3s + 1) 

+ (s - 1)[3(s - 2r - 1)(s + 2r - 3) - (s - 2)(s - 3)]). 

The values of ko for i = 1,2,3,4, in Eqs. (18) are equal to 
the maximal values of the sets Ei defined as follows: 

Then the first four moments of the asymptotic density of 
zeros p(x) easily follow from the expressions 

2731 

EI = {r-s+ 1}, 

E2 = {2r-18+ l,t-s+ ll, 
E3 = {u -s + l,t+ r- 18 + 1,3r- 3s + lj, 
E4= {v-s+ l,u+r-18+ 1,2t-18+ 1,2r 

+ t - 3s + 1,4r - 4s + 1}. 
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(19) 

This is the end of the theorem. 
The proof of this theorm is fairly easy once one observes 

that, according to Eq. (10), 
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bj') = G)Ni-j + O(Ni-j-I). 

Taking this value in Eqs. (12H 15), one has for the four y 
quantities a ratio of two polynomials in the variable. Then it 
suffices to divide the term of the highest N power of the 
polynomial in the numerator by the corresponding term of 
the polynomial in the denominator in order to obtain Eqs. 
(18) of our theorem. 

V. SOME ASYMPTOTIC DENSITIES OF NODES 

The theorem mentioned in the previous section allows 
us to know many things about the asymptotic density of the 
nodes of the eigenfunction PN(x) of the polynomial differen
tial operator defined by Eqs. (1) and (2). Here we will mention 
only the following result. 

Theorem 2: Assume that all members of the sequences 
SI and S3 of the differential operator [Eqs. (1) and (2)] are 
zero and that the nonvanishing coefficients a~s, and a~t~ 2 ex
ist. Then,u; =,ui = 0 and 

,u~ = [(2t - s + 1)12] ,ui2. (20) 

These moments correspond to the first four moments of 
a density function of the Gaussian type, of the rectangular or 
uniform type, and of the semicircular type centered at the 
origin according to s being equal to 2t - 5, 2t -1f, and 
2t - 3, respectively. 

Even more, if s = 2t - 1 then the nodes of the eigen
function PN(x) satisfying (1) and (2) are asymptotically piled 
up at exactly two points that are one standard deviation 
away from the mean. 

Proof Equation (20) easily follows from Eqs. (18b)
I 

Y2= -

a~I' + a~'b ~2' , 
a~YI + a~y~2' + a~2'b ~2YI + aW'b W' 

a~I' + a&2'(b ~2' - 1) 

Let us specialize to various classical orthogonal polyno
mials. In doing so, we find several results already obtained 
by Case.4 

1. Hermite polynomials HN{x) 

Now So = { - 2,0)' SI = {O,O}, andS2 = {1}. Since all 
memebers of SI are zero, Eqs. (21a) and (21c) give ,u; (N) 
=,ui(N) = 0. Also, Eqs. (21b) and (21c) yield 

,ui(N) =!(N - 1), ,u~(N) =!(N - l)(N - ~). (22) 

Notice that ,u2(N) = N /2 + O(N-I) and ,u~(N) 
= N 2/2 + 0 (N). These asymptotic values could have been 
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(18d). On the other hand, the Gaussian, uniform, and semi
circular densities are given by 

pIx) = (217")-1/2 exp( - !x2), - 00 <x < 00, 

pIx) = (2h )-1, - h<.x<.h, 

p(x)=(2/17")(1_X2)1/2, -l<.x<.l. 

Since all three densities are symmetric, the odd mo
ments vanish, and the even moments are, respectively, 

,£lin = (2n - 1 )!!, 

,£lin = h 2n/(2n + 1), 

, _ 2-
2n 

(2n) ,u2n - -- . 
n + 1 n 

These equations verify that,u~ = 3,ui, ~ ,ui2, and 2.ui2, also, 
respectively. Finally, Guttman6 has shown that when ,u~ 
= ,u22 the density function reduces to exactly two points, 

which are one standard deviation away from the mean. The 
last condition is fulfilled if s = 2t - 1 according to Eq. (20). 

VI. APPLICATIONS 

To see how the general results found in the previous 
sections work, let us specify the order n of the differential 
operator defined by (1). 

A. Second-order differential operator (I.e., n = 2) 

Here all we need are the three sequences 

So = (a~I',a&2'), SI = (abl',a~2'), S2 = (aW'). 

Then the expressions of the first four moments given in 
Sec. III are strongly reduced as follows: 

(21a) 

(21b) 

(21c) 

(21d) 

I 
obtained directly from Theorem 1. For completeness let us 
point out that in a context of random matrices, Bronk 7 has 
shown that for large N the density PN(X) is given by 

_ {(1I17")(2N _X2)I12, Ixl<.2N, 
PN(X) - 0, Ixl >2N. 

2. Laguerre polynomials Lf;'{x) 

Here So = { - 1,0}, SI = {a + 1,1}, 
Equations (21) allow us to find the values 

,u;(N) =N +a, 
,ui(N) = (N + a)(2N + a-I), 

and S2= {OJ. 

(23a) 

(23b) 
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Jl;(N) = (N +a)[N(N +a) 

+ (2N +a -2)(2N +a -1)], (23c) 

Jl~(N) = (N + a)[N(N + a)(6N + 3a - 5) 

+ (2N + a - 3)(2N + a - 2)(2N + a-I)]. (23d). 

On the other hand, the asymptotic values of these quan
tities can be obtained in a straightforward manner either 
from Eqs. (23) or directly from Theorem 1. The values of 
these asymptotic moments are 

Jli(N) =N + o (N°), Jl2(N) = 2N2 + O(N), 

Jl;(N) = 5N 3 + o (N 2), Jl~(N) = 14N4 + O(N3). 

Bronk 7 has also shown that for large N the density P N(X) 
has the following form: 

{

(41l'x)-1 [ - X2 + (4N + 2a - 2)x - (a - W] 1/2, 

PN(X) = XO<X<XI, 
0, otherwise, 

where Xo and XI are the roots of the radicand. 

3. Chebyshev polynomials CN(x) 

Here So = { - 1, -l},SI = {a,a}, andS2 = {l}. Here 
since s = 2 and t = 2, Eqs. (21) produce the following known 
moments: 

Jli(N) =Jl;(N) = 0, Jl2(N) =! + O(N-I), 

Jl~(N) = ~ + O(N-I). 
Bronk7 also found that the density PN(X) is given for 

large N as follows: 

{
N1T-I(I-X2)1/2, for Ixl.;;;;l, 

PN(X) = 0, otherwise. 

4. Jacobi polynomials p;.PJ(x) 

NowSo = {-a-p-2,-l}, SI= {p-a,a}, and 
S2 = {I}. Equations (21) yield 

'(N)- p-a 
JlI - 2N+a+p' 

'(N)= (2N+a+ p )2(N-l)+(N+a+ P )(P-a)2, 
Jl2 (2N + a + P )2(2N + a + P - 1) 

(P - alY2 - 2ytY2 + 2(N - IlYl Jl; (N) = -'-'----=-:=--~~-"---=-=-
N(2N+a+p-2) 

(P - alY3 - 2ytY3 - yi + (2N - 3lY2 + yi 
Jl~(N) = ------------

N(2N +a +P- 3) 
Asymptotically these expressions reduce as follows: 

Jli(N) =!(P -a)N-1 + O(N-2), 

Jl2(N) =! + O(N-I), 

Jl;(N) = ~(P - a)N- 1 + O(N-2), 

Jl~(N) = i + O(N-I). 

These asymptotic moments are an immediate consequence 
ofEqs. (IS). 

B. Fourth-order differential operator (I.e., n = 4) 

In this case the polynomials PN(x) are described by the 
five following sequences: So = {a\'i}t= I ,SI = {a\/~ I }t= I> S2 
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{ (/)}4 S {(/)}4 d S - { (4)} Th nl = a;_2 ;=2, 3 = al _ 3 1=3' an 4 - ao . eo y 
systems of orthogonal polynomials, apart from the classical 
ones, which satisfy the differential equation [(1) and (2)) are 
the so-called Krall-Legendre, Krall-Laguerre, and Krall
Jacobi polynomials.8 

In Ref. 5 we have given explicit expressions for the first 
four moments of the density of zeros of the Krall polynomi
als. These same expressions can be obtained in a much more 
simple and straightforward way from Eqs. (12H 15). Here we 
will not write such expressions again but only calculate their 
asymptotic values as a further illustration of the usefulness 
of Theorem 1 found in Sec. IV. 

1. Krall-Legendre polynomials %~)(x) 

Here So = {Sa,4a + 12,S,l}, SI = {a,a,a,a}, S2 
= {-4a-12,-S,-2},S3= {a,a},andS4 = {I}. Since 

all the elements of SI and S3 vanish, Theorem 1 yields Jli 
= Jl; = a. Besides, since s = 4, t = 4, and v = 4, we obtain 
for the sets E;, i = 2,4, the following values: 

E2 = (-7,1), E4 = (1, -7,1, -7,1). 

Then according to Eqs. (ISb) and (ISd) the values of the 
asymptotic moments are 

Jl2 = -a~)/4a~4) + O(N-I) =! + O(N-I), 

Jl~ = - a1i)/4a~4) + a~)2 /4a~4) + 0 (N -I), = i + 0 (N -I). 

Let us finally say that it is possible to prove that 

Jl2k = 2 - 2k e~) and Jl2k _ I = 0, 

for k = 1,2,3, .... 

2. Krall-Lagueffe polynomials .?rtJ(x) 

Now So = {2R + 2,I,O,a}, SI = { - 2R, - 2R - 6, 
-2,a},S2= {0,4,l},S3= {a,a},andS4 = {a}.Heres=2, 
r = 3, and t = 4, since the elements of the E sets are E I 
= {2}, E2 = p,3}, E3 = { - 1,4,4}, and E4 
= { - l,a,5,5,5}. Then the asymptotic moments are, ac

cording to Theorem 1, 
a!3) 

,2 1 JlI = - -- = , 
2a~) 

5 a13) 2 a!4) 
, 2 + 2 2 

Jl2 = - '2 2a12) 2a(2) = , 
2 2 

a!3)a(4) a(3) 3 

'- 6_2_ 2_+s 2 -5 
Jl3 - - 2a~)2 2a~) - , 

, 63 a~) 2a~) 693 a~) 4 

Jl4 = - "'2 2a~)3 - 24 2a~) = 14. 

It is easy to prove that 

Jl; = _1_(2r), r=a,I,2, .... 
r+ 1 r 

3. Kral/-Jacobi polynomials f~·MJ(X) 

In this case the S sets are 

So = {(a + 2)(2a + 2 + 2M),a2 

+ 9a + 14 + 2M,2a + S,I}, 
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SI = { -2M, -6a -12-2M, -2a -12, - 2}, 

S2 = {0,4,1}, S3 = {O,O}, S4 = {OJ. 

Here 8 = 4, r = 4, and t = 4. Then the corresponding E 
sets are EI = (1), E2 = (1,1), E3 = (- 3,1,1), and 
E4 = ( - 3, - 3,1,1,1). In this case Theorem 1 produces the 
values 

Jli =!, Jli =j, Jli =li, Jl~ =M· 
In fact it is possible to prove that 

Jl; = 2 -2,e;). r = 0,1,2, .... 

The distribution of zeros of the Krall polynomials is studied 
in detail in Ref. 5 from their differential equations and in 
Ref. 9 from their explicit expressions. 

C. Sixth-order differential operator (I.e., n = 6) 

Here the density of zeros of the polynomial P N (x) is fully 
characterized by the seven following sets of parameters 
So= {al;)}~=to and Sk = (al/~k}~=k' for k= 1,2,3,4,5,6. 
Recently a new set of polynomials lL~·B.C)(X) has been found. 
The polynomials are solutions 10 of a sixth-order differential 
equation and are orthogonal on [ - 1, 1] with respect to a 
weight distribution. These polynomials, named the Krall
Littlejohn polynomials, are generalizations of the Legendre 
and Krall-Legendre polynomials and satisfy many proper
ties shared by the classical orthogonal polynomials of Jacobi, 
Laguerre, and Hermite. They are defined by the sequences 

So = {24ABC 2 + 12AC + 12BC,12ABC 2 + 42AC 

+ 42BC + 72,24AC + 24BC 

+ 168,3AC + 3BC + 96,18,1}, 

SI = {12BC - 12AC,I2BC - 12AC,0,0,0,0}, 

S2 = { - (I2ABC + 30AC + 30BC + 72), 

- (24AC + 24BC + 168), 

- (6AC + 6BC + 132), - 36, - 3}, 

S3 = {O,O,O,O}, S4 = {3AC + 3BC + 36,18,3}, 

Ss = {O,O}, 

S6 = { -t}. 

Equations (10)-(13) give the first few moments of the 
wanted density of zeros. We will not write them explicitly 
here. What we will do is to apply the results of Sec. IV to 
investigate the asymptotic density of zeros oflL~·B.C)(x). From 
the given sequences we observe that 8 = 6, r = 2, t = 6, and 
v=6. Then the E sets are E 1 = {3}, E 2 = {-7,t}, 
E 3 ={-5,-3,-1l}, and E4 ={1,-9,-7,1,-17}. 
The corresponding asymptotic moments turn out to be given 
by 

Jli = lib (AC - BC), f.l;' =!, 
Jli = lib (AC - BC), f.l~ = j. 

In fact, starting from the three-recurrence relation verified 
by these polynomials it is possible to prove that the asympto
tic moments of even order are given by 
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, _2k(2k) Jl2k = 2 k' k = 0,1,2, .... 

It is interesting to remark that these quantities coincide with 
the corresponding moments of even order of the Krall-Le
gendre polynomials and also with the first k moments of the 
Jacobi and Krall-Jacobi polynomials. 

VII. CONCLUSION 

It has been shown that for polynomials satisfying ordi
nary polynomial differential equations with coefficients de
pending only on the independent variable, the normalized 
density of zeros around the mean can be found. This is done 
by means of the first four moments, which are given explicit
ly. Also it is found that the asymptotic values of these quanti
ties are particularly easy to obtain directly from the coeffi
cients which characterize the differential equations. 

For illustration, the previous results are applied to all 
the orthogonal polynomials satisfying a second- and/or 
fourth-order differential equation of the type of Eqs. (1) and 
(2). Also the (asymptotic) moments of the density of the zeros 
of a new system of orthogonal polynomials verifying a sixth
order differential equation are given. It is striking to point 
out that those moments of even order are equal to the even 
moments of the Krall-Legendre polynomials and also to the 
moments ofthe Jacobi and Krall-Jacobi polynomials. 
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APPENDIX A: DERIVATION OF J ~5) 

By definition 

(AI) 

Here we want to expressJ~) in terms of the quantitiesYI 
with t<r - 4. First of all we transform Eq. (AI) into the 
form4 

4 ' , 
J(5) = _ 2: XI, -XI, . 

, 5;, (XI, - XI, )(xl, - XI, )(XI, - XI, )(XI, - XI,) 

2 ' , _ -2: XI, -XI, 

5 ;' (XI, - XI,l(XI, - Xd(XI, - XI,)(XI, - xd 
2 x' x' + -2: I, - I, 

5 ;' (XI, - XI, )(XI, - XI. )(xl , - XI, )(XI, - XI,) 

The use of the relation 

X' -X' ,-1 
_ I __ m ~ ,-1-;; 

= kXI Xm 
XI -Xm ;=0 

and adequate algebraic manipulations allow us to write J~) 
as follows: 

1 ,-Is-I I-I u-1 

J~)= - 2: 2: 2: 2: 
5 s=31=2u=1 "=0 

XBs(r - 1 - 8,s - 1 - t,t - 1 - u,u - 1 - v,v). 

The B function is defined by 
(A2) 
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B5(t l,t2,t3,t4,t5 ) = L x~: x~~ x~: x~: x~: . 
# 

The same procedure described in Appendices A and B of 
Ref. S yields 

+ 20y" + I, + "Y"Y" + ISy" + "Y" + "Y" 

- 30y" + I, + I, + "Y" - 20y" + I, + "Y" + I. 

+ 24y" +1, +1,+ 1.+1.' (A3) 

B5(t l,t2,t3,t4,t5) 

= Y"Y"Y"Y"Y" - 10y" + "Y"Y"Y" 

Taking this expression with tl = r - 1 - S, t2 = S - 1 - t, 
t3 = t - 1 - U, t4 = U - 1 - v, t5 = v, and :I~ = It/ = r - 4 
and using Eq. (A2), we obtain 

J(5) = ~{(SN4 - lOrN3 + [lO[(r - 2)(r - 3) + 4] + IS(2r - S)]N2 
r S 

- [S[(r - I)(r - 2)(r - 3) + 6] + lOr(r - 3)]N + r(r - I)(r - 2)(r - 3)Yr_4 

r-2 
+ L (lON 3-30(s-I)N2+ [ISs(r-s)+20[(s-I)(s-2)+ I]]N 

.=4 

- [lOr(s - 2)(r - 2s + 1) + ISs(s - 1)(s - 2)])Yr_I_.Ys_ 3(1 - 8r,5) 

r-2.-2 6 
+ L L (lON 2-1O(t-2)N+ [lOt(t-l)+ IS(r-s)(s-t)])Yr_l_sYs_I_,Y,_ 2.II(1-8r,;) 

s=5,=3 1=5 
r-2s-2'-2 7 

+ L L L (SN - lOU)Yr-l-sYs-I-tY,-:-I-uYu-I.II (1 - 8r,;l 
s=6,=4u=2 1=5 
r-2 s-2 1-2 u-2 8} 

+ '~7 1~5 U~3 V~I Yr-l-sYs-I-'Y'-I-uYu-I-vYv;U5(1 - 8r,;) , 

valid for r>S. 

APPENDIX B: DERIVATION OF J n 2 AND J ~/~ 3 

From Eqs. (29) and (31) of Ref. Sand Eq. (A2) one notes 
that there exists a close relation between the quantities J~) 
and B;(tl,t2, ... ,t;), Even more one realizes that 

;-1 

II (N - s) Y3' for (3), 
s= I 

;-1 

= II (N - s)( YI Yz - Y3)' for (2,1), 
s= 2 

;-1 

II(N-s)(y~ -3YIYz+2Y3)' for (1,1,1). 
s= 3 

; 

k=Ltj =r-i+ 1. 
j=l 

(b) k = 4: The partitions of the number 4 are 
{(4),(3,1),(2,2),(2,1,1),(1,1,1,1)}. Then 

Besides, the B quantities are fully symmetric. Then we can 
assume without any loss of generality that the non vanishing 
arguments, if they exist, are the first ones. One easily has 

;-1 

B;(O,O, ... ,O) = II (N - s), 
s=o 

B;(t I>t2, ... ,tj ,0,0, ... ,0) 

= {Jt(N - S)}Bj (t l ,t2 , ... ,tj ), 

S=J 

for i>1. 
To evaluate J~;)+ 2 and J~/~ 3 one needs to know the ex

plicit expressions of the B quantities for k = 3,4. These ex
pressions can be obtained directly from the explicit forms of 
B3, B4 already shown in Appendices A and B of Ref. S, re
spectively. The final results depend on the partitions of the 
numbers 3 and 4. They are as follows. 

(a) k = 3: The partitions of number 3 are 
{ (3 ),(2,1 ),( 1,1, I) }. The result in this case is 

B;(tl ,t2, .. ·,t;) 
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B;(t l,t2, ... ,t;) 

;-1 

II (N-S)Y4' for (4), 
s= I 

;-1 

II (N - S)(YIY3 - Y4)' for (2,1,1), 
s=2 
;-1 

II (N - s)(Yi - Y4)' for (2,2), 
s=2 
i-I 

II (N - s)(YzYi - 2YlYi - Yi + 2Y4)' 
s=3 

for (2,1,1), 
i-I 

II (N - s)( yt - 6yiY2 + 8YI Y3 + 3Yi - 6Y4)' 
s=4 

for (1,1,1,1). 

Taking this expression in the forms contained in Appen
dices A and B of Ref. S and Appendix A of this paper for J ~\ 
withi = 2,3,4,S, we obtain the wanted valuesforJ~/~ m' with 
m = 2,3 and i = 2,3,4,S, which allow a straightforward gen
eralization for any i. The final results are Eqs. (11). 

Buendia, Dehesa, and SanChez-Buendia 2735 



                                                                                                                                    

1 J. S. Dehesa, J. Phys. A: Math Gen. 11, L223 (1978); M. C. Bosca and J. S. 
Dehesa, J. Phys. A: Math. Gen. 17, 3487 (1984). 

2J. P. Gaspard and F. Cyrot-Lackman, J. Phys. C: Sol. State Phys. 6, 3077 
(1973); D. de Brucq and E. Tirapegui, Nuovo Cimento A 67,225 (1970). 

3B. Simon,J. Phys. A: Math. Gen. 15, 2981 (1982); W. CraigandB. Simon, 
Commun. Math. Phys. (to be published). See also references therein. 

4K. M. Case, J. Math. Phys. 21, 702 (1980). 
5J. S. Dehesa, E. Buendia, and M. A. Sanchez-Buendia, J. Math. Phys. 26, 

2736 J. Math. Phys., Vol. 26, No. 11, November 1985 

1547 (1985). 
6L. Guttman, Ann. Math. Statist. 19,277 (1948). 
7B. V. Bronk, J. Math. Phys. 5, 1661 (1964). 
8A. M. Krall, Proceed. R. Soc. Edinburgh Ser. A 87,271 (1981). See also 
references therein. 

9J. S. Dehesa and F. J. Galvez, preprint 1985. 
JoL. L. Littlejohn, Question. Math. 5, 255 (1982); L. L. Littlejohn and M. A. 

Krall, Lecture Notes Math. 964, 435 (1983). 

Buendia, Dehesa, and Sanchez-Buendia 2736 



                                                                                                                                    

Solution of an extremum problem pertaining to analytic extrapolation 
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A preliminary problem appearing in analytic extrapolation procedures when the "physical data" 
are given on a line contained in the analyticity domain and their errors are measured through the 
norm of the supremum is solved. As an interesting by-product, Blaschke functions are 
constructed, which, in some sense, generalize the usual Chebyshev polynomials. 

I. INTRODUCTION 

Analytic extrapolation is a useful mathematical tool in 
theoretical physics, especially in elementary particle theory 
where analyticity can be viewed as an information convey
or. I Among the various problems arising in this context, the 
following one has an interest of its own. A function F analyt
ic in some domain g is known to be bounded (in modulus) 
by a given function on the boundary of g (physical condi
tions on the "timelike cut"). Further, the values of F are 
given on some interior set r, possibly within some error 
channel (physical data in the "spacelike region"). One looks 
for the range of possible values of F at some interior point Zo 

not on r. A number of variants of the problem can be con
ceived, according to the choice of the set r and the way both 
the boundedness condition and the errors of the physical 
data are expressed (choice of norm). When rsimply consists 
in a finite set of points and the errors are assumed to vanish, 
standard Hardy space techniques2 readily yield the solution, 
e.g., in the L 2 and the L"" norms3

•
4 (for the latter choice, the 

Nevanlinna-Pick-Schur construction l
•
s is used as an essen

tial ingredient). In a further step, the solution can be adapted 
to account for nonzero errors.6 When r is a continuum, non
vanishing errors have to be included from the very beginning 
in order to avoid obvious triviality or inconsistency. Such a 
problem has been solved in the case of a real segment rand 
for various L 2 norms.7 We wish to consider here the same 
problem within the L"" norm. In more distinct terms, it can 
be formulated as follows: There are given a domain g e c, a 
simple arc re g, a point Zo e g not on r [Fig. I(a)], a 
positive function M (z) defined on the boundary a g, a com
plex function R (z), and a positive function 1J(z) defined on r. 
One is asked to find the range of F(zo) when F goes through 
the set off unctions holomorphic in g and is subjected to the 
constraints 

IF(z)I<M(z), zeag, 

IF(z) - R (z)1 <1J(z), z e r. 
After mapping the domain g onto the unit disk (in such a 
way that Zo is sent onto the center), and by using an appropri
ate outer function 1.2,4 to get rid of M (z), one can restate the 
problem in the standard Hardy space H"" as 

range of/(O) =?, 

/eH"" , 

8' Physique Mathematique et Theorique, Equipe de Recherche Associee au 
C.N.R.S. 

Ilfll"" ==ess suplf(eilJ)1 < 1, (1.1) 

If(z) - r(z) I <e(z), z e y( = image of r). 

For arbitrary functions r(z) and e(z), there is clearly little 
hope to obtain a solution in a closed form, or even to get a 
significant insight into the structure of the corresponding 
extremal functions! In this paper, we shall rather address 
ourselves to a simplified version, namely the particular case 
where y is the real interval [a,b] (O<a<b< 1) [Fig. 1 (b)], 
r(z)==0, and e(z) = const = e (non triviality obviously re
quires that e < 1). That is to say, we intend to solve 

f==suplf(O)I =?, 
(1.2) 

/eH"" , Ilfll"" <1, If(x)l<e, xey. 

By "solving" it we mean something more constructive than 
just settling the question of existence and uniqueness of an 
extremal function (which certainly could be established by 
more abstract arguments). In fact, its structural properties 
will be described in detail, and the problem brought to a 
point where the implementation of numerical methods could 
be contemplated. In view of physical application, the main 
assumption to be removed in a further step would be of 
course r(z)=O. 

We shall first show that in (1.2) the functions/can be 
restricted to the class of pure Blaschke products with posi
tive zeros (Sec. II). Then, an auxiliary problem needs to be 
solved, which is interesting by itself: it leads to the construc
tion of a particular class of Blaschke products playing a role 
analogous to that of the Chebyshev polynomials in the usual 
context of best polynomial approximation (Sec. III). The 
properties of the final solution are described in Secs. IV and 
V, and some limiting cases are explicitly given in Sec. VI. In 

(a) (b) 

FIG. 1. Geometrical setting of the problem. (a) general; (b) after conformal 
mapping and restriction on r. 
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particular, it will be seen (maybe rather surprisingly) that not 
necessarily all the zeros of the extremal functionsfo(z) choose 
to concentrate on r in order to minimize lfo(x) I there in an 
optimal way. Sec. VII contains some concluding comments. 

II. REMOVAL OF IRRELEVANT FACTORS 

We start with the canonical factorization theorem in 
B~ (see Ref. 2): 

/ E BOO (f=;!;0) ¢> lIz) = B (z)C (z)S (z), (2.1) 

where B (z) is a Blaschke product 

B (z) = eWz'" II Ian I an - z , 
n an l-a!z 

O<lanl<l, I(I-lanil<oo, (2.2) 

" 
C (z) is the "outer" function 

[
dO e;8+ z 

C (z) = exp -In X(O) -;-8 -, 
-1T 21r e - z 

(2.3) 

with 

x(O) = limlf(re/8 )1 a.e., 
rtl 

Ilfll~ = ess sup X(O), 
-1T<8<" 

and S (z) is the "singular inner" function 

[ [ 
e;8+z] 

S(z)=exp - dv(O)-;-8-' 
-1T e -z 

(2.4) 

with dv(O) a positive measure, singular with respect to the 
Lebesgue measure. 

A. Removal of the "outer" and the "singular Inner" 
functions 

Our first contention is that in (1.1) the function/ can be 
restricted to the subset of pure Blaschke products (2.2). No
ticing that Ilfll ~ < 1 implies In X(O )<0 a.e., we see that the 
product D (z)=C (z)S (z) admits the representation 

[ I1T e;8+z] 
D (z) = exp - dp,(O) -;-8 - , 

-1T e -z 
(2.5) 

wheredp,(O) = - (l/21r)lnX(O)dO + dv(O ) is apositive mea
sure for the functions/relevant to the problem (1.1). Hence, 
for real x 2 < 1, we have ID (x) I = exp[ - E (x)] with 

I
1T 1 

E(x) = (1 _x2) dp,(O) 2 ;>0. 
-1T 1-2cosOx+x 

(2.6) 

Since 0< ID (x)I<I, we can define, for all x E) - 1,1[, 

d(x) = ID(x)1 +x . (2.7) 
1 + ID(x)lx 

Lemma 1: d (x) is a nondecreasing function on] - 1,1[. 
Proof: d (x) is obviously differentiable on ] - 1,1 [ and 

d '(x) = 2 sinh E (x) - (1 - x
2
)E '(x) 

ID(x)i(1 + ID(x)lx)2 

> 2E(x) - (l-x
2
)E'(x) . (28) 

ID(x)I(1 + ID(x)lx)2 . 
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But a simple computation using the representation (2.6) 
gives 

2E(x) - (l-x2)E'(x) 

= 2(1 - x 2 )(1 + X)2 [1T dp,(O) 

X I-cosO >0. 
(1 - 2 cos Ox + X 2

)2 
(2.9) 

Q.E.D. 

Thus we have d (x»d (0) for O<x < 1, which can be rewritten 
as 

ID(x)I>UD(OJl-x]l[1 -ID(O)lx). (2.10) 

As it stands, this inequality is useless for our purpose, be
cause its right-hand side (rhs) is not necessarily positive on 
the whole interval r = [a,b ]. However, the same reasoning 
applied to the function [D (zW1p clearly leads to the inequal
ities 

ID(z)II/P>[ID(O)I IIP-x]![I-ID(OJl llpx] (O<x<I), 
(2.11) 

valid for all p > O. Choosing p as an integer large enough to 
secure ID (0) I lip > b, we are allowed to rewrite Eq. (2.11) as 

ID(xJl> - >0, forO<x<b. (2.12) [ 
ID (0)1 lip x]P 

l-ID(O)l lIpx 

Therefore, in the search ofthe supremum}; it is always "ad
vantageous" to replace the factor D (z) = C (z)S (z) in each 
function/(z) by the Blaschke factor b (z)= [( ID (OJlIlP - z)/ 
(1 -ID(O)II/PzW,sincelb(O)1 = ID(O)landlb(x)I<ID(x)lon 
r. This means that 

f=suplf(OJl, /Ef!JJ, If(x)I<E, XEr, (2.13) 

where f!JJ is now the class of Blaschke products (2.2) (notice 
that the constraint I If II ~ < 1 is then automatic; in fact 
Ilfll~ = 1 for/E f!JJ). 

B. Restrictions on the Blaschke factors 

We now show that in Eq. (2.13), only Blaschke products 
with positive zeros need to be considered. First of all, we can 
immediately restrict the class f!JJ by setting (() = m = 0 in Eq. 
(2.2): the phase factor eW plays no role in the problem except 
for generating a trivial family of equivalent extremal func
tions e;w fo(z) from one of them, and the power factor z'" can 
be omitted at once since evidently f =f0. Next, we observe 
that it is "advantageous" to replace each factor of the form 

Ba(z) (Ial/a)[(a -z)/(1 - a*z)) (2.14) 

appearing in the representation (2.2) of the function/ E f!JJ by 

Blal(z) = (lal-z)l(I-lalz). (2.15) 

Actually, B lal (0) = Ba(O) = lal, and elementary algebra 
shows that 

IBladxJl<IBa(x)l, \fx>O. (2.16) 

As in Sec. II A, we conclude that 

f = sup 1f(0) I = sup /(0), (2.17) 
fE~+ fE~+ 

If(xll<E, xey If(xll<E, XEy 

where f!JJ + is the class of Blaschke productes with positive 
zeros 
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a -z 
I(z) = IT" ,O<a" < I, 'tin (2.18) 

" I-a"z 
[the last equality in Eq. (2.17) stems from the fact that 
1(0) = II" a" > 0]. 

III. SOLVING AN AUXILIARY PROBLEM: AN 
EXTENSION OF CHEBYSHEV POLYNOMIALS 

Let g) ~ be the subclass in g) + of Blaschke products 
with afinite number N off actors 

N a -z 
I(z) = IT" ,O<a" < I (n = I, ... ,N), (3.1) 

"=II-a"z 

and let us consider the problem (2.17) restricted to g) ~ 

IN = sup 1(0). (3.2) 
fE~~ 

If(x)!..;; .. , XEy 

It is immediately realized that, given E and N, the conditions 
IE g)~ and If(x) I <E(X E r) are not necessarily compatible. 
If, e.g., N = I, one easily finds that 

[ 
1 

al-x I] inf sup 
O<a, < 1 a..;;x..;;b 1 - a1x 

= I-ab _ [(I-ab)2 _1]112, 
b-a b-a 

(3.3) 

so that E must not be less than this value. On the other hand, 
given E, there are clearly functions I in g)~ such that 
If(x) I <E on r if N is large enough. This remark leads us, in a 
preliminary step, to look for the critical value of E corre
sponding to a given N, i.e., for a solution of the minimax 
problem 

EN(r) = inf sup Ig(x)l. 
gE aJ~ a..;;x..;;b 

(3.4) 

Observing that 

(a -x)/(1 - ax»(b - x)/(1 - bx), 'tIx E [a,b], 
(3.5) 

when b < a < I, and that 

l(a-x)/(I-ax)I>(a-x)/(I-ax), 'tIxE [a,b], 
(3.6) 

when 0 < a < a, we immediately conclude, through the "re
placement argument" repeatedly used in Sec. II that Eq. 
(3.4) can be written as 

(3.7) 

where g): C g)~ contains only the Blaschke products, the 
zeros of which belong to [a,b ]. Moreover, since the Blaschke 
class is invariant under the transformation z---+z' = (z - /3 )1 
(1 - /3z), - 1 </3 < 1, it is always possible to send r = [a,b] 
onto a symmetrical interval [- e,e] by such a transforma
tion. One finds 

e = 1 - ab _ [( 1 - ab)2 _ 1]112. (3.8) 
b-a b-a 

This means that EN (r) depends on the interval r through the 
only parameter e [or, equivalently, the "Blaschke invariant" 
(1 - ab )/(b - a)]. Thus, we shall rewrite Eq. (3.7) in the ca
nonical form 
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EN(e) = inf sup Ig(x) I , 
ge iiJ~ -c<x<c 

(3.9) 

with 

{ 
I

Na -z 
g)~ = g g(z) = IT" , 

"=II-a"z 
(3.10) 

In order to solve the problem (3.9), it is convenient to 
map conformally the unit disk Izl < 1 cut along the interval 
[- e,e] onto an annulus. This is achieved by the mapping 

z---+w(z) = i exp[ ~ ~F(~le2)], (3.11) 
2k(e) e 

where F (u I k ) is the elliptic integral of the first kind 

F(ulk) - (" dt (312) - Jo [(1-t 2)(I-k 2t 2JF/2 • 

and K(k)==F(llk) is the corresponding complete elliptic 
integral.8 Then the cut disk is sent onto the annulus 
1 < Iwl <p(e), the images of the cut [- e,e] and of the circle 
Izl = 1 being the circles Iwl = I and Iwl = p(e), respectively 
(Fig. 2). Here 

p(e) = w(l) = e1TK '(c')/4K(c'), (3.13) 

with the usual meaning of K '(k ): 

, (Ilk dt 
K (k) = JI [(t2 _ 1)(1- k 2t 2)j1/2 . (3.14) 

When deriving Eq. (3.13), use has been made of the property9 

(IIJk dt 1 , 
JI [(tl _ 1)(1 _ k2tlJF12 = TK (k). (3.15) 

The inverse mapping of (3.11) is 

(
2iK (e2) w _2) 

w---+z(w) = e sn -1T- In i 1(:- , (3.16) 

where sn(·lk) is the Jacobian elliptic sine [the inverse ofthe 
function F(·lk)]. 

Let us now set G (w) g(z(w)) for any g E g)~. Since 
19(e"P)1 = 1, one sees that G (w) is holomorphicin the annulus 
1 < Iwl<p(e) and that IG(p(e)eiB)1 = 1. Furthermore, the 
analyticity of g(z) on the segment [ - e,e] entails the relation 
G(w) = G(l/w) for Iwl = 1, which immediately extends to 
the enlarged annulus A: l/p(e) < Iwl <p(e) (Fig. 2). Thus, for 
any g(z) in g)~, the corresponding function G (w) is holomor
phic in A and enjoys the properties 

FIG. 2. Conformal mapping of the cut unit disk onto the annulus 
1 < Iwl <p(c), and the extended annulus A (hatched area). The location of 
the zeros w., l/w. of the function GN(w) is also shown in the case N = 3. 
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G(w) = G(l/w) inA, (3.17) 

IG(w)1 = Ion the boundary circles Iwl =p(e) 

and Iwl = l/p(e), (3.18) 

G (w) real on the circle Iwl = 1. (3.19) 

The N zeros an of g(z) becomes 2N zeros of G (w) located on 
the circle Iwl = 1: Wn = w(an) and l/wn. 

The advantage of the transformation z~w is that the 
problem posed now appears to admit an almost rotational 
symmetry [only broken by the constraint (3.17)] that allows 
us to guess the solution. Actually, in view of this symmetry, 
it seems natural that the extremum (3.9) will be reached by 
distributing uniformly the 2N zeros of G (w) on the unit circle 
[without violating Eq. (3.17)], i.e., by setting (see Fig. 2) 

wn = ei(1T/2NI(2n - II, n = 1, ... ,N. (3.20) 

We are going to show that the function gN (z) so defined, i.e., 
via 

N z(wn) - z(w) 
GN(w) = JI 1 - z(wn )z(w)' 

(3.21) 

realizes the extremum (3.9) indeed. 
Lemma 2: The function GN(w) defined by Eqs. (3.20) 

and (3.21) has the property 

(3.22) 

Proof: The function H(W)=GN(wei1TIN)!GN(W) is holo
morphic on A and does not vanish there, since the numerator 
and the denominator have the same set of (simple) zeros. On 
the other hand, IH (w) I = 1 on the boundary of A according 
to Eq. (3.18). As a result, H(w) = const = eW

• Because of 
(3.19), the only two possibilities are H (w) = ± 1. But the 
case H(w) = 1 would imply a constant sign of GN(w) on 
Iwl = 1, in contradiction with the fact that the zeros Wn and 
l/wn are simple. Hence H (w) = - 1. Q.E.D. 

We deduce from Eq. (3.22) the angular periodicity 
property 

GN(we2i1TIN) = GN(w), V weA (3.23) 

(which has nothing to do with the periodicities of the func
tion sn), and also, together with Eq. (3.17), 

GN(w) = GN(wn + I wJw), V n, V we A, (3.24) 

which entails the symmetry of the function GN(ei8 ) with re
spect to the "middle points" 'w w = ei(1TINln This last v n+ In' 

property, together with Eq. (3.22) and the real analyticity of 
GN(ei8 ), implies that GN(ei8 ) necessarily has alternate, local 
maxima and mInIma at the points () = 1Tnl N 
(n = 0,1, ... ,2N - 1) with the same absolute value A: 

N z(w)+e 
A = GN ( - 1) = IT n. (3.25) 

n= I 1 +z(wn)c 

We now claim that these extrema are actually absolute ex
trema of GN (eI8 ) or, equivalently, that 

A = sup IgN(X)I, (3.26) 
-C<X",c 

where 

N z(wn)-z 
gN(Z) = IT . 

n=ll-z(wn)z 
(3.27) 
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Indeed, we have already identified N roots of each equation 

gN(Z) = A (resp. - A ) (3.28) 

located in the interval [ - e,e] (notice that the roots Z = ± e 
are simple whereas the others are double). Should we have 
gN(X) >A (resp. < - A) somewhere on [- e,e], this would 
necessarily mean that Eqs. (3.28) have supplementary roots 
in this interval. But this is impossible since they are N th
degree algebraic equations. 

Finally, let us show thatgN(z) solves the problem (3.9). 
To this end, consider any function g in go~ such that 
sUP-c.;;x.;;c Ig(x) I <A. Then, because of the properties of 
gN(X)jUSt derived (N + 1 alternate maxima and minima with 
the same absolute magnitude A ), we immediately infer that 
the equation 

g(x) = gN(X) (3.29) 

has at least N roots on [ - e,e] (accounting for possible multi
plicities). But, as we know from the Nevanlinna-Pick-Schur 
construction, S an Nth-order Blaschke product normalized 
as in Eq. (3.1) is uniquely determined by its values at N 
points. Hence g(z) gN(Z), which is then the unique extremal 
function associated with the problem (3.9). It follows that 
EN(e) = A, or, according to Eqs. (3.16), (3.20), and (3.25), 

EN(e) = ~ IT sn((K(~)(N + 1 - 2n)/N)ie
2
) + 1 . 

n= I 1 + e2 sn((K(e2)(N + 1 - 2n)!N)I~) 
(3.30) 

In the cases N = 1 and 2, this expression reduces to elemen
tary functions of e: 

EI(e) = e (3.31) 

[one recovers Eq. (3.3) on account of Eq. (3.8)], 

E2(e) = e2/(1 + ff=?) (3.32) 

[by using9 sn(K(k )/2Ik) = (1 + ~-1/2]. This is no 
longer true for N> 3, but it is possible to bring the expression 
(3.30), as well as the formula (3.27) for the extremal function, 
into more compact forms. This is achieved by introducing 
first the "nome,,9 

q(k)=e- 1T[K'(k)lK(k ll , (3.33) 

and by eliminating the parameter k in favor of q [through an 
implicit inversion ofEq. (3.33)]. We shall write accordingly 

K[q] =K(k(q)), sn[vlq] =sn(vlk(q)). (3.34) 

Then 

(3.35) 

gN(Z) = (- l)NEN(e) Cd[N K [qN] cd-I[::lq] IqN]. 
K [q] e 

(3.36) 

In these formulas, q is written for q(e2) = exp[ - 1TK '(e2)! 
K (e2

)], and the function cd['1 q], one of the Jacobian cosines,9 

is simply defined as 

cd[vlq]=sn[v + K [q]lq]. (3.37) 

The easiest proof of Eqs. (3.35) and (3.36) does not proceed 
directly from Eqs. (3.30) and (3.27), but as follows. One uses 
the variable v = F((zlc)le2) = sn-I[(zlc)lq] in place of Z (or 
wI. Then, from the mere definitions and the property (3.23). 
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it is not difficult to show that qN(Z) is meromorphic and dou
bly periodic in the variable v, with periods 4K (c2

)/ N and 
2iK '(c2

). By inspecting its zeros and its poles through Eq. 
(3.27), one discovers that it is a second-order elliptic func
tion.1O This in turn is readily identified with the appropriate 
Jacobian function, apart from a normalization, which is 
fixed by the condition gN (z = - 1) = 1. Finally EN (c) is giv
en by gN(Z = - c). The details are left to the reader. 

Let us point out the striking similarity of the expression 
(3.36) of the "hidden" Blaschke productgN (z) with the famil
iar expression ofthe Chebyshev polynomials in terms oftri
gonometric functions 

TN(Z) = cos(N cos- I z). (3.38) 

Of course, the similarity is not fortuitous: While Eqs. (3.35) 
and (3.36) solve the problem (3.9), the Chebyshev polynomi
als solve the classical problem 

1JN = inf sup Ih (y)I, (3.39) 
hE 9 N -1<y<1 

where 9 N is the class of Nth-degree polynomials of the form 
h (z) = n;; + Ilf3n - z). The solution for 1JN and the extremal 
polynomial h N are well known: 

1JN = l/2N-I, hN(z) = (- I)N1JNTN(z), (3.40) 

The relationship between the "Blaschke minimax" (3.9) and 
the polynomial minimax (3.39) is made precise by noticing 
that the unit circle relevant to the first problem is repelled to 
infinity if one makes the change of variable x = cyand takes 
the limit c-O. Therefore (setting an = c/3n), one expects the 
following limits to be true: 

Indeed, these relations are easily derived from the behaviors9 

q(k) = k 2/16 + O(k4), 
k--o 

K [q] = 1T/2 + o (q), 
q-.O 

cd[Ylq] = cosy + o (q). 
q--o 

(3.42) 

Thus, our extremal Blaschke products gN(Z) appear as natu
ral extensions of the Chebyshev polynomials. 

Finally, for future use, we shall record the form of Eqs. 
(3.35) and (3.36) in the asymptotic limit N-+r:1J. From Eqs. 
(3.33) and (3.42), we immediately get 

(3.43) 

and 

N ( - N1T K '(C
2
)) gN(Z) ~ (-1) 2exp ----2 

N_<xo 4 K(c) 

xcos( N1T2 cd-I [~ Iq]). (3.44) 
2K(c) c 

Let us make Eq. (3.44) more explicit in the case 
- 1 <Z < - c. From the relations [see Eqs. (3.12) and (3.37)] 

cd-I(ulk) = sn-I(ulk) -K(k) =F(ulk) -K(k), 
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(-l/k<u< -1), 

we obtain 

cos( N1T2 Cd-I[~ Iq]) 
2K(c ) c 

(-I<z<-c). 

IV. STRUCTURAL PROPERTIES OF THE SOLUTION IN 
~~ 

Given E( < 1), we define No as the smallest integer such 
that the two conditionsfE pg~ and If(x) I o;;;;E on r are com
patible. According to the discussion of Sec. III, No is ob
tained by first computing c through Eq. (3.8) and then solv
ing Eq. (3.35) for N, which gives 

N. - {K(c
2
) K'(~)} (41) 

0- K'(c2) K(~) , . 

where I x J :::smallest integer ;;;'x. Considering now the prob
lem (2.17) restricted to pg~ : 

sup f(O). 
fE~~ 

(4.2) 

If(xll<£ x E r 

We are in a position to show very simply that the supremum 
is attained. Actually, Eq. (4.2) can be recast in the form 

A ( N. ) fN. = sup II an 

I IT an - x 1<£. a<x<b n = I 
11_ 1 1 - a"x 

O<an< 1 

= SUp (it an). 

I if an - x 1<£. a<x<b n = I 
It_ t 1 - a,.x 

O<an<1 

(4.3) 

The replacement of an > 0 by an;;;.O is obviously allowed. As 
for the replacement of an < 1 byan 0;;;; 1, it is allowed too since 
the first constraint implies an < 1 anyway (if not, No would 
not be the smallest N compatible with the value of E). Then 
iN., which appears as the supremum of the continuous func
tion n;;~ I an on a compact subset of RN

• , is necessarily at
tained. 

We shall denote by fo(z) the associated extremal func
tion [the notation anticipates the fact, to be demonstrated in 
Sec. V, that the extremal function is unique and actually 
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solves the initial problem (2.17)], and order its zeros an ac
cording to the index n: 

o <al<a2<···<aNo < 1. (4.4) 

By performing suitable variations of the simple and double 
Blaschke subproducts contained in fo(z), we shall establish 
the following properties of this function: 

(i) the No zeros a" -are all simple (and thus distinct); 
(ii) a l >a, aNo-1 <b [thus, at most one zero (aNJ 

lies outsidell the interval r]; 
(4.5) 

(iii) fo(a) = E; 
(iv) between any two adjacent zeros a" and an + I , 

fo(x) assumes exactly once the value ( - 1)" E, 

for some x E r. 
Let us show first that a I >a. Indeed, a I < a would imply 

[in the notation of Eq. (2.14)] 

Ba (0) > Ba, (0) (trivially), (4.6) 

IBa(x)1 < IBa,(x)l, fora <x<1 (a simple check), (4.7) 

so that the substitution of Ba (z) for Ba, (z) into fo(z) would 
increasefo(O) without violating the constraint, in contradic
tion with the fact thatfo(z) is an extremal function. 

Then, we can prove (iii) by first noticing thatfo(x) is a 
positive, decreasing function on] - l,al[, as are each of its 
Blaschke factors. Let us assume thatfo(a) < E, and consider 
the function io(z) obtained by substituting B ,(z) for B a (z) a, ' 
intofo(z), withal <a; <a2(wearesupposingfirstthata l isa 
simple zero). Then, for a; close enough to al.io(a) < E (by 
continuity), and 

O.;Jo(x) "o(a), for a <x<a;, 

while, as above [Eqs. (4.7) and (4.6)] 

IBa;(x)1 < IBa. (x)l, for a; <x< 1, 

B ,(O»Ba (0). a, ' 

(4.8) 

(4.9) 

(4.10) 

Equations (4.8H4.1O) show again thatfo(z) cannot be extre
mal, which disproves our assumptionfo(a) < E. The same rea
soning readily extends to the case where a I is a multiple zero. 
We conclude thatfo(a) = E and that a l > a. 

We have thus established (iii) and the first part of (ii). To 
proceed further (when No>2), we need the following lemma. 

Lemma 3: Consider the product Ba(z)Bp(z) with 
a < a <./3 < 1. Leta' be such that a <a' <a andfJ'( < 1) fixed 
by the condition 

Ba,(a)Bp,(a) = Ba(a)Bp(a) (notice that fJ' >fJ). 
(4.11) 

Then 

Ba, (x)Bp' (x)<Ba (x)Bp(x), for a<x < 1, 

Ba'(x)Bp.(x»Ba(x)Bp(x), for - 1 <x<a. 

Proof It is enough to show that 

(x - a) ~ [Ba' (x)Bp' (xl] >0, 
aa' 

fora<a'<fJ'<I, -1<x<1 

under the constraint (4.11). But 
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(4.12) 

(4.13) 

a 
- [Ba' (x)Bp' (x)] 
aa' 

= aBa' (x) B ,(x) +B ,(x) aBp'(x) dfJ' (4.14) 
aa' p a afJ' da" 

where dfJ'/da', drawn from Eq. (4.11), is 

df3' (fJ' - a)(1 - f3 'a) --= - ~:---'-'-"";""-:-'-. 

da' (a' - a)(1 - a'a) 
(4.15) 

Then, an explicit calculation gives, after some rearrange
ments: 

_ (1 - x2)(x - a)(1 - ax)(fJ' - a')(1 - a'fJ ') (4.16) 
- (l-a'x)2(I-fJ'x)2(a' -a)(I-a'a) 

which entails Eq. (4.13). Q.E.D. 
The second part of (ii) is proved again ''per absurdo." 

9ne assumes that a No _ I >b, and one introduces the function 
fo(z) obtained by substituting B a' (z)B a' (z) for 

N...-J Nil 

BaN. _ ,(z)BaN..!z) intofo(z), with aNo _ I < a No _ I and aNo fixed 
by B, (a)B, (a) = Ba (a)Ba (a). For aN. _ I close 

a~,_l aN.. N,,-I No () 

enough to a No _ lone has 

Vo(x) I < E, for aNo _ I <x<b (if aNo _ I < b) (4.17) 

by continuity and 

lfo(x)l<lfo(x)l, for a<x<aNo _ 1 (4.18) 

from the first Eq. (4.12) and by noticing that 
BUN._, (x)BaN.(x»O in the interval [a,aNo _ I ]' On the other 
hand, the second Eq. (4.12) gives 

10(0»10(0), (4.19) 

which shows that our assumption cannot be right, and com
pletes the proof of (ii). 

Let us tum to (iv). Thatfo(x) assumes at least once the 
value + E or - E on [a,b] between two adjacent zeros an 
and an + I is deduced in a completely similar way from the 
previous lemma by supposing If(x) I < E on the interval 
[an ,an + I ]n[a,b ], and changing (an ,an + I ) into (a~ ,a~ + I)' 
The property (i) also follows, as an = an + 1 is but a parti
cular case of the just dismissed assumption. Finally, to com
plete the proof of (iv), it remains to show thatfo(x) assumes at 
most once the value + E or - E on [a,b] between an and 
an + 1 . But the converse would imply that for 1] > 0 small 
enough, the equation 

fo(x) = E - 1] or fo(x) = - E + 1] (4.20) 

has at least No + 2 (real) roots, which is impossible since Eqs. 
(4.20) are Noth-degree algebraic equations. 

The general behavior offo(x), when E varies between two 
critical values E No _ I (e) and E No (e), is illustrated in Fig. 3. 

V. THE SOLUTION IN e1J~ IS THE SOLUTION IN Hoc 

So far, we have no insurance that the extremum (2.17) 
we are looking for is really attained within the "minimal" 
subclass e1J~ compatible with a given value of E. A priori, 
one cannot discard the possibility that Blaschke products in 
e1J + with a larger (even an infinite) number N off actors may 
lead to a larger value f(O). It turns out, however, that the 
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x 

(a) 

(b) 

(c) 

FIG. 3. Qualitative behavior of the extremal function fo(x) for decreasing 
values of E in the interval [Es(C),E4(C)[, for No = 5. (a) and (b) fo(b) = E; (c) 
o <fo(b ) < E; (d) - E <fo(b ) < 0; (e) [case E = Es(c)]:fo(b ) = - E andfo(x) is 
explicit [Eqs. (3.36) and (6.5) - (6.8)]' In the cases (aHc) the largest zero of 
fo(x) lies outside the interval [a,b ]. 

information previously gathered on the extremal function/o 
associated with the problem (4.2) is sufficient to show that/o 
actually solves the problem (2.17), and consequently the 
original problem (1.1). That is to say, we are going to prove 
that 

(5.1) 

To this end, let us consider an arbitrary function h (z) E f!lj + 

such that 

Ih (x)1 <E, x E y, 

h (0) >10(0). 

(5.2) 

(5.3) 

Then, from the properties (4.5) of/o(x), it is easy to see (Fig. 4) 
that the equality h (x) = lo(x) holds for at least No positive 

x. 

FIG. 4. Comparison of an hypothetical Blaschke product h (x) subjected to 
the constraints (5.2) and (5.3) with the extremal functionfo(z) solving the 
problem (4.2) (case No = 4). 
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values Xi < 1 (accounting for possible multiplicities): 

h (Xi) = lo(x;), i = 1,2, ... ,No. 

Now, we can obviously write 

(5.4) 

h (0)< sup 1(0)< sup 1(0). (5.5) 
f E tfIj + f E H 00 and real analytic 

f(x,)=fo(x,). Vi Ilflloo<1 
fIx,) =fo(x,). Vi 

As it is well known, the last extremum problem in Eq. (5.5) is 
readily solved by appealing to the Nevanlinna-Pick-Schur 
construction, 1.5 with a Blaschke product as the resulting ex
tremal function. Actually, according to this procedure, any 
real analyticl E R'" with Ilfll '" .;;; 1 and with prescribed (and 
mutually compatible) values/o(xi) at the Xi'S, admits the de
scending recursive representation 

gN
o 

(z) = arbitrary real analytic function in R'" 

such that IlgNo II '" < 1, (5.6) 

gi-dz)= gi-I,i + [(Xi -z)/(I-xiz)]gi(Z) , (5,7) 
1 + gi- I,i [(Xi - z)/(1 - XiZ)]gi(Z) 

i = No,No - 1, ... ,1, 

I(z) = go(z), (5.8) 

where the gi _ I,i are themselves defined by the double as
cending recursion 12 

gO,k =/o(Xk), k = 1, ... ,No, 

gi-I,k - gi-I,i 1 - XiXk 
gi,k = , 

1 - gi-I,kgi-I.i Xi -Xk 

i = 1, ... ,No - 1, k = i + 1, ... ,No, 

and satisfy 

- 1 <gi-I,i < 1, i = i, ... ,No. 

Then Eq. (5.7) gives 

(0) 
_ gi - I,i + xigi(O) 

gi-I - . 
1 + gi _ I,ixigi (0) 

(5.9) 

(5.10) 

(5.11) 

On account ofEq. (5.10) and Xi > 0, we see that the rhs ofEq. 
(5.11) is an increasing function of gi (0). As a result, the maxi
mum of 1(0) = go(O) will be reached by choosing 
gNo(O) = + 1, i.e., gN.(z)=1 in Eq. (5.6). Then clearly the 
corresponding extremal function go(z) deduced from Eq. 
(5.7) is a Noth-order Blaschke product 1+ (z). Thus 

sup 1(0) =1+(0). (5.12) 
Ie H 00 and real analytic 

Ilflloo<1 
fIx,) =!o(x,). Vi 

On the other hand, Eqs. (5.6)-(5.8) show that there are only 
two real analytic Noth-order Blaschke products taking on the 
prescribed valUes/O(Xi) at the Xi 's, namely/+(z)just obtained 
and/_(z) obtained by settinggNo(z)== - 1 inEq. (5.6). There
fore, our previous extremal function lo(z) must be one of 
them. To decide which one, it is enough to check the norma
lization at z = - 1. From Eqs. (5.6)-(5.8) we get 
I ± ( - 1) = ± 1, whereas lo( - 1) = 1 according to Eq. 
(3.1). Hence/+(z)=lo(z) and finally, from Eqs. (5.5) and 
(5.12), 

h(O).qo(O). (5.13) 

This means that Eqs. (5.2) and (5.3) cannot be true simulta-
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neously, and establishes the announced result (5.1). 
A similar reasoning based on Eqs. (5.6)-(5.8) shows that 

the extremal function fo(z) is unique (up to the inessential 
phase factor mentioned in Sec. II B). 

VI. EXPLICIT SOLUTION FOR LARGE AND SMALL 
VALUESOFE 

When the "error parameter" E is either (i) sufficiently 
large [E2(C)<E < 1] or (ii) asymptotically small (E-<l), it is pos
sible to work out explicit formulas. 

(i) If No < 2, the supremum/ = /N. can be computed by 
elementary means. The solution is trivial for No = 1, but 
already requires some tedious algebra in the case No = 2. 
The results are as follows. 

(a) FOrEI(C)<E< 1 (No = 1), 

/= (a + E)/(1 + aE). (6.1) 
The zero a of the extremal functionfo(z) lies outside the in
terval r (a > b ) only if E > r, where r is the Blaschke invariant 

r = (b - a)l(1 - ab). (6.2) 

(b) For rl(1 + v'l-=7')<E< EI(C) (No = 2), 

/= ab + (b + a)[(1 - ab )I(b - aIlE + c . (6.3) 
1 + (b + a)[(1 - ab )/(b - a)lE + abc 

The larger zero a 2 offo(z) is always > b. 

(c) For E2(C)<E < r I( 1 + .Jf~) (No = 2), 

/= a
2 + 2a[2E(1 + cW

/2
/(1 + E) + E • (6.4) 

1 + 2a[2E(1 + cW /2/(1 + E) + a2E 
Here a2 > b only for E larger than some (quite complicated) 
expression depending only on r. 

Let us recall that EI(C) and E2(C) are given by Eqs. (3.31) 

and (3.32) with C = r/(1 +..ff=7) [Eq. (3.8)]. 

(ii) If No- 00 (E-<l), the asymptotic form of/in terms of 
E can be found. Actually, when E tends to zero, it goes 
through the increasingly dense sequence of critical values 
E N(C) [Eq. (3.35)] for which the extremal functionfo(z) is com
pletely known. Since/is a decreasing function of E, it is clear
ly sufficient to stick to these critical values in order to derive 
the form of/in the asymptotic limit E-<l. 

For E = EN (c), according to the result of Sec. III, the 
only function g E PlJr: which respects the constraint 
Ig(x) I <E( - c<x<c) is gN. Therefore, in this case, 

fo(z) = gN(Z'), (6.5) 

where z_z' is the proper Blaschke transformation which 
sends the interval [a,b] onto [ - c,c], namely, 

z' = (z - P )/(1 - pz) 

with 

(6.6) 

p = (1 + ab )/(h + a) - 1[(1 + ab )/(h + aW - 1 J 1/2 (6.7) 

(notice that p, contrary to c, is not a Blaschke invariant). 
Hence 

(6.8) 

We can now rely on the asymptotic expression (3.47) to get 

/ ~ exp[ _ _ N_'lT_2 illc 

dt ] 
N~oo 2K(c) Pic [(t 2_1)(1_c4t 2)]I/2' 

(6.9) 
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and eliminate N in favor of E with the help of Eq. (3.43). 
Using Eq. (3.15), we finally obtain 

where 

S~/C dt 1~(t2 - 1)(1 - c4t 2) 
p - --:-::---:--;::::::;;::=====:::::::;::;;:-- sJlc dt I~(t 2 - 1)(1 _ c4t 2) • 

(6.10) 

(6.11) 

It is worth noticing that in the limit a-o, Eq. (6.11) gives 
p-o and Eq. (6.10) would yieldj:"'EI2, whereas the exact 
value of the supremum in this case is evidently / = E. This 
apparent discrepancy is merely a sign of the noncommutati
vity of the two limits E-<l and a-o, which can be traced 
back to Eq. (3.46). 

VII. CONCLUDING REMARKS 

We have provided a constructive solution to the extre
mum problem posed in (1.1) by showing first that the extre
mal functionfo(z) is nothing but afinite Blaschke product, 
and by displaying then its distinctive features. In particular, 
we wish to emphasize the fact that the number No of its 
Blaschke factors can be computed through explicit formulas, 
namely Eqs. (3.8) and (4.1). Moreover, for an infinite se
quence of "critical values" of the error parameter E accumu
lating to 0, the solution is exactly known [Eqs. (3.36) and 
(6.5)-(6.8)]. It involves a remarkable class of "Chebyshev
Blaschke products" which (at least to our knowledge) have 
not shown up yet in the literature. 

For practical purposes, it is interesting to compare our 
supremum/with nonoptimal bounds resulting simply from 
the maximum modulus principle. Such a bound is readily 
derived by using once more the variable w = w(z') defined 
through Eqs. (6.6) and (3.11). Indeed, within the notation of 
Sec. III, to any functionf(z) in BOO corresponds a function 
G (w) analytic in the annulus A. Hence the constraints 
IlfllOQ < 1 and If(x) I <€ (a<x<b) become, respectively, 

IG(p(c)eiO)I<1 (0<0 < 2'IT), (7.1) 

Moreover, 

f(O) = G (wo), 

where 

wo=w( -PI 

(7.2) 

(7.3) 

[
'IT ,PIC dt ] 

= - exp 2K(c2) JI [(t 2 _ 1)(1 _ c4 t 2W/2 . 
(7.4) 

Then the Hadamard's "three-circle theorem,,13 applied to 
the circles Iwl = 1, Iwl = IWol, and Iwl = p(c) tells us that 

IG (wo)1 <€lwoI1n(IIE)l1np(c), (7.5) 

or, thanks to Eqs. (7.3), (7.9), (3.13), and (3.15), 

If(O) I <€I - P , (7.6) 

where p is given again by Eq. (6.11). Although the bound (7.6) 
is valid for all € < 1 [contrary to the asymptotic form (6.10)], 
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it is of course not an optimal one because the function G1(w) 
saturating the inequality (7.5) fails to meet the condition 
G1(w) = G1(lIw) onA, and also because G1(w) is a multiva
lued function, except for particular values of E. 14 We see that 
for small values of E the supremum (6.10) improves the 
bound (7.6) by an E-independent factor (112)I- p

, which, 
however, is never below 1/2 (p-<> only in the limit a-o). 

Regarding now the possible extensions of our work, the 
following remarks can be made. If one considers first the 
problem (1.1) modified by simply letting the point of interest 
Zo ( = 0 there) to acquire a nonzero imaginary part, then the 
extremal function is already not easy to describe because its 
zeros no longer align on the interval y. If on the other hand y 
is allowed to be an "arbitrary" arc (or even set) not touching 
the unit circle, the first challenging question to settle is 
whether the "singular inner" and possibly "outer" functions 
are out of play again. The answer is unknown to us, but we 
conjecture this to be true, at least for sufficiently regular sets 
y. As for the full problem stated in (1.0), it is doubtful that 
any progress towards its solution can be achieved without 
severe restrictions on both the data function r(z) and the er
ror function E(Z). 
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Classical SU(2) Yang-Mills-Higgs system: Time-dependent solutions 
by similarity method 

K. Babu Joseph and B. V. Baby 
High Energy Physics Group, Department of Physics, Cochin University, Cochin 682022, India 

(Received 15 January 1985; accepted for publication 26 April 1985) 

A similarity analysis of the Wu-Yang-'t Hooft-Julia-Zee-ansatz-reduced system of nonlinear 
differential equations of classical SU(2) Yang-Mills-Higgs theory is presented. This yields the 
similarity group ~ of the equations. Considering ~ and one of its subgroups denoted ~ I' some 
previously known time-dependent solutions in the Prasad-Sommerfield limit are generated. Two 
new time-dependent solutions are also reported. 

I. INTRODUCTION 

Following 't Hooft'sl proposal that there might exist 
static monopole solutions for the classical SU(2) Yang
Mills-Higgs system, Prasad and Sommerfield2 found, by a 
process of guesswork, two explicit (static) analytic solutions 
in the limit of vanishing Higgs coupling, one of which de· 
scribes a monopole and the other, a dyon. Subsequently, an 
ansatz-based search for new solutions was vigorously under
taken by several workers,3-6 who came up with a class of 
time-dependent solutions exhibiting singularities. 

The similarity method of analysis of differential equa
tions has been widely used to study the existence of contin
uous symmetries,7 and to derive particular solutions.8 In this 
paper we carry out a similarity analysis of the nonlinear cou
pled differential equations associated with a spontaneously 
broken SU(2) Yang-Mills theory. This gives the invariance 
group [§ of the system of equations, and we use this informa
tion to generate some of the previously known time-depen
dent solutions in the Prasad-Sommerfield (PS) limit. We also 
report two new time-dependent solutions possessing surface 
singularities. 

II. THE SIMILARITY METHOD 

In this section we shall summarize the essentials of the 
similarity method.9 Let us consider a system of second-order 
partial differential equations with two dependent variables 
ua(a = 1,2) and two independent variables xiIi = 1,2) 

(2.1) 

Under a one-parameter family of infinitesimal transforma
tions, 

x; = x; + EX;(X;. ua) + 0 (e), 

ua' = Ua + EUa(X;. Ua) + 0 (e), 

(2.2) 

(2.3) 

where the X; and ua are the infinitesimals, the derivatives of 
the ua also transform according to 

ua;=u~ +E[U~] +O(e), 
Xi i i 

(2.4) 

ua; ,= u~ x + E [ U~ x ] + 0 (e). (2.5) 
XiX j i j 1 J 

The infinitesimals of the derivative, denoted by the symbols 
[.], are called the extensions,9 the one occurring in (2.4) being 
called the first extension and that in (2.5) the second exten
sion. The invariance requirement of (2.1) under the above 

transformations leads to the "invariant surface condition" 

(2.6) 

where repeated indices are summed over. On solving (2.6) 
the infinitesimals X; and ua can be uniquely determined 
which yield the similarity group [§ under which the system 
(2.1) is invariant. 

By the infinitesimal transformation (2.3) we shall have 

ua(x; + EX; + Ole)) = ua + EU a + o (e). (2.7) 

On expanding and equating the 0 (E) terms, 

(2.8) 

The solutions of(2.8) are obtained by solving the characteris
tic equations 

dx; dua 

X. = U a • 
I 

These give the solutions in the form 

XI = X I (X2' c)' C2)' 

(2.9) 

(2.10) 

(2.11) 

where c) and C2 are arbitrary constants of integration, c) 
playing the role of an independent variable called the simi
larity variable t/J and C2 that of a dependent variable called the 
similarity solution F, such that F = F(t/J). Thus we have 

ua(x), x 2 ) = Fa(t/J(c))). (2.12) 

On substituting these relations in (2.1) the latter takes the 
form of an ordinary differential equation 

.%'(t/J, Fa, Fa', Fa') = 0, (2.13) 

where the prime denotes differentiation with respect to the 
similarity variable t/J. Equation (2.13) is called the similarity
reduced equation. 

III. SIMILARITY GROUP OF SU(2) YANG-MILLS-HIGGS 
SYSTEM 

Using the notation of Refs. 2 and 3, the Lagrangian for 
the SU(2) Yang-Mills-Higgs system is written 
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where 

II a = a ,I. a + e€,bcA b,l. C Il Il'f' Il'f' 
and 

F~v = allA ~ - avA ~ + e€,bcA!A~. 
For the Higgs potential 

V(¢» = - !,u2(¢> a¢> a) + (..t /4)(¢> a¢> a)2, 

the equations of motion are 

a llila + e€,bcA b lllJC _ av(¢» = 0 
Il Il a¢> a ' 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

all FIlVO - e€,bcFllvbA ~ + e€,bcllvb¢> c = O. (3.6) 

If we apply the Wu-Yang-'t Hooft-Julia-Zee 
(WYHJZ) ansatz lO

•
11 

¢>a = raH(r, t)fer, A ~ = raJ(r, t)fer, 

A ~ = Ea;/j(l - K (r, t ))/er, 

where 

then (3.5) takes the form 

r2(H." -H.tt ) = 2HK2 + (..t/e2)(H3 - C 2rH), 
where 

C=,ue/..[T 

and 
H = aH(r, t) 

,r ar' etc. 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3,11) 

Henceforth we shall confine ourselves to the PS limit 
..t-D, C finite. 

For v = 0, (3,6) gives 

r 2J,rr = 2JK 2, (3.12) 

and for v = 1,2,3, from (3.6) we find 

r2(K,rr -K,tt) =K(K2 -1) +K(H2 _J2), (3,13) 

r 2J,tr=J", (3.14) 

J"K + 2K"J = 0, (3.15) 

In subsequent analysis we shall assume J = O. This leads to 
the following pair of nonlinear coupled partial differential 
equations in Minkowski space: 

r 2(K,rr - K,tt) - K(K2 - 1 +H2) = 0, (3.16) 

(3,17) 

To study the similarity group ~ of this system which 
will be referred to as that of the SU(2) Yang-Mills-Higgs 
system, 12 we define a generic dependent variable ua(a = 1,2) 
such that u l = K and u2 = H, and consider a one-parameter 
family of infinitesimal transformations as in (2.2) and (2,3), 
defined by 

r' = r + ER (r, t, u l
, u2

) + O(c), 

t' = t + ET(r, t, u l, u2) + o (e), (3.18) 

ua' = ua + EUa(r, t, u l, u2) + O(c). 
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The infinitesimals R, T, and U a must ensure the invariance 
of (3.16) and (3.17) under the transformations (3.18). The 
derivatives u~r and U~t transform according to 

u~" = u~r + E[ U~r] + o (e), 
(3.19) 

u~'", = u~, + E[ U~t] + 0 (c), 

where [U~r] and [U~t] are the second extensions intro
duced in the preceding section. 

When Eqs. (3.18) are substituted into the transformed 
system corresponding to (3.16) and (3.17) and coefficients of 
first order in E are equated to zero, we find 

r 2[ U,lrr ] - r 2[ U,ltt ] + 2rX(K,rr - K,tt) 

+ U I(l-3K2-H2)-2U 2KH=0, (3.20) 

r2[U~"] -r2[U~,] +2rX(H,rr -H,tt) 

The second extension [ U':xx ] for x = r, t is given by 

[ U~ ] _ ~ua 2 a2u a 
/J ~X; a 

,xx - ax2 + ax au /J u ,x - ax2 u,; 

(3.21) 

+ 
aua /J 2 ax; a ~ua /J r 
--u - --u . + u u au /J ,xx ax ,XI au /J au'Y ,x ,x 

~X; ax; 
- 2 u /J u<l: - ~u<l:u /J + 2u /J u<l: ) ax au /J ,x ,I a;;ti' ,I ,xx ,x ,IX 

where 

~X; 
---u/Ju'Yu<l: 
au /J au'Y ,x oX ,I' 

Xl =R, x 2 = T, 

Solving (3,21) for the infinitesimals, 

R = Urt + Kr, 

T=..t (r + t 2) +Kt + u, 

ua=o, 

(3,22) 

(3.23) 

(3.24) 

(3.25) 

(3,26) 

where ..t, K, and u are constants. Equation (3.26) states the 
invariance of any solution of the SU(2) Yang-Mills-Higgs 
system reduced by the ansatz (3,7), under the similarity 
transformations (3.18), 

The occurrence of three independent parameters ..t, K, 

and u above permits us to define three generators 
Ga(a = 1,2,3) 

GI =2rt~ +(r2+t2)~, 
ar at 

(3.27) 

a a 
G2 =r- +t-, 

ar at 

which satisfy the Lie algebra 

[G I , G2] = - GI , [G2, G3] = - G3, [G3, Gd = 2G2· 

(3.28) 

We identify this as the Lie algebra associated with the simi
larity group ~ ofEqs, (3.16) and (3.17). 
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IV. TIME-DEPENDENT SOLUTIONS 

In Ref. 8 we developed a method of constructing parti
cular solutions of nonlinear Klein-Gordon equations under 
various subgroups of the similarity group. That procedure 
may be extended to the SU(2) Yang-Mills-Higgs system re
duced by the WYHJZ ansatz. The idea is to consider differ
ent subgroups of the similarity group [1, define a similarity 
variable for each subgroup, set up the corresponding similar
ity-reduced equations, and solve them. Solutions are ob
tained in cases where the reduced equations are of the PS 
type. The different cases are discussed below. 

A. Full group :§: A oj:. 0, Koj:.O, U = ~/4A 

Equations (3.24) and (3.25) yield the similarity variable 

X = r/(t 2 - r 2 + Kt IA + K2/4A). (4.1) 

The similarity-reduced system of equations is 

X2 d~~(x) =K(x)(K2(x) - 1) +K(x)H(x), (4.2) 

X2 d
2
H(x) = 2H(x)K2(x). (4.3) 
dX2 

This is of the same form as the equation considered by Pra
sad and Sommerfield for the static case.2 A solution of (4.2) 
and (4.3) is 

K(x) = Cxlsinh(Cx), (4.4) 

H(x) = Cx coth(CX) - 1, (4.5) 
where C has been defined in (3.10). This solution coincides 
with that reported in Ref. 3. 

However, a new solution can be obtained by replacing r 
in the static solution reported in Ref. 13. Thus we are led to 
the solution 

K~=~~+rl ~~ 
H(x) =A I(A + X), (4.7) 

whereA is a nonzero arbitrary constant. Both K (x) and H (x) 
are singular on the surface (A + X) = o. 

B. Subgroup :§ 1: K = U = 0 

Under the subgroup [11 C [1 specified by K = U = 0, 
the infinitesimals read 

R =Urt, 

T = A (r 2 + t 2). 

With a similarity variable 

1] = r/(t 2 - r 2), 

(4.8) 

(4.9) 

(4.10) 

the reduced system assumes the form of (4.2) and (4.3) (with 
the replacement X--1])' We note that there exist two families 
of solutions just as in the case of the full group [1 mentioned 
above. They are 

K(1]) = C1]lsinh(C1]), 

H(1]) = C1] coth(C1]) - 1, 

as found in Ref. 3, and 

K (1]) = 1]/(A + 1]), 

H(1]) =A I(A + 1]) (A oj:.O), 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

which constitutes a new time-dependent solution. The latter 
is singular on the surface (A + 1]) = o. 
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C. Subgroup :§2:A = 0, Koj:.O, uoj:.O 

For the subgroup [12 C :§, A = 0, and the infinitesi
mals are 

R=Kr, 
T=Kt+U. 

The corresponding similarity variable is 

;=r/(t+o), 

(4.15) 
(4.16) 

(4.17) 

where 0 is a nonzero arbitrary constant. The similarity equa
tions read 

~2_;4)K"_2;3K'=K(K2_1+H2), (4.18) 

(4.19) 

where a prime denotes differentiation with respect to ;. It 
has not been possible for us to find nontrivial exact solutions 
for this system. 

V. DISCUSSION 

The similarity method of analysis of the nonlinear cou
pled differential equations equivalent to the classical SU(2) 
Yang-Mills-Higgs system gives the similarity group [1, 
which is evidently dependent on the ansatz employed. There 
is an explicit time-dependent similarity variable for each 
subgroup of [1. Under the full group [1 as well as under one 
of its subgroups [11J time-dependent solutions arise as gener
alizations of the well-known static solutions of Refs. 2 and 
13. This indicates the possibility of transforming any static 
solution of (3.16) and (3.17) into a nontrivial time-dependent 
form. The two new solutions herein obtained as well as those 
reported earlier in the literature can be continued to the Eu
clidean space. 

The complex solutions considered in Ref. 14 have been 
shown15 to follow by the replacement H __ iH in the ansatz 
(3.7). Consequently, pursuing the similarity route herein ex
plored, a time-dependent version of such complex solutions 
can be arrived at quite trivially. 
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It is shown that the Berezin approach to integration on supermanifolds can be applied to cases 
where the.superman~fold is a twisted extension of a real manifold. This is done by showing that 
supermamfolds adnut a subatlas of coordinate charts with transition functions of a quite 
restricted kind. 

I. INTRODUCTION 

The integration of functions of commuting and anti
commuting variables has proved an extremely useful tech
nique in quantum field theory; it is, for instance, vital for 
path integration over Bose and Fermi fields, and it is a valu
able tool in constructing and quantizing supersymmetric 
quantum field theories. The notion of "supermanifold" en
ables one to extend nontrivial conventional manifolds (with 
commuting coordinates, real or complex) to include anti
commuting coordinates as well. Various approaches to su
permanifolds have been taken, which are broadly equivalent 
but differ in the range of possibilities which they allow. (A 
good recent review is given by Batchelor. I) This paper inves
tigates the possibility of integration over nontrivial super
manifolds-nontrivial in that the supermanifold may be a 
twisted product of the underlying real manifold with its nil
potent even and odd Grassmann extension (further details 
are in Sec. II). On conventional manifolds, an m form is 
integrated over an m-dimensional manifold; on supermani
folds, Berezin2 has defined (m,n) superforms which are inte
grated over (m,n)-dimensional supermanifolds. [An (m,n)
dimensional supermanifold has m even and n odd 
coordinates.] However, not all (m,n) superforms, but only 
those which Berezin calls "integral" superforms, can be inte
grated in a consistent manner. Berezin gives a criterion for 
deciding whether a form is integral; this criterion is ex
pressed in terms oflocal coordinates, and it is the purpose of 
this paper to investigate the global existence of integral 
forms, and thus to investigate the possibility of integration 
over nontrivial supermanifolds. Section II summarizes the 
necessary supermanifold terminology. In Sec. III conditions 
satisfied by supermanifolds which admit global integral 
forms are considered. In Sec. IV it is proved that, although 
the conditions established in Sec. III look quite restrictive, 
the various supermanifolds of most obvious use to physicists 
all allow a global integral (m,n) form to be patched together 
(provided that the underlying m-dimensional manifold ad
mits an m form). The results of this section are closely related 
to Batchelor's theorem3 that a graded manifold can always 
be realized as the sheaf of cross sections of a vector bundle. 
Section V discusses the implications of these results. 

II. A BRIEF SUMMARY OF SUPERMANIFOLD 
GEOMETRY 

Supermanifolds have coordinates which take values in 
the even and odd parts of a Grassmann algebra. In this paper 
attention is restricted to real Grassmann algebras with a fin-

ite number of generators; use of infinite Grassmann algebras 
involves analytic rather than C'" functions, and thus has 
more in common with complex supermanifold integration, 
to be considered in another paper. Here, B L denotes the real 
Grassmann algebra with L odd generators, B L 0 and B L I 

denote the even and odd parts of B L, respectively, whileB z·n 
denotes the Cartesian product of m copies of B L 0 and n 
copies of B L I . The augmentation map €: B L -+a is the pro
jection onto the zero length part of an element of B L' One 
also has €m.n:B z·n-+am, defined by 

€(al, ... ,am
; b i, ... ,b n): = (€(al), ... ,€(am )). (2.1) 

Two topologies are defined on B L (and hence on B z·n). One, 
the fine topology, is the usual topology of BL as a finite
dimensional vector space, while in the second coarser topol
ogy, the De Witt topology,4 a set VCBL is open inBL ifand 
only if V = €-I(U) for some open U in lR. Similarly, a set 
VCB z·n is open in the De Witt topology if and only if 
V = € ;;;) (U) for some open set U in am. A notion of "super
differentiability" of B L -valued functions is also required4-l!; 
for B L 0 it is simple to define an II norm on BLand then define 
differentiation rather as in ordinary analysis but using the 
Grassmann algebra, while for functions of B L I it is simplest 
to require a power series expansion, with odd derivatives 
taking the expected form, although other approaches are 
possible. 

Some difficulties are glossed over here, a good treatment 
is given by Rothstein in Ref. 9. In order to obtain a graded 
Leibnitz rule and hence a good tangent space one must really 
use the tensor product of G '" (B Z·O) with the algebra of 
polynomials in the odd coordinate functions. Infinitely dif
ferentiable functions of B z·n into B L will be referred to as 
G '" . A useful technique is the extension of a C '" B L -valued 
function ofRm to a G '" function of B z·n by a Taylor expan
sion in nilpotent elements. 

Dejinition 2.1: The mappingZ:C "'(U)-+G '" (€';:~ (U)), 
where U is open in am, is defined by 

Z (I)((a l 
, ... ,am; b I, ... ,b n)) 

L 1 
. - i, = O~m = 0 i

l 
! ... i

m
! a;' ... a"; !(€(al), ... ,(a

m
)) 

(2.2) 

[The superdifferentiability of Z (I) is proved in Ref. 6.] 
The definition of supermanifold to be used in this paper 

is now given. A more general definition is possible (by using 
the finer topology on B L)6 but new supermanifolds intro-
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duced by this definition require a more complicated integra
tion theory. 10,11 

Definition 2.2: Let Ybe a paracompact Hausdorfftopo
logical space. (a) An (m.n) open chart on Yover BL is a pair 
(V.",) with V an open subset of Y and", a homeomorphism of 
V onto an open subset of B L,n (using the fine topology). And 
additionally V is in fact open in B L,n with the coarser De 
Witt topolgoy. 

(b) An (m.n)G"" structure on Yover BL is a collection 

{(Va''''a)laEA J of open charts such that (i) Y= U Va. 
aEA 

(ii) for each pair a,/3 in A. the mapping "'p 0 "'a- I is a G"" 
mapping of "'a (VanVp) onto "'P(VanVp). and (iii) the collec
tion {(Va ."'a )Ia E A J is a maximal collection of open charts 
satisfying (i) and (ii). 

(c) An (m.n)-dimensional SM-G"" supermanifold over 
B L is a paracompact Hausdorff topological space Y together 
with an (m.n) G"" structure over B L' (This is a more restrict
ed definition than that of Ref. 6.) 

(d) A subcollection of charts {(Va''''a)la E rCA J satis
fying (b) (i) and (ii) is called a subatlas of the supermanifold. 

Equipped with this definition of supermanifold. the tan
gent space. frame bundle. and tensor fields can be defined 
much as on conventional manifolds.4-8 One particular type 
of tensor field turns out to be useful for integration. the so
called (P.q) superforms (withp,m.q'n). To anyone familiar 
with the super-Jacobian transformation rule of Berezin inte
gration. 12 the definition is quite natural. [For the rest of this 
paper Y will denote an (m.n)-dimensional SM-G"" super
manifoldoverBL withG"" structure {(Va."'a)laEA J.] 

Definition 2.3 ~. Let Vbe open in Y. and G"" (V). D I( V). 
and D 1(V) denote the spaces of G"" functions. vector fields. 
and one-forms on V, respectively. Then. given positive inte
gers p and q. a (P.q) superform on V is a map 
t/J:(D 1(v))pX(D1(V)q)-G ""(V) 

(XI .... ,xp; cul ..... cuq)--(t/J IXI .... ,xp; cul ... ·.cuq). 

which is a graded linear map of G "" (U) modules together 
with the mixed graded symmetric and antisymmetric prop
erties 

- ( 1)1 + IX,IIXi + Ii ("'IX ,x ,x ,x. 
- - V' 1'··· ;+1 i'··· P' 

(2.3) 

cul ... ·.cuj + I .cuj ..... CUq). (2.4) 

(IXII is the Grassmann degree of XI' etc.) 
The exterior product of two such forms can be defined in 

the expected manner. and on a local coordinate neighbor
hood Va. t/J can be expanded in term of the coordinate differ
entials dxl.dY and derivatives a/axl.a/ayi. [Here Xl 
(i = 1 ..... m) andy (j = 1 ..... n) are the even and odd coordi
nates on Va'] One has 
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dxl /\ dxk = - dxk /\ dXI. 

dyj /\ dyi = dyi /\ dyj. 

~/\~=~/\~ 
axi axk axk axi' 

~/\~= -~/\~. 
ayl iJyl iJyl iJyj 

(2.5) 

This means there does exist a quasi-"top form" in that an 
(m.n) superform t/J on an (m.n)-dimensional supermanifold 
will split. in a given set of local coordinates. into 

(2.6) 

with 

t/Jo = f(x,y)dx l /\ ... /\ dxm /\ ~ /\ ... /\ ~ (2.7) 
iJyl ayn' 

while each term in t/JI contains at least one of the a /axi or at 
least one of the dY. or both. Berezin defines an integral su
perform to be a superform which has exactly t/J = t/Jo in some 
local coordinate system. Of course. in other coordinate sys
tems. t/JI terms will in general appear. but a consistent inte
gration theory may be built up ignoring these terms; by com
bining the usual technique for integration over nontrivial 
manifolds (using patching with partitions of unity) with Ber
ezin integration for the odd variables. a consistent integral of 
a global integral form may be constructed.2

,13 In fact. it 
would be quite possible to define an (m.n) superform at a 
point p on Yas an equivalence class of triples (Va''''a,fa)' 
where (Va ''''a) is a coordinate chart on Y,ja is an element of 
G ""("'a(Va)). and the equivalence relation is (Va''''a,fa) 
-(Vp."'pJp) if and only iffa is equal to the product offp 
with the super-Jacobian of "'a 0 "'p- I. (A similar formulation 
of the tangent space of a conventional manifold is given by 
Lang. 14

) This approach is effectively taken in supergravity. 
where the supervolume form "ber EM A dx dO " is frequently 
used. IS It gives valid results. but there is no equivalent (P.q) 
form withp#m or q#n in this approach. Now it is highly 
desirable to have such forms in order to be able to include 
integration over submanifolds into the formalism (and such 
results as Stokes' theorem). and so the use of the full (P.q) 
form. complete with possible undesirable a / axi and dy j 
parts seems an essential starting point. 

To end this brief survey of supermanifold geometry. the 
construction of the underlying real manifold (by patching 
and the augmentation map) of a supermanifold is described. 

It has been shown by Batchelor that an m-dimensional 
C"" manifold is constructed from the supermanifold Y by 
the following process. 

(i) Define on Ytherelation - byp -q if and only if there 
exists a E A such thatp.q EVa. andE 0 "'a(P) = E 0 "'a (q). It 
may be shown that - is an equivalence relation. 

(ii) Let 

(Here p denotes the equivalence class of p.) 
(iii) Define t/Ja: Ua---+Rm by 

Alice Rogers 

(2.8) 

(2.9) 
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It is clear that t/Ja is well defined, and relatively straight
forward to prove that {(Ua,t/Ja)la EA 1 is anm-dimensional 
C"" stucture on X: = Y / -. X is called the underlying mani
fold of Y. The canonical projection of Y onto X is denoted E y. 

A useful result is that, if(t 1, ... (") and (t 1', ... ,("') denote 
coordinates in Ua, Up, respectively, and 

x"(xl, ... ,xm; yl, ... V''') 

= x~ (xl, ... ,xm) + terms in y, 

then 

(2.10) 

(
at 'i) _ ax;j Z---. 
ati axi 

(2.11) 

Also, if xi' is independent of the yi , 

Pi 0 f/!p 0 f/!a- I = Zlpi 0 t/Ja 0 t/J i I). (2.12) 

Since Y is paracompact, the body X is also paracom
pact. This means thatX has a subatlas with a countable num
ber of charts; this subatlas can be used to construct a subatlas 
of Y with a countable number of charts. 

III. CRITERIA FOR THE EXISTENCE OF A GLOBAL 
INTEGRAL FORM ON A SUPERMANIFOLD 

In this section, the possibility of having global integral 
forms on a supermanifold is related to the existence of subat
lases of the supermanifold whose transition functions 
f/!p 0 f/!a- I take a quite severely restricted form. (In the next 
section it is shown that in fact all the supermanifolds consid
ered in this paper have subatlases of the required form, and 
thus that this requirement is much less restrictive than it 
appears to be.) The definition of a global integral form is 
straightforward. 

Definition 3.1: An (m,n) superform on Yis said to be a 
global integral form if at each point p on Y there is a coordi
nate chart containing p on which t/J takes the form 

t/J = f(x,y)dx l /\ ... /\ dxm /\ ~ /\ ... /\~. (3.1) 
ayl ay" 

The first observation is that under a change of local coordi
nates f/!p 0 f/!;; I with 

and 

(xtl, ... ,x,m; y1', ... V'In) = f/!p 0 f/!a- I (xl, ... ,xm; yl, ... V'n), 
(3.2) 

dX ,i = ~ aX'k
i 

dxk + ~ aX'.i df,j (. 1 ) ~ ~ J' 1= , ... ,m, 
k = I ak j = I ay' 

(3.3) 

a "ala maxia 
-= ~ --+ ~ -- V= 1, ... ,n). (3.4) 
ay,j I~I ay,j ayl i~1 ay'i axi 

Thus one has immediately the following proposition. 
Proposition 3.2: A necessary condition for the existence 

of a nontrivial global integral superform on Yis that Y has a 
subatlas {(Va,f/!a)la E rCA 1 such that for each a, {3 in r, 
the transition function f/!p 0 f/!a- I satisfies [with the notation 
of(3.2)] 

ax'i --= 0, i = 1, ... ,m, j = 1, ... ,n. 
ayi 

(3.5) 
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The use of atlases with this property for integration on 
supermanifolds was first considered by Picken and Sunder
meyer. 16 

The next proposition shows that sufficient conditions 
for the supermanifold Y to admit a global integral form are 
that the underlying m-dimensional real manifold should ad
mit a global m form and that Y should have a subatlas satis
fying (3.5) but additionally having they,j depend only linear
lyon the yk . (In Sec. IV it is shown that this is always the 
case, a fact which corresponds in the geometric approach to 
supermanifolds to Batchelor's theorem in the algebraic ap
proach that all graded manifolds can be realized as the sheaf 
of cross sections of the exterior bundle of a vector bundle. 3) 

Proposition 3.3: Suppose that the supermanifold Y has a 
subatlas {(Va,f/!a)laErCA 1 with each transition function 
satisfying (3.5) and also 

" j' - ~ Ii j (I m)yl (. - 1 ) y - ~ 1 X , ••• ,x J - , ... ,n, (3.6) 
1=1 

with each f { G "". (Such a subatlas will be referred to as a 
restricted subatlas.) Also suppose that the underlying m-di
mensional real manifold of Yadmits a nontrivial global m 
form tiJ, then Yadmits a global integral form. 

Proof (with the notation of Sec. II for the underlying 
manifoldX ofY~' Suppose that in the chart (Ua,t/Ja) onXwith 
a E r, the global m form tiJ satisfies 

tiJ=fa dtl/\ ... /\dt m, 

where 

fa E C""(Ua)' 

Then 

t/J = Zlfa 0 t/J a-I) 0 f/!ayl ... y" 

Xdx l /\ ... /\dxm /\~/\ ... /\~ 
ayl ay" 

(3.7) 

(3.8) 

defines a global integral form on Y. To prove this, it must be 
shown that the formula (3.8) for t/J is consistent on the overlap 
VanVp of coordinate neighorhoods for all a, {3 E r. [The 
formula (3.8) is of course only correct for charts in the re
stricted subatlas, but this is quite sufficient to define t/J glo
bally.] 

LetpE VanVp. Then 

1' • .2' ", d Ifl) I 2 " Y y "'Y = et j y y ... y , (3.9) 
where the entries in the matrix If;) are defined in Eq. (3.6). 
Also, 

~ /\ ... /\ ~ = (detlf~))-I ~ /\ ... /\~. 
ay,1 ay'" J ayl ay" 

Thus 

Zlfp 0 t/J i I) 0 f/!py,I ... y '" 

XdX,1 /\dX,2 /\ ..• /\dx,m /\~/\~/\ ... /\~ 
ay' I ay,2 ay'" 

(3.10) 
= Zlfp 0 t/Jp-I) 0 f/!pyl ... y" 

XdX,1 /\ ... /\dx,m /\~/\ ... /\~. 
ayl ay" 
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Now, since (t) is an m form on X, we have 

fP = det(i') fa , 

where i' = at k fat i. Now (using the approach at the end of 
Sec. II) one finds 

axk 
Z(i'o;-I)°tP =- (3.11) 

, a a ax,i' 

and thus 

Z(fp o;i I) 0 tPP 

= Z(((detgi
k

) o;i I)(fa o;i I)) 0 tPP 

= (Z((detgi
k

) o;i I) 0 tPp)(Z(fa o;i I) 0 tPp) 

= (Z ((det i') 0 (;;; IO;a 0 ;p-I) 0 tPp)) 

X(Z(fa 0;;; I) 0 Z(;a 0 ;p-I) 0 tPp) 

= (Z ((det i' 0 ; a- I)) 0 tPa)(Z (fa 0;;; I) 0 tPa) (3.12) 

[using (2.12)]. Hence 

Z (fp 0; p- I) 0 tPpy,I •.. ytn dx ll /\ ... /\ dx,m 

/\~/\ ... /\~ 
ayll aytn 

= det( ;:~) Z (fa 0;;; I) 0 tPayl···yn dX,1 

/\ ···/\dx,m /\~/\ ... /\~ 
ayl ayn 

= Z (fa 0; a- I) 0 tPayl ... yndxl /\ ... /\ dxm 

/\~/\ ... /\~, (3.13) 
avl ayn 

as required. 
o 

IV. A PROOF THAT A SUPERMANIFOLD ALWAYS HAS 
A RESTRICTED SUBATLAS 

In this section it is proved that any supermanifold (ac
cording to Definition 2.2) has a restricted subatlas so that by 
the results of the previous section, global integration of 
something is possible provided that the underlying manifold 
admits a top form. It also allows one to fit the supervolume 
form used in superspace supergravityl5 into the Berezin su
perform framework. The result proved in this section is the 
equivalent in the geometric approach to supermanifolds, of 
Batchelor's resule in the algebraic approach, that all graded 
manifolds 17,18 can be realized as the sheaf of cross sections of 
the exterior bundle of a vector bundle of the underlying real 
manifold. Just as the isomorphism between the graded mani
fold (which is a sheaf of graded commutative algebras) with 
the sheaf of vector bundle cross sections is not canonical, the 
restricted subatlas whose existence is proved in this section is 
far from canonical. The geometric version of Batchelor's 
theorem which this section contains is of direct use to inte
gration theory, and also gives a clear geometric insight into 
the redundancy in the full definition of supermanifold. 

Proposition 4.1: Any supermanifold Y has a restricted 
subatlas. That is, recapping Eqs. (3.5) and (3.6), and using the 
notation of that section, the transition functions satisfy 
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ax,i 
--. = 0, i = l, ... ,m, j = I, ... ,n ay (4.1) 

and 
n 

y,j = L fi (xl, ... ,xmDi, j = l, ... ,n. (4.2) 
i=1 

Outline of proof: Starting with an arbitrary subatlas, 
with a countable number of charts, a modified subatlas is 
constructed in two stages, first so that (4.1) is satisfied, and 
then so that (4.2) is also satisfied. Suppose that 
{(Vs,us)ls E Z + 1 is an arbitrary subatlas with a countable 
number of charts. (Here Z + denotes the set of positive inte
gers.) Then, starting from UI, (which is unchanged) one may 
alter U 2, u 3 , ... in tum so that one has a subatlas 
{(Ws,pslsEZ+1 with 

i 0 p sO p,-I: = Z(Em,n 0 pi 0 (us 0 U,-I)), i = l, ... ,m 

(4.3) 
and 

pl. + mops 0 p,- I = pi + m 0 ""s 0 "",- I, . I v v J= , ... ,n, (4.4) 

foreachs, tinZ+. 
Here the cover {Ws Is E Z + 1 is a refinement of 

{ Vs Is E Z + 1 with W. C V. for each s in Z +. This subatlas 
has transition functions satisfying (4.1). Next one may modi
fy P2' P3""S~ that another subatlas {(Ts,tPs )Is E Z + 1 is ob
tained with Ts C Ws and 

i 0 tPs 0 tP,- I = pi 0 Ps 0 p,- I, 

pi + m 0 tPs 0 tP,- I (u 1, ... ,Um ; vl, ... ,vn) 
n 

= L (vlal+m(pi+mops op,-I)) 
1=1 

(4.5) 

X(ul, ... ,um
; 0, ... ,0). (4.6) 

This final subatlas satisfies both (4.1) and (4.2) and is the 
required restricted subatlas. 

Obviously the subatlas is not canonical; the choice of 
first chart (VI'UI) is quite arbitrary, as well as the choice of 
subatlas {(V .. us ) Is E Z + I. 
V. CONCLUSIONS 

The main result of this paper is simple-the coordinate 
patching of supermanifolds can be sufficiently unraveled to 
allow the construction of global integral superforms (pro
vided that the underlying manifold admits a top form). More 
general supermanifolds, with nontrivial topology in the odd 
sector, are possible if one uses the fine topology on B ,;,n 
instead ofthe De Witt topology.6,19 Here the theory of inte
gration becomes more difficult, and it is clear that the con
tour approach (already essential for a fully consistent theory 
of integration on the even part of a Grassmann algebra,4.9 
must be extended to the odd variables. This problem is cur
rently under investigation. lo Some ideas in this line have 
been given by Rabin,II.20 whose initial motivation was the 
need to find a discrete process whose limit was the Berezin 
integral (analogous to the Riemann sum approach to con
ventional integration), in the context of lattice supersym
metry. 

Returning to the type of supermanifold considered in 
this paper, the restricted subatlas discovered here should be 
useful for developing a good theory of integration on subsu-
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permanifolds, which would in tum have application to su
persymmetric quantum field theories where integrals over 
the full superspace often have the wrong dimension for con
structing actions. A good theory of integration on subsuper
manifolds would also be useful for handling topological re
sults (such as index theory) for supersymmetric theories. 
Even a full Stokes' theorem has not been established for su
permanifolds. 

The proof of the existence of a restricted subatlas can 
quite easily be adapted to cover the case of Grassmann-type 
algebras with an infinite number of generators, 6 but, as men
tioned before, having an infinite number of generators re
lates to analytic manifolds, and is more naturally considered 
in the context of complex supermanifolds. 
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It is shown that the two-cocycle involved in the Hamiltonian description ofthe superfluid 4He, 
both nonrotating and rotating, is a particular case of generalized symplectic two-cocycles on 
semidirect product Lie algebras. 

I. INTRODUCTION 

Macroscopic description of quantum fluids provides a 
deeply nontrivial generalization of classical fluid dynamics: 
namely, various two-fluid systems, including superfluid 4He 
and 3He. It is superfluid 4He which has in its Hamiltonian 
description a new feature not encountered in elementary hy
drodynamics: a (generalized) two-cocycle. This fact was 
found for the nonrotating 4He in Refs. 1 (in physical lan
guage) and 2, and for the rotating 4He in Ref. 2. The purpose 
of this paper is to explain the origin of this particular two
cocycle by an examination of two-cocycles on general semi
direct product Lie algebras. In subsequent papers I shall an
alyze the interaction of generalized symplectic two-cocycles 
(introduced in Sec. II of this paper) with commutative 
Clebsch representations (for 4He), and also the nature of non
commutative Clebsch representations (for anisotropic 3He
A with spin); the change of order parameters (for 3He-A ) has 
been analyzed in detail in Ref. 3. 

To set the scene for our discussion, here is the subject 
requiring an interpretation: the Poisson bracket for the non
rotating 4He (formula (5) in Ref. 2; the rotating 4He has a 
similar structure [formula (14) in Ref. 2] as far as two-cocy
cles are concerned): 

(Ua) 

+ (BF BH _ BF BH). 
Ba Bp Bp Ba 

(Ub) 

The notation here is a l = a lax/, where (XI' ... , x,,) are co
ordinates in R" (n = 3 if you are fond of three dimensions); 
(').1 = a (e)laxl ; l<k, [<n, and sum is taken over repeated 
indices; M = (M I , ... , M,,) is the total momentum density (of 
the normal flow); p is the mass density; u is the entropy den
sity; a is the condensate phase which defines the curl-free 
superfluid velocity v' as v' = Va; BH IB(e) denotes the vari
ational derivative of H with respect to (e); and - means equa
lity modulo total derivatives (or "divergences"). 

The curly bracket part (1.1a) of the Poisson bracket (1.1) 
is the natural bracket associated [via the formula (2.19) be
low] to the dual space of the semidirect product Lie algebra 

g(4He)=D"Q«A·eA" eA"), 

with the commutator 

[(X;/; /3; a), (X;]; P; a)] 

(1.2) 

= ([x,x];X({) -X(f);X(8) -X(f3);X(a) -X(a), 

(1.3) 

where D" is the Lie algebra of vector fields on R"; 
A k = A k (R" ) is the cqo (R" I-module of differential k forms 
on a"; X, XED,,; J, a,J. aeA"; /3, peA"; the Lie derivative 
action of D" on A k is denoted X (e) for Xe D" and (e)eA k; and 
the dual coordinates on (g(4He)) * areMk toakED",pto leA·, 
atodx l /\ ... /\ dx" eA", anduto leA". [The usual adiabatic 
fluid dynamics is recovered from (1.1) for H, F independent 
of a; equivalently, when A" is absent in (1.2) and /3, P are 
absent in (1.3).] 

The part (Ub) of the Poisson bracket (1.1) represents 
the following (generalized) two-cocycle on the Lie algebra 
g(4He) (1.2): 

w((X;/; /3; a),(X;]; p; a)) = - /f3 + /37 (1.4) 

Now we can formulate more precisely the main problem 
addressed in this paper: what is the origin of the formula 
(1.4), and why does this skew-symmetric form tum out to be 
a two-cocycle on the Lie algebra (1.2)? This question will be 
answered, from various points of view, by Proposition 3.3, 
Theorem 3.1, Proposition 3.6, Proposition 4.1, and Theorem 
4.2. 

The plan of the presentation is as follows. In the next 
section we set up the machinery of Lie algebras over function 
rings, define generalized two-cocycles on such algebras, and 
establish the one-to-one correspondence between two-cocy
cles on Lie algebras on one hand and affine Hamiltonian 
operators on the other hand, explaining the relation between 
formulas (1.1) and (1.2)-(1.4). In Sec. III we describe a large 
class of two-cocycles on semidirect product Lie algebras as
sociated to a pair of mutually adjoint representations 
(Theorem 3.1), and specialize this result to the case of sym
plectic two-cocycles of the form (1.4). In the last section we 
derive defining equations [(4.6), (4.7)] satisfied by two-cocy
cles on semidirect product Lie algebras of general form. 

II. AFFINE HAMILTONIAN STRUCTURES AND 
GENERALIZED TWO-COCYCLES ON DIFFERENTIAL
DIFFERENCE LIE ALGEBRAS 

In this section we recall the one-to-one correspondence 
between affine Hamiltonian operators and (generalized) two
cocycles on functional Lie algebras. In particular, this will 
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explain how formula (1.1) is read off the Lie algebra (1.2), 
(1.3) and the two-cocycle (1.4) on it, and vice versa. The 
proofs can be found in (Ref. 4, Chap. VIII, Sec. 5). 

Let K be a commutative algebra. Let ai' ... , a" : K - K 
be n commuting derivations. Let G be a discrete group acting 
by automorphisms on K, and suppose that the actions of G 
and a's commute. (The presence of G, which was taken to be 
Z' in Ref. 4, is motivated by the need to cover possible discre
tizations and numerical models of continuous systems.) Let 
Nbe a natural number or 00. KN consists of column vectors 
with only finite number of nonzero components. 

A differential-difference algebra structure on KN is a 
map KN XKN _ KN of the form 

[X, Y]k = L C~golllJ,h,v ga"(X1)oh aV(Yj), (2.1) 

where the sum in (2.1) is finite for each k; c~. eK; g, heG; 

a" = a~' ... a~" for J.L = {J.tl' ... , J.L,,) eZ"+ ; and g(o) denotes 
the image of (0) under the action of geG. The algebra (2.1) is 
called a Lie algebra if the commutator (2.1) satisfies the fol
lowing conditions: 

(i)[X, Y] = - [Y, X ] (skew symmetry); (2.2a) 

(ii) [X, [ Y, Z ]] + cp = 0 (Jacobi identity), (2.2b) 

where "cp" stands for "cyclic permutation"; and (iii) The 
properties (i) and (ii) remain true under any (differential-dif
ference) extension K ':;) K, i.e., for any extension K ' on which 
G and a 's act in a manner compatible with their action on K. 
This property is called "stability," and it means simply that 
skew symmetry and the Jacobi identity are properties of the 
structure constants c~. themselves, and not of the particular 
choice ofK. 

Trivial elements in K are defined as elements of 
1m ~: = 1::=1 1m as + 1:geG Im(g - e), where e is the unit 
element of G; we write a - b if (a - b ) is trivial. 

A bilinear form on KN is a map KN XK N -K of the 
form 

To each bilinear form w one uniquely associates an operator 
b",: K N _ K N acting by the rule 

w(X, Y)_XI b",(Y), (2.4) 

where "1" stands for "transpose," so that ("integrating by 
parts") 

(2.5) 

where (- at = (- alt'· .. (- a"r". The form w is called 
symmetric (resp., skew symmetric), if w(X, Y) -w( Y, X) 
[resp.,w(X, Y)- - w(Y, Xl]. Theformwissymmetric(resp., 
skew symmetric) if and only if the corresponding operator b '" 
is symmetric: (b",) t = b., [resp., b", is skew symmetric: 
(b",) t = - b", ], where, for an operator T: K N _ K M, the 
adjoint operator Tt: K M _ K N is uniquely defined by the 
equation 

VI T(u)- [Tt(vWu, ueK N
, veK M

, (2.6) 

so that 
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(2.7) 

and 

(2.8) 

By an operator we shall always understand a map 
K 'N _ K ,M, each of whose matrix elements is a finite sum of 
the expressions of the form ag av 

, ae K '. 
A skew-symmetric form w on a Lie algebra 9 = K N is 

called a (generalized) two-cocycle if 

w(X, [Y, Z]) + cp-O, 't/X, Y, Zeg. (2.9) 

We now turn to the Hamiltonian formalism. Let Ibe a 
countable set. Set C = K [q\glv)], iel, geG, ve Z"+ , and ex
tend G and a's to act on C by the rule 

h (q\glv) = q\hg1v), a"(q\glv) = q\gl" + v): (2.10) 

SetN= III. The Euler-Lagrange map 8 = 8/8q: C- CN, 
defined by the formula 

(8~) = 8H = Lg-I( _ a )v( aH ), (2.11) 
8q 1 8ql aq~lv) 

annihilates 1m ~ in C: 

Ker8 = 1m ~ +K. (2.12) 

Here, 8B /8ql is called the variational derivative of H with 
respect to q I' 

A derivation X of Cover K is called evolutionary if it 
commutes with the actions of G and a's, so that 

X=" gaV(x.) ._a_ X: =X(q\e1o). (2.13) 
~ '!I (glv)' 1 , ciqi 

The set of all evolution derivations is a Lie algebra denoted 
Dev(c). For XeDev(C), HeC, 

X (H) _XI 8H ("formula for the first variation"), 
8q 

(2.14) 

where 

(X)i =Xi · (2.15) 

A map r: C_Dev(C), H~XH' is called Hamilton
ian, if there exists an operator B: C N _ C N such that 

XH =B(~~); (2.16) 

{H, F}- - {F, H} (skew symmetry), (2.17) 

where the Poisson bracket {H, F} is defined asXH(F); and 

X{H,FI = [XH'XF ]' (2.18) 

or, equivalently, 

{H,{F, S}} + cp-O, (2.18') 

for any H, S, FeC' = K' ( rh1v), with arbitrary extension 
K':;)K. The property (2.17) is equivalent to B being skew 
symmetric, while (2.18) can be reduced to a set of quadratic 
equations on the matrix elements of B. 

An operator ag a V:C _ Cis called q independent [resp., 
linear (in q)] if ae K [resp., if a = 1: ai, h,,, q\h I,,), a ... e K]. An 
operator is affine if it is a sum of a q-independent and a linear 
operator. The same terminology applies to sums of opera
tors, and to matrix operators. 
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Let B = B 1 + b be an affine operator: eN _ eN, with 
B 1 being linear and b being q independent. We make K N into 
a (differential-difference) algebra, setting 

q'[X, Y]_X'BI(y), (q)j: =q\eIO), X, YEKN. (2.19) 

Conversely, given an algebra structure on K N, (2.19) defines 
a linear operator B I. 

Theorem 2. 1: Affine Hamiltonian operators are in one
to-one correspondence with generalized two-cocycles on dif
ferential-difference Lie algebras. This correspondence is giv
en by the formulas (2.19) and bw = b. (For the case when 
G = [e}, n = 1, and a I acts trivially on K, this theorem was 
proven in Ref. 5). 

Applying Theorem 2.1 to the Poisson bracket (1.1), and 
using formulas (2. 14H2. 16), we recover the Lie algebra (1.1), 
(1.3) together with the two-cocycle (1.4). 

Now we are prepared to handle the problem of the ori
gin of the two-cocycle (1.4). 

III. 8-ADJOINT REPRESENTATIONS AND 
GENERALIZED SYMPLECTIC TWO-COCYCLES 

Denote Diff( V) the associative algebra of operators act
ing from V to V, where V = K M for some M. We will also 
denote by Diff( V) the corresponding Lie algebra. 

A representation of a Lie algebra g = K N is an operator 
1T:g _ Diff(V), which is a Lie algebra homomorphism, and 

I 

= Os ((~), (1TI(Y)(~I~':;I(Z)(VIl)I\ + cp [by (3.4)] 
U2 1T2(Y)(W2) -1T2(Z)(V2) } 

which remains a Lie algebra homomorphism for any exten
sion K'-::JK. Two representations 1Tj :g _ Diff(V;), i = 1,2, 
are called 0 adjoint, with respect to a bilinear operator 
O:VIX V2 _K, if 

o (1TI(X)(vIl, v2) - - 0 (VI' 1T2(X)(V2), VjEV;, XEg. 
(3.1) 

Recall that if 1T:g - Diff(V) is a representation then 
g X" V = gQ< V, called the semidirect product of g and V, is a 
Lie algebra with the commutator 

[(J' (~] =C(X)(~~~Y)(V)' X, YEg, V,WEV. 
(3.2) 

Theorem 3.1: Let 1Tj :g _ Diff( Vi) be two O-adjoint re
presentations. Then, on the semidirect product Lie algebra 
gQ« VI EB V2), the following bilinear form 0 s is a two-cocycle: 

(3.3) 

(The form 0 s is called generalized symplectic two-cocycle. 
The reason for this name will be clear from Proposition 3.3 
below.) 

Proof We have, by (2.9) 

= 0 (u l , 1T2(Y)(W2) -1T2(Z)(V2) - 0 (1T I(Y)(WI) -1TI(Z)(vIl, U2) + cp 

= 0 (u l , 1T2(Y)(W2) + cp - 0 (WI' 1T2(Y)(U2) + cp - 0 (1TI(Y)(WI), u2) + cp + 0 (1TI(Y)(U I), W2) + cp 

= [0 (u l , 1T2(Y)(W2) + 0 (1TI(Y)(U I), w2) + cp] - [0 (WI' 1T2(Y)(U2) + 0 (1TI(Y)(WI), u2) + cp] [by (3.1)] -0 .• 

Remark 3.2: Ifwe have an additional representation 1T3: 
g - Diff(V3), then the same formula (3.3), extended on the 
left-hand side to include U3 and V3, provides a two-cocycle on 
the Lie algebra gQ« VI EB V2 EB V3 ), since the proof above does 
not depend upon the presence of elements in V3• 

The two-cocycle (1.4) can now be explained by using the 
following important specialization of Theorem 3.1. Notice 
that given a representation 1T1 and a bilinear operator 0, the 
O-adjoint representation 1T2 does not, in general, exist. How
ever, it does exist for the case when dim( V2) = dim( VI) and 

(3.4) 

Proposition 3.3: In this case, 1T2 is the dual representa
tion, so that V2 can be identified with the dual space V; to 
VI' thanks to Remark 3.2; and 0 S is the symplectic form on 
VI EB V;. 

Proof From (3.1) and Proposition 3.3 we have, for 
UEVI, VEV2 
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0- [1TI(X)(U)]'v + u' [1T2(X)(V)] [by (2.6)] 

-u' [1TI(X)t(v) + 1T2(X)(V)], 

Hence (by Lemma VII 1.12 in Ref. 4), 

[1TI(X)t + 1T2(Xj](V) = 0, 

so that 1T2' if it exists, must be defined by the rule 

1T2(X) = - 1T1(X)t, (3.5) 

i.e., 1T2 must be the dual representation. Let us see that 1T2' 
given by (3.5), is indeed a representation. Using the formula 
(RS)t = st R t, we obtain 

1T2([X, Y]) = - {1TI([X, Y])}t = - [1TIIX), 1T1(y)]t 

= [1TI(X)t,1TI(y)t] = [1T2(X), 1T2(Y)]' 

Finally, since 0 S in (3.3) is the pullback of a bilinear form on 
VI EB V2, we have, for the 0 given by (3.4) 
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OS((::), (~J) = u~ V2 - V~ U2 = (U l , V2) - (VI' u2), 

(3.6) 

in familiar notation. • 
Remark 3.4: The proof above shows that, given a repre

sentation 1r: 9 _ Di1f( V), there exists and is unique the dual 
representation, 9 - Diff(V*), given by (3.5). 

Comparing now formulas (1.4) and (3.6), we see that the 
two-cocycle in (1.4) is of the symplectic type, provided that 
the action ofD" on A" is dual to the action of D" on N. This 
is indeed the case. 

Proposition 3.5: The actions of D" on A k and A" - k are 
dual to each other, for any k: O<.k<.n. 

Proof: Both Ak and A" - k are free K = COO (R" )-mo
dules of dimension m = (~). To identify A k and A" - k with 
K m, we choose a basis of A k consisting of the forms 
dXJ = dXj,I) /\ ... /\dXj,kP l<.j(l) < ... <j(k) = n, J = (j(1), 
... , j(k)), and a basis in A" - k consisting of the forms 
dxJ' =dxf(I)/\ ... /\dxf("_kPsuchthatJuJ'= {l, 2, ... , n) 
and dXJ /\dxJ' = d" x: = dXI /\ ... /\dx". Then (3.4) be
comes 

O(v,u)d"x=v/\u, vEA\ uEA"-k. (3.7) 
Therefore, for X = 1: Xi ai' we get 

[0 (X(v), u) + 0 (v, X(u)d"x] 

=X(v)/\u + v/\X(u) =X(v/\u) =X(O(v,u)d"x) 

= [Lai (0 (v, U)Xi) ]d "x, 

so that 

o (X (v), u) + 0 (v, X(u)) -0, 

and (3.1) is, thus, satisfied. • 
Theorem 3.1 can be viewed from a slightly more general 

perspective. Suppose 1r:g _ Diff( V) is a representation, liJ is a 
skew-symmetric form on V, and V is not necessarily of the 
form VI EB V2. Extend CtJ on g<1< V via the natural projection 
g<1<V _ V. We want to know when CtJ is a two-cocycle on 
g<1<V. 

Proposition 3.6: liJ is a two-cocycle on 9 <1< V if and only if 

b",1r(X) + 7T(X)tb", = 0, 'v'XEg. (3.8) 

Proof: We have 

CtJ([(j, (J], (~)+cp 
= liJ( (7T(X)(~~~Y~Y)(U))' (~) + cp 

= liJ(7T(X)(v) -7T(Y)(u), w) + cp 

= CtJ(1r(X )(v), w) + cp - liJ(7T(X )(w), v) + cp 

- [CtJ(7T(X)(v), w) + liJ(v, 7T(X)(w))] + cp 

-([7T(X)(vWb",(w) + v'b",7T(X)(w)} + cp 

_VI [1T(X)tb", + bw 1T(X)](w) + cp, 

and since v and ware arbitrary, (3.8) is equivalent to liJ being a 
two-cocycle. • 

From Proposition 3.6, Theorem 3.1 and Proposition 3.3 
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are recovered as follows. Firstly, from (3.3) we have 

( 
0 be) 

be' = -b~ 0 ' (3.9) 

and since 

7T(X) = (1rIO(X) 0) 
'lT2(X) , 

(3.8) becomes 

0= be,1T(X) + 1T(X)t(be,)t 

( 
0 be'IT2(X)) 

= - b b'ITI(X) 0 

( 
0 1r1(X)tbe) 

+ -'lT2(X)t b~ 0 ' 

which is equivalent to the pair of equations 

be'IT2(X) + 'lT1(X)tbe = 0, 1r2(X) b ~ + b b 1r1(X) = 0, 
(3.10) 

each one of them saying that 'IT I and 'IT 2 are 0 adjoint. Second
ly, letting be = I in (3.9) makes it into (3.6), and makes (3.10) 
into (3.5). 

IV. TWO-COCYCLES ON GENERAL SEMIDIRECT 
PRODUCT LIE ALGEBRAS 

In this section we consider equations defining the most 
general two-cocycles on semidirect product Lie algebras. 
The speciality of the results in the preceding section is two
fold. Firstly, Vwas considered to be an Abelian Lie algebra. 
Secondly, we considered only those two-cocycles on g<1< V 
that vanish when one of their arguments is in 9 and another is 
in V. To improve the treatment, we start by removing first 
the requirement that V is Abelian. 

If L = K M is a Lie algebra then Der(L ) denotes a Lie 
subalgebra in Diff(L ) consisting of derivations of L. Recall 
that if 'IT: 9 _ Der(L ) is a Lie algebra homomorphism then 
9 X 11.L = g<1<L, called the semidirect product of 9 and L, is a 
Lie algebra with the commutator 

[(j, (J] = C(X)(V) - ~~~~) + [u, V]), 
X, YEg, u, vEL. (4.1) 

Proposition 4.1: Let CtJ be a skew-symmetric form on L 
extended on gCxL via the projection g<1<L ~ L. Then CtJ is a 
two-cocycle on g<1<L if and only if CtJ is a two-cocycle on Land 

b",'IT(X) + 'IT(X)tb", = 0, VXEg. (4.2) 

Proof: Since L is isomorphic to the subalgebra in g<1<L 
consisting of the elements of the form (~), CtJ must be a two
cocycle on L. Granted that, we have 

CtJ([ (j, (J]' (~) + cp 

= liJ( C(X)(V) _ ~~~~) + [u, V]), (~) + cp 

= CtJ('IT(X)(v) -7T(Y)(u), w) + cp + liJ([u, v],w) + cp 

(since liJ is a two-cocycle on L ) 

-liJ(7T(X)(v) -7T(Y)(u),w) + cp 
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(as in the proof of Proposition 3.6) 

_vt [17'(X)tb", + b",1T(X)](W) + cp, 

so that w is a two-cocyc1e on g<2<L iff (4.2) is satisfied. • 
Finally, we consider the general case. Suppose 0 is a 

two-cocyc1e on g<2<L. Let Og be the restriction of 0 on 9 
considered as a subalgebra in g<2<L consisting of the elements 
of the form (~). Then, obviously, Og is a two-cocycle on g. 
Conversely, any two-cocyc1e on 9 can be pulled back to be
come a two-cocycle on g<2<L via the projection g<2<L _ g. 
Thus, we assume from now on that Og = 0 (by changing 0 
into 0 - Og). Now, since 

O((j, (J)-O((~)' e)) + O((!) , e)) 
- o((~), e)), (4.3) 

we see that to define 0 we need two objects: a skew-symmet
ric form won L, and a bilinear form v: gXL -K: 

w(u, v) = O(e) , e)), v(X, v) = O((!) , e)), 
(4.4) 

o((j, (J)-W(U, v) + v(X, v) - v(y, u). (4.5) 

For 0 to be a two-cocyc1e on g<2<L, w must be a two-cocyc1e 
on L. Granted that, we have to find out when formula (4.5) 
defines a two-cocycle on g<2<L. 

Theorem 4.2: Let w be a two-cocyc1e on L, v: 9 XL - K 
be a bilinear form. Then 0, given by formula (4.5), is a two
cocyc1e on g<2<L iff 

w(17'(X ltv), w) + w(v, 17'(X )(w)) - v(X, [v, w]), 

VXeg, Vv, weL, 

b V([X, Y1) = 17'(y)tb V(X) _ 1T(X)tb V(Y), 

VX, Yeg, 

(4.6) 

(4.7) 

where the operator b V:g _ L * is defined by the relation 

v(X, w)_wtbV(X), VXeg, VweL. (4.8) 
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Proof We have 

0([ (j, (J] , (~) + cp 

= O((17'(X)(V) _ ~~~~) + [u, V]), (j) + cp 

- w(17'(X)(v) -17'(Y)(u) + [u, v),w) + cp + v([X, Y),w) 

+ cp - v(Z, 17'(X)(v) -17'(Y)(u) + [u, vJl + cp 

[since w is a two-cocycle on L] 

- {w(17'(X)(v) -17'(Y)(u),w) - v(Z,[u, v])} + cp (4.9a) 

+ {v([X, Y],w) - v(Z, 17'(X)(v) -17'(Y)(u))} + cpo 
(4.9b) 

Since (4.9a) is linear on 9 and bilinear on L, while (4.9b) is 
bilinear on 9 and linear on L, 0 is a two-cocycle iff (4.9a) and 
(4.9b) are separately trivial. Transforming (4.9a) we obtain 

(w(17'(X)(v),w) - w(17'(X)(w),v) - v(X,[v, w])} + cp, 

so that (4.6) follows. For (4.9b), we get 

{v([X, Y),w) - v(X, 17'(Y)(w)) + v(Y,17'(X)(w))} + cp 

_wt{bV([X, Y» -17'(y)tP(X) + 17'(X)tb V(Y)}, 

and (4.7) follows. 
Remark 4.3: For v = 0, Theorem 4.2 reduces to Propo

sition 4.1. 
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A class of second-order differential equations stemming from an equation of motion for the two
particle spatial correlation function in one-component plasmas is studied. These equations 
contain an irregular singularity of varying order at the origin. The general form of solution is 
obtained which, together with the construction of asymptotic series, demonstrates that both 
solutions to all equations in the class are singular at the origin. Behavior removed from the origin 
is shown to be oscillatory or exponential depending on specifics of the equations. 

I. INTRODUCTION 

In studies of the two-particle correlation function for 
one-component plasmas, 1-6 a differential equation emerges 
for the "total" correlation function 7.8 h (x), given by 

h "(x) + (21x - k Ix2)h '(x) ± h = O. (1) 

Interparticle displacement is represented by x, k is a con
stant, and the sign of the last term depends on conditions of 
the plasma. This equation was recently studied by the au
thor9 and in the present work these findings are extended to 
the generalized equation 

h "(x) + (N Ix - k IXN)h '(x) + Q (x)h (x) = 0, (2) 

where Q (x) is an arbitrary function and the number N>2. 
The latter equation is seen to have an (N - 1 I-order irregular 
singularity at the origin. 10 

II. ANALYSIS 

It is convenient to rewrite (2) in the canonical form 1 1 

h "(x) + P (x)h '(x) + Q (x)h (x) = O. 

The integrating factor 

¢>=exp f Pdx 

permits (3) to be rewritten as 

(h '¢>)' + ¢>Qh = O. 

In the present study, 

¢>=xNexp[k/(N-l)xN-I]. 

(3) 

(4) 

(5) 

To construct the general form of the solution to (2) we 
introduce the function 

h '==.¢>-I, 

which has the property 

(h'¢>)' =0. 

In the present study, h is given by 

- fdx 1 k 
h = ¢="kexp (l-N)xN-I' 

so that 

h¢> =xN Ik. 

Note also that 

(6) 

(7) 

(8) 

(8a) 

(8b) 

The property (7) with reference to (4) suggests a solution 
in the product form 

h=hj (9) 

Substitution into (4) gives 

r + f'[P+ 21h¢>] + Qf= o. 
With (8a) we find 

r +f'[N Ix+ klxN] + Qf=O. (10) 

Comparison with (2) indicates that iff(x,k) is a solution to 
this equation, then 

k -I exp[ - k/(N - I)xN-I]f(x, - k) 

is also a solution. 
Thus we find that the general solution to (2) is given by 

h (x) = Af(x,k) +!!..-fIx, - k )exp [ _ k ] , 
k (N -l)xN-I 

(11) 
where A and B are arbitrarily constants. For integer N>2, 
(11) implies that at most, only one solution of (2) is regular at 
the origin. That is, supposefis regular at the origin. Then the 
product term in (11) is evidently irregular. 

A. Asymptotic series 
Following a procedure described by Ince, 10 the nonsin

gular quality of a solution near a singular point of a differen
tial equation may be examined by Taylor series expanding 
the solution about this point. In this calculation we assume 
that Q is regular at the origin and to facilitate calculation set 
Q=l. 

Substitution of the series 
00 

f(x,k) = L anxn (12) 
n=O 

into (2) then gives the recurrence relation (n>N + 1, N>2) 

knan = an+ I_Nn(n + 1 - N) + an_ N_ 1 , 

a l =a2 =0, a3 =a4 = .,. =aN=O. 

Substituting back into (12) gives 

(13) 

(13a) 

[ 
1 1 00 ] f(x,k) = ao 1 + xN 

+ 1 + - L aqxq , 
k (N + 1) ao q=N+2 

(14) 
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which is seen to be divergent, as is evident from ( 13). Thus we 
find that Taylor series expansion gives a divergent series and 
we may conclude that both solutions to the class of equations 
(2) are irregular at the origin. Although divergent, (14) is still 
useful in the asymptotic sense. 12-14 That is, any finite sum of 
leading terms is a solution to (2) to arbitrary accuracy for 
sufficiently small x. For example, substitution of the first 
two terms of(14) into (2) leaves a remainder of order X N

-
1
• 

Combining (14) with (11) gives the following general so
lution to (2) (with Q = 1), relevant to small values of x: 

[ 
XN+ 1 ] 

h(x)=A 1 + + ... 
k(N+ 1) 

+ fexp( - (N _ ~)xN - 1 ) 

X[I-xN+ 1/k(N+l)+ ... ]. (15) 

In passing, it is interesting to note that with A = - B I 
k = - 1, the leading terms of (15) return the canonical 
expression for h (x) near the originS 

h (x)~ - 1 + exp( - VN(x)/kB T). (15a) 

This expression for h (x) is relevant to a fluid at temperature T 
with interparticle potential VN(x). Here we have made the 
identification 

f 
k k 

- xN dx = (N _ I)xN - I • 

B. Oscillatory and exponential behavior 

Returning to the mainstream of the analysis, we note 
that the transformation II 

h = e- f(P/2)U (16) 

removes the first-derivative term from (2), leaving the Schro
dinger-like equationl5

•
16 

utI + u[Q - !p2 - P'/2] = 0, (17) 

in which Q plays the role of energy and 

!(p2 + 2P') 

the role of potential. 17 

In the present study, (17) has the explicit form ls 

utI +u[Q- [(NI4x2)(N-2) + (kl2xN)2]] =0. (18) 

Thus we may conclude that solutions of (2) oscillate for 

Q>(NI4x2)(N-2) + (kl2xNf, (19) 

If in addition, Q is bounded 

O<Q<M, (20) 

then (19) indicates that oscillation will occur for sufficiently 
large x whereas nonoscillatory behavior will occur for suffi
ciently small x. 

Consider the case that Q approaches a positive constant 
a2 (or very slowly varying function) for large x. Then in this 
same domain, (18) reduces to 

utI + a2u + O. (21) 

Combining this result with (16) gives the asymptotic solution 
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h_x- N/2 exp(- k )[ASinax+BcoSaX], 
2(N - I)xN-I 

(22) 

where A and B are arbitrary constants. 
In the special case that N = 2, (22) reduces to 

h-e- kl2x [Ajo(ax) + Bno(ax)] , (23) 

wherejo and no are spherical Bessel and Neumann functions, 
respectively. 

III. CONCLUSIONS 

We have studied a class of differential equations which 
are of common form with varying order of irregular singu
larities at the origin. The general structure of the solutions to 
this class of equations was found and it was concluded that, 
at most, one solution is regular at the origin. Subsequent 
series expansion established that both solutions are irregular 
at the origin for all equations in the class. This series expan
sion was shown to be asymptotic in the sense that it gives an 
accurate estimate of the solution for sufficiently small argu
ment. 

Finally, it was demonstrated that in different domains of 
the independent variable, solutions to these differential 
equations are exponential or oscillatory depending on specif
ics of coefficients in the equations. The solution to the first 
member of the class of equations was found to be asymptotic 
to spherical Bessel functions. 
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Any pair of two-dimensional anisotropic media with local conductivity tensors that are functions 
of position and that are related to one another in a certain reciprocal way are considered. It is 
proved that their effective conductivity tensors are related to each other in the same way for both 
spatially periodic media and statistically stationary random media. An inequality involving the 
effective conductivity tensors of two three-dimensional media that are reciprocally related is also 
proved. These results extend the corresponding results for locally isotropic media obtained by 
Keller, Mendelsohn, Hansen, Schulgasser, and Kohler and Papanicolau. They also yield a 
relation satisfied by the effective conductivity tensor of a medium reciprocal to a translated or 
rotated copy of itself. 

I. INTRODUCTION 

We shall consider the effective conductivity tensor ~(u) 
of an anisotropic medium with the local conductivity tensor 
O"(r). Our goal is to extend to anisotropic media the reciprocal 
theorems and reciprocal inequality concerning ~(u), which 
were proved for locally isotropic media by Keller, 1.2 Mendel
sohn/ Hansen,4 Schulgasser,5 and Kohler and Papanico
lau.6 We shall use the terminology appropriate to electrical 
conductivity, although the results also apply to thermal con
ductivity, electrical permittivity, magnetic permeability, dif
fusivity, etc. 

Following the previous authors, we consider two types 
of media: (a) periodic, in which O"(r) is a spatially periodic 
function of r, and (b) random, in which O"(r) is a stationary 
random function of r. In both cases, O"(r) is symmetric and 
positive definite. In case (a), (f(r) will denote the average of 
a periodic function over a period cell and in case (b) it will 
denote the stochastic average of a stationary random func
tion. 

In order to define ~(u) for smooth O"(r), we consider the 
potential rp (r) in the medium when the average electric field is 
a given constant E. Then rp satisfies the equations 

v . [O"(r)Vrp (r)] = 0 , 

rp (r + a) - rp (r) = E • a , 

(Vrp (r) = E . 

(1.1) 

(1.2a) 

(1.2b) 

In (1.2a), which holds in case (a), ais any period of u, i.e., any 
vector such that O"(r + a) = O"(r). Henceforth (1.2) will mean 
(1.2a) in case (a) and (1.2b) in case (b). In both cases the prob
lem (1.1) and (1.2) yields a solution rp, which is unique up to 
an additive constant, so V rp is uniquely determined. Further
more Vrp is linear in E, and then so is (uVrp ). Therefore we 
can define ~(u) by 

(uVrp) = ~(u)E . (1.3) 

We will now deduce a few facts abut ~, which we will 
need later, beginning with case (a). First we consider any 
periodic function ¢1r) and integrate V • (t/JuV rp ) over a period 
cell. Upon using (1.1) we find that the integrand becomes 

Vt/JuVrp, while from the divergence theorem and the period
icity of the functions we see that the integral vanishes. Thus 
in case (a) for any periodic t/J we get 

(Vt/JuVrp) = O. (1.4) 

Next we denote by rp' the solution of (1.1) and (1.2a) with E 
replaced by E' and we write it in the form rp' = E' • r + t/J(r). 
Then we see from (1.2a) that t/J is periodic. Now we take the 
scalar product ofE' with (1.3) and add the result to (1.4) to 
get 

(E'uVrp) + (Vt/JuVrp) = E'~(u)E. 

Rewriting the left side of (1.5) yields 

(Vrp'uVrp) = E'~(u)E. 

(1.5) 

(1.6) 

Because Vq/ is linear in E and Vrp is linear in E, the left 
side oft 1.6) is a symmetric bilinear form in E' and E, which is 
positive definite when E' = E. Therefore the right side has 
these same properties, so ~(u) is symmetric and positive defi
nite. We also note that Vrp' = E' + Vt/J, and that (Vt/J) = 0 
because t/J is periodic. Therefore (Vrp') = E', which shows, 
when the prime is omitted, that (1.2b) holds in case (a) also. 

Finally we recall that among all functions <I>(r) satisfying 
(1.2a), the solution rp of (1.1) minimizes the quadratic form 
representing the rate of energy dissipation: 

(VrpuVrp)«V<I>uV<I» . (1.7) 

Upon using (1.6) with q/ = rp to replace the left side of (1.7), 
we can write 

E~(u)E = min (V<I>uV<I» . (1.8) 
<l> 

In (1.8), <I> must satisfy (1.2a). 
In case (b), (1.4) holds when Vt/Jis stationary, as we show 

in the Appendix. Then (1.6) follows as before because 
Vt/J = Vrp' - E' is stationary. Therefore ~(u) is also symmet
ric and positive definite in case (b). Furthermore (1.7) and 
(1.8) also hold provided that V<I> satisfies (1.2b). Finally in 
case (b) we will need the variational principle dual to (1.8), 
which is proved in the Appendix. It is expressed in terms of a 
constant current I in the form 
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n:-I(u)1 = min(Ju-IJ) . (1.9) 
J 

The minimum is over all statistically stationary functions 
J(r) satisfying (J) = I and V' J = O. 

When u(r) is not smooth, the variational principles (1.8) 
and (1.9) can be used to define 1:(u). Alternatively, if u(r) is 
piecewise smooth, (1.1) can be replaced by its weak form, and 
then (1.3) can still be used. From (1.8) it follows that 1:(u) is a 
continuous function of u in the LI norm. Therefore proper
ties of1:(u) that hold for smooth u(r) also hold for any discon
tinuous u(r), which can be approximated arbitrarily closely 
by smooth u. 

II. RECIPROCAL RELATIONS IN TWO DIMENSIONS 

We shall now state and prove the following reciprocal 
theorem. 

Theorem 1: Let u(r) be the piecewise smooth conductiv
ity tensor of a two-dimensional medium and let T(r) = ku(r)1 
det u(r) be that of a second medium, where k is a positive 
constant scalar. Suppose that u(r) is either a periodic func
tion or a stationary random function. Then 

:I(r) = k1:(u)/det 1:(u) . (2.1) 

Since u is symmetric it can be diagonalized by choosing 
its principal directions as coordinate directions at each 
point. Then u = diag(uw u22) and the hypothesis of the 
theorem states that r = diag(k lu22,k lUll)' The conclusion 
of the theorem can be rewritten by choosing the principal 
directions of l:(u) as coordinate directions. Then 
1:(u) = diag[l:I1(u),l:22(u)] and the theorem states that 
1:(r) = diag[k 11:22(u),k 11:II(u)]. 

Proof: We shall prove this theorem for smooth u, which 
suffices in view of the last sentence of Sec. I. We shall also 
prove it for k = 1, since 1:(kr) = kl:(r), so the general case 
follows at once from this case. We begin by introducing the 
constant antisymmetric tensor 

p= (~ -~) 
and noting that r ,;, pu- Ip - I. Then if qJ is the solution of 
(1.1), it follows from (1.1) that VX(puVqJ) = O. Therefore 
there is a scalar function t/!{r) such that 

V1/1 = puVqJ . (2.2) 

This equation determines 1/J(r) up to an additive constant. 
Furthermore, from (2.2) we get V' (rV1/1) = V • (pVqJ ) 
= VXVqJ = O. Thus 

V • (rV1/1) = 0 . (2.3) 

Now (2.3) shows that 1/1 satisfies (1.1) with u replaced by 
r. In addition (2.2) shows that V1/1 is periodic in case (a) and 
stationary in case (b). Therefore 1/1 satisfies (1.2a) in case (a) 
and (1.2b) in case (b), with some constant field E'. To find E' 
we just use (2.2) for V1/1 in (1.2b), since we have shown that 
(1.2b) holds incase (a) also. In this way we get, by using (1.3), 

E' = (puVqJ ) = p1:(u)E . (2.4) 

On the other hand, from (2.2) and the definition of r, we 
have VqJ = U- Ip- IV1/1 =p-Ir V1/1. We now average this re
lation and note that (VqJ) = E by (1.2b). We also use (1.3) in 
the form (rV1/1) = 1:(r)E'. In this way we obtain 
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E = p-I1:(r)E' . (2.5) 

Finally we use (2.5) in (2.4), which yields 
E' = p1:(ulo -11:(r)E'. From this identity we conclude that 

1:(r) =pl:-I(ulo- I = 1:(u)/det 1:(u). (2.6) 

This result is just (2.1), which proves the theorem. 
As a first application of Theorem 1, we shall consider a 

periodic or stationary random two-dimensional medium 
composed of two materials with the constant conductivity 
tensors uland u 2- This means that u(r) is piecewise constant, 
taking the two values UI and U2' We suppose further that UI 
and U2 are related by 

UI = (k Idet u2) U2' U2 = (k Idet u l ) UI . (2.7) 

Each of these relations implies the other, and also yields 

k = (det UI . det U2)1/2 . (2.8) 

Let T(r) be the conductivity tensor of the medium obtained by 
interchanging UI and U2' Then in view of (2.7), rand u are 
related as in the hypothesis of Theorem 1, so the conclusion 
(2.1) holds with k given by (2.8). 

We can state this result as follows, by writing 
1:(u) = 1:(UI,U2) and 1:(r) = 1:(u2,ud. 

Interchange Corollary: Let 1:(UI,U2) be the effective con
ductivity tensor of a periodic or stationary random two-di
mensional medium composed of two materials with conduc
tivities UI and U2 satisfying (2.7). Let 1:(U2'UI) be the effective 
conductivity of the medium obtained by interchanging the 
two materials. Then 

~( ) _ (det UI . det U2)1/2 ~( ) 
~U2,UI - ~UI>U2 . 

det 1:(UI>U2) 
(2.9) 

Taking determinants in (2.9) yields 

As a second application, we shall consider a periodic or 
stationary random two-dimensional medium for which 
there is a rigid body motion r-+Rr + c and a scalar constant 
k such that 

u(Rr + c) = [k Idet u(r)] u(r) . (2.11) 

Here R is a matrix representing a rotation, reflection, or 
combination of them and c is a vector representing a transla
tion. By choosing r(r) = u(Rr + c), we see that the hypothe
sis of Theorem 1 holds, so (2.1) applies and yields 

1:[u(Rr+c)] = {kldet1:[u(r)]} 1:[u(r)]. (2.12) 

The translation does not alter 1: [u(r)] , but the rotation andl 
or reflection transform it to 

1: [u(Rr + c)] = Rl:[u(r)] R -I. 

Upon using (2.13) in (2.12) we obtain 

R1:[u] R -I = [kldet l:(u)] 1:(u). 

(2.13) 

(2.14) 

By equating the determinants of the two sides of (2.14), we 
get 

det l:(u) = k. (2.15) 

Then (2.14) simplifies to 

R1:(u) R -I = 1:(u) . (2.16) 
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We can summarize these results in the following corol
lary. 

Rigid Motion Corollary: Let 1:((7) be the effective con
ductivity tensor of a periodic or stationary random two-di
mensional medium satisfying (2.11) for some rotation andl 
or reflection matrix R and some translation vector c. Then 
1:((7) satisfies (2.15) and (2.16). Furthermore from (2.16) it 
follows that if R is a rotation through an angle other than 
zero or 'IT, 1: must be a scalar multiple of the identity I. If R is 
a reflection about the x or y axis, then 1: must be diagonal 
when expressed in the x, y basis. 

As an application of this corollary, we shall consider a 
medium composed of alternate squares, or other identical 
space-filling patches, with conductivities (71 and (72 satisfying 
(2.7). Then the medium resembles a checkerboard, and there 
is a translation c that moves each patch of conductivity (71 
onto a region originally occupied by a patch of conductivity 
(72' and vice versa. Consequently (2.11) holds with this value 
of c, with R = I, and with k given by (2.8). Then the corol
lary applies, and from (2.15) and (2.8) we get 

det l:((71,(72) = (det (71 . det (72)1/2 , (2.17) 

If the medium has some additional symmetry that makes 1: a 
scalar, then (2.17) determines it completely. This is the case, 
for example, when (71 and (72 are scalars and the medium is 
actually a checkerboard. Then (2.17) gives 1:((71,(72) 
= ((71(72)1/2. 

III. RECIPROCAL INEQUALITY IN THREE DIMENSIONS 

For both the periodic and statistically stationary cases, a 
generalization of Schulgasser's inequality5 in three dimen
sions holds for media whose conductivity tensors are of the 
form 

0) o . 
(7zz 

(3.1) 

Theorem 2: Let (7 be a piecewise smooth positive definite 
symmetric matrix given by (3.1); let 

p~G -~ D 
and let r = kp(7-lp -I, where k is a positive constant. Sup
pose (7 is statistically stationary, or periodic in the 1,2 plane 
and periodic in z. Then for any two orthogonal directions 
x, y in the 1,2 plane, 

1:xx ((7)1:yy (r);>k. (3.2) 

Proof of periodic case: Let D be a period cell of the medi
um with Izl <aI2, where a is the period in z. We denote its 
cross section at z by D z and its volume by ID I. Let 
d' )(x, y,z) = o-(x, y,t ). Then d') is the conductivity of a medi
um that does not vary with z, so it is essentially two dimen
sional. Let P be the set of potentials t/l defined by 

P = ! t/l: t/l(x,y, - a12) = t/l(x,y,a12) , 

t/l satisfies (1.2a) with E = 1J . 
We now use the relation (1.8) with E = i, minimizing 

over the set of potentials P. Then the left side of (1.8) is 
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1:xx ((7). We transform the right side as follows: 

1:xx ((7) = min_l_ r (7Vt/lVt/ldV 
f/IeP ID 1 JD 

1[/2 [Ii ;>- min -- dZ)(x, y,t) 
a - a/2 f/IeP IDz 1 D. 

X Vt/lVf/!(x, y,z)dx dy ] dz 

1[/2 [ 1 i = - min -- dZ)(x, y,t) 
a - a/2 f/IeP ID 1 D 

X Vf/!(x, y,t) • Vf/!(x, y,t )dx dy dt ] dz 

=1. [/2 1:
xx

(d z)) dz . 
a -a/2 

By using brackets to denote the average over a period in z, we 
can write this result as 

(3.3) 

Similarly, by choosing E = J in the definition of P we obtain 

1:yy (r);> (1:yy (rlZ
))) • (3.4) 

Multiplying corresponding sides of (3.3) and (3.4), and then 
using the Cauchy-Schwartz inequality yields 

1:xx ((7)1:yy (r);> (1:xx (dZ
))) (1:yy (rlZ

))) 

(3.5) 

For each z, d z
) and rlz

) are essentially two-dimensional 
conductivities so Theorem 1 holds. By using this theorem for 
1:yy (rl z

)), and then using the symmetry and positivity of 
1:(dZ

)), we obtain 

Finally by using (3.6) in (3.5) we get 

1:xx ((7)1:yy (r);>k . 

(3.6) 

(3.7) 

Proof of statistically stationary case: The proof is differ
ent here, for the intermediate inequality (3.3) is in spatial 
terms, and has no immediate analog in this case. We follow 
closely the proof of Kohler and Papanicolau,6 who treated 
statistically stationary isotropic media. We start with the 
definition 1:xx ((7) = i~((7)i and use (1.8) in the statistically 
stationary case. Then we can write 

1:xx ((7) = min «(7V<I>· V<I» , (3.8) 
<I> 

where we minimize over all stationary <I> such that 
(V<I» = i. Now we consider the class W of stationary fields 
defined by W = ! E: (E) = i, alE 2 = a2E.}. This set in
cludes all V<I> considered above, so that 

min«(7V<I>· V<I»;>min«(7E· E) . 
<I> EeW 

(3.9) 

IfE = (E1,E2,E3) is in W, then so is E' = (E1,E2,0). Further
more (7E' • E' <(7E • E. Therefore the minimum of the right 
side of (3.9) is achieved for a vector with E3 = 0: 
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min(uE ° E) = min (uE ° E) . 
EeW EeW 

E,=O 

Upon combining (3.S)-(3.1O), we get 

~xx = min (uE ° E) . 
E·eW 
E,=O 

Next we introduce the set 

f = {J: J is stationary, V ° J = 0, (J) =}l , 

(3.10) 

(3.11) 

and note that {E: EeW, E3 = OJ = {p-IJ: JEf, J3 = OJ. 
Then, 

min(uEoE) = min(up-IJop-IJ). (3.12) 
EeW JeJ 

E,=O J,=O 

We remove the condition J3 = 0, decreasing the right-hand 
side, and bring p through the inner product to obtain 

min (uEo E);>min(pup-IJ oJ) . 
E= 11" JeJ 

(3.13) 

E,=O 

Recalling that pUp-1 = kr-t, we can use (1.9) to write 

min (uE ° E) ;>k} T~ -I(r)} . 
EeW 

E,=O 

By using (3.14) in (3.11) we get 

~xx (u);>k) 1): -I(r)} . 

(3.14) 

(3.15) 

To evaluate the right side of (3.15) we note that ~ is 
symmetric and positive definite. Therefore the quadratic 
form v ~ - IW is an inner product and satisfies the Cauchy
Schwartz inequality. Thus we have 

[} T~ -I(r)}] [(~(r)}) T~ -I(r)(~(r)})] 

;> [} T~ -1(r)~(r)}F = 1 . 

Simplifying the left side of this inequality yields 

[} T~ -1(r)J] [} T~(r)}];> I . (3.16) 

Substituting the definition ~yy(r) =} T~(r)} into (3.16) and 
using (3.15) yield 

~xx(u)~yy(r);>k , (3.17) 

as was to be shown. 
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APPENDIX: STATISTICAL VARIATIONAL PRINCIPLES 

We prove that 

(Vf/!uVrp) = 0 (1.4) 

in the statistically stationary case, where Vf/! is stationary 
and (Vf/!) = o. (Vrp is assumed to be statistically stationary.) 

To begin with, f/! itself is stationary since V f/! is stationary 
and (Vf/!) = o. We introduce the vector field T(r), defined by 

T;(r) = (f/!(X + r)uij(x) arp(x)). (AI) 
aXj 

(The summation convention is used.) Since everything with-

2764 J. Math. Phys .• Vol. 26. No. 11. November 1985 

in the brackets is stationary, we can also write 

T;(r) = (f/!(X)Uij(X _ r) arp(x - r)) . 
aXj 

(A2) 

To establish (1.4) we evaluate V ° T at r = 0 in two different 
ways. First, using (AI) 

aT;(r) I = I uij(x) arp(x) af/!(x + r)) I . 
ar; r=O \ aXj ar; r=O 

This is just 

aT;(r) I = (uVq; ° Vf/!) . 
ar; r=O 

(A3) 

On the other hand, using (A2) 

aT;(r) I = - (f/!(X)~ [Uij(X _ r) aq;(x - r)]) I . 
ar; r=O ar; arj r=O 

(A4) 

However, the right-hand side of (A4) is 0 since q; is a solution 
to (1.1). Thus, (A3) and (A4) imply (1.4). The preceding argu
ment is due to Molyneaux. 7 

The dual variational principle 

I~-I(u)I = min(Ju-IJ) , 
J 

(1.9) 

where the minimum is over all stationary functions J(r) satis
fying (J) = I and V ° J = 0, is established as follows: Let J o 
be stationary and divergence-free and let (Jo) = O. We can 
write 

(
aq; aFk) (Vq;oJo) = -Dijk - , 
ax; aXj 

(A5) 

where Dijk is the Levi-Civita tensor, i.e., Jo = curl F for some 
field F. As above, since (Jo) = 0 and is stationary, F is also 
stationary. Analogously to our introduction of T, we define 
Sj(r) by 

I aq;(x) ) 
Sj(r) = \ ax; Dijk Fdx + r) (A6) 

and note that 

(A7) 

Now, computing V 0 S at r = 0, first using (A6), we get 

aSj(r) I = (aq;(x) Dijk aFk(x + r)) I ' 
arj r=O ax; arj r=O 

which, by (A5), is just 

a~(r) I ( ) -- = Vq;oJo . 
arj r=O 

(AS) 

Using (A7), 

aSj(r) I = - (a
2
q;(x - r) Dijk Fk(X)) I . 

arj r=O arjar; r=O 

(A9) 

Here, the right-hand side is 0 because V X V rp = O. It follows 
that (Vq; ° J o) = O. 

Let J s = uVrp, the actual current. By the above, 
(u-IJs ° J o) = 0, hence 

(u-I(Js ° J o) ° (Js + J o) 

= (u-IJs ° Js ) + (u-IJO ° J o);> (u-IJ. oJ.). (A 10) 
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Since any admissible field J may be written as J. + J o, for a 
suitable J o, we see that choosing J = J. minimizes 
(0'-1 + J. J). Also, (O'-IJ •• J.) = (V<p· V<p) 
= E ~(O')E. Thus, (AW) implies 

E~(O')E=min(O'-1 +J.J). (All) 
J 

Finally, the average current I = :I.(O')E, and we may substi
tute E = :I.-I(O')/ into (All) to obtain (1.9). 
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The structures of generalized noncommutative Toda lattices 
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(Received 6 February 1985; accepted for publication 3 May 1985) 

Non-Abelian Toda lattices with a finite number of "above-diagonal" variables are related to 
appropriate Lie algebras of operators and a certain two-cocycle. 

I. INTRODUCTION 

Among various generalizations of the classical Toda lat
tice, one can discern four separate ideas pertinent to the infi
nite (or periodic) case. If one uses the symbolic notations of 
Ref. 1 then the equations ofthe Toda hierarchy are the dis
crete Lax equations 

ap(L ) = [P +,L ] = [ - P _,L ] , 

with 

L =S + qo +S -Iql , 

(Ll) 

(1.2) 

and the foregoing generalizations concentrate on the follow
ing points. 

(a) Consider qo and ql in (1.2) as r by r matrices; this is 
called "the non-Abelian Toda lattice" in the physics litera
ture. 

(b) Consider the universal casel 

L=S+LS-jqj' (1.3) 
j;'O 

from which (1.2) can be obtained by the specialization 
{qj = °lj;;>2} . 

(c) Allow Lin (1.3) to contain a finite number of "above
diagonal" variables2

•
3 

L=sp(l+Ls-j-Iqj), (1.4) 
j;.O 

with some/3;;>2, /3EZ+. 
(d) SpecializeL in (1.4) by restricting the surviving flows 

of (Ll) to the "submanifold" {qj = Oli¢O (mod all, a;;>2, 
aEZ+. 

In the scalar situation, that is, when all the variables qj 
commute with each other, the cases (b)-(d) were analyzed in 
considerable detail in Refs. 1 and 2. The result of this analy
sis can be summarized as follows: the universal case (1.3), 
while making the theory more transparent, presents no new 
features compared with the proper Toda lattice (1.2), except 
for the problem of the existence of the third Hamiltonian 
structure. The associated Lie algebra, the Lie algebra g;.o of 
non-negative-order Volterra operators, is an analog of the 
corresponding Lie algebra in the differential case4 (this and 
other results mentioned in the Introduction will be explained 
in the sections below). Allowing the above-diagonal varia
bles (1.4) results in the appearance of a generalized two-cocy
cle (i) on the Lie algebrag <0 of negative-order Volterra oper
ators. Also, positive and negative variables split in the 
Hamiltonian form; specialization (d) presents some technical 
problems but no new features. 

In this paper we analyze the cumulative effect of non
commutativity (a), universality (b), and above-diagonality 

(c). In other words, we consider the Lax equations (Ll) for 
the Lax operator (1.4) with variables qj being r by r matrices. 
It turns out that important ingredients of the scalar case, 
namely, Lie algebras g;.o and g <0 and a two-cocycle (i) on 
g <0' still appear in the noncommutative situation, though in 
a generalized manner. 

The plan of the paper is as follows. In Sec. II we establish 
a proper setup for Eqs. (Ll), and then cast them in a vari
ational form in Sec. III. Finally, in Sec. IV we interpret the 
resulting equations from the point of view of appropriate 
Volterra Lie algebras. 

II. THE LAX EQUATIONS 

Let k be a field of characteristic zero and let 
C = k [ q)';~ ] , mEZ,jEZ+, 1 <p" v<r, be the algebra of poly
nomials in free variables q)';~. We make C into an algebra 
with an automorphism ..:1 by defining ..:1 (q)';~) = q)';: I), 
..:1 (c) = e, V cek. Let Mat, (C) be the algebra of r by r matrices 
over C with ..:1 naturally extended to it, and let 
C' = Mat,(C)((S -I)) be the associative algebra ofthe Laur
ent series, with relations SSg =..:1 s(g)SS, VgeMat,(C). We 
consider matrices qj in (1.4) having matrix elements qj.p.v' 
ThusL in (1.4) belongs to C' and for every nEZ+ we can form 
the Lax equations (Ll) with P = L ". The resulting deriva
tions (or "flows") all commute and have a common set of 
integrals 

H" =n-ITrRes L", (2.1) 

where Res singles out the SO coefficient (see Refs. 2 and 3). 
Denote Qs = qp_I +s ,s;;>O; Ri = qp-2-i' O<i</3 - 2 

(for /3 = 1 no R is introduced). Let 

L" = LPs(n)sS, ps(n)eMat,(C). (2.2) 
S 

Rewriting in longhand the first equality in (1.1), ap(L) 
= [P +,L], we get 

ap(QS) = L [..:1 s(pk(n))Qk+s -..:1 -k(Qk+spdn))] , (2.3) 
k;.O 

while the second equality in (Ll),ap(L ) = [- P -,L ],results 
in 

+ L [..:1 -S(Ri_ Sps(n))-..:1 -i-l(Ps(n))Rt_s] ' 
s<o 

(2.4) 

where we agree, in (2.4) and below, to drop those terms in the 
sums which do not make sense. 
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III. HAMILTONIAN FORM 

The Hamiltonian formalism is a device for reexpressing 
equations of "motion" in terms of associated conservation 
laws. For Lax equations, one uses for this purpose the natu
ral extension of the formal calculus of variations from the 
ring C into the C' -bimodule of differential forms IJ I(C') (see, 
e.g., Refs. 1,2, and 5). The calculus then yields 

dTrRes Ln_nTrRes(Ln-IdL), (3.1) 

where a-b means (a - b )eIm(..:1 - 1). Using (2.1) and (2.2) 
we get from (3.1) 

dHn+1 =d[l/(n+ I)JTrRes Ln+1 

_ Tr Res(L n 1 dL ) 

Therefore, 

= Tr Res (.frps(n)S'SP-j-1 dqj ) 

= Tr 2:Pj+ I_p(n)dqj . 
j 

/jH 
pj+l_p(n)=-;-;-, H=Hn+l , 

uqj 

where t stands for transpose 

(~:) pv - /j::p . 
Substituting (3.2) into (2.3) and (2.4), we get 

(3.2) 

ap(Q.) = &0 [..:1 '(::JQk+. -..:1 -k( Qk+S ::J] , 
(3.3) 

a (R.) = (1 -..:1 - p \ A P - I - i /jH p , ~ /jR t 
P-2-i 

(3.4a) 

~ [..:1 I + '(R /jH ) + ~ i + s+ I /jR! 

-i-I( /jH)R ] - ..:1 /jR ! i + s + I • (3.4b) 

Equations (3.3) and (3.4) give us the Hamiltonian form of the 
Lax equations (1.1). Notice that the variables Q and Rare 
split in this form. To show that Eqs. (3.3) and (3.4) are indeed 
Hamiltonian, and not merely expressions involving vari
ational derivatives of H = Hn + I' we identify them with rel
evant objects on dual spaces of appropriate Lie algebras. 

IV. LIE ALGEBRAS g>o AND 9 <0 

Let Kbe a k-algebra with an automorphism..:1 over k, let 
K, denote Mat,(K), and let g;.o and g < 0 be the Lie algebras 
generated by the associative algebras K,[[5]] and 5-1 

xK,[[5 -I]], respectively, with relations s'g =..:1 s(g)s', 
geK, . LetB + andB - be the matrices of the (formal) Kirillov 
form on the dual spaces of the Lie algebras g;.o and g <0' 
respectively (see Refs. 2, 4, and 6). Let us compute B + 

= (B ,;oplk,pv)' If X = 1: X.ss, Y = 1: YkSkeg;.O' then, 
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by definition, 1: X • .ptTB "~Ik,pv Y k...,. -1: Qs,pv (Res [X, Y J 
Xs -,..,. , where Q.,pv are dual coordinates on ~o. Thus 

B ,~plk,pv = Qk + .,pp..:1 '/j~ -..:1 - kQk + s,uvlY;. . (4.1) 

Since (3.3) can be rewritten as 

ap(Qs,up) = 2:B '~Plk,pV( /j~:v) , (4.2) 

we obtain the following. 
Proposition 4.1: The Q part (3.3) of the generalized Toda 

lattices is associated with the dual space of the Lie algebra 

g;.o· 
Remark 4.2: In the casef3 = 1 of the non-Abelian Toda 

lattice proper, there are no R variables involved. 
The same calculation can be used for g<o' Let 

X = 1: Xss -.-1, Y = 1: Yks -k-Ieg <0' and let Rs,pv be 
the dual coordinates on ~ o. Then 

so 

B - A l+kR /jU R ..:1 -.-I/jI? s.pulk,pv = ~ s+k+ l.pv p - s+k+ l,pu v' 

Let us consider the following bilinear form on g < 0 : 

w(X,Y)=TrRes[X(I-..:1P)(y)sP] . 

It is easy to check that w(X, Y) - - w( y,x) and 

(w([X,YJ,z) + w([Z,xJ,Y) + w([y,z J,x)} -0, 

'dX,Y,Zeg<o· 

(4.3) 

(4.4) 

In other words, w is a (generalized) two-cocycle on g <0 (see, 
e.g., Chap. VIII in Ref. 2). The matrix of the corresponding 
operator b:g <0 - ~o is defined by 

W(X,Y)-X.,upb • .puIk,pvYk,vp, 

hence 

b - =/js+k/jl?/jU(..:1 -.-I_..:1 I + k ) (4.5) • .pulk,pv P-2 v p • 

Letlp be the ideal ing <0 consisting of elements 1: X.S -.-1 

with X. = 0 for s>f3 - 2. Since w(Ipg <0)-0 we have a 
well-defined two-cocycle on the factor algebra gp 
: = g <olIp . Formulas (4.3) and (4.5) will remain unchanged 
with the exception that the variables Rs+ k + I in (4.3) must 
be dropped for s + k + 1 > f3 - 2. With this understanding 
the evolution equations on a, with the Hamiltonian ma
trix - (B - + b ), become 

ap(R • .pu) = - (B '~Ik,pv + b • .pulk,pv) /j!H , 
k,pv 

which is exactly (3.4). The result of this reasoning we collect 
in the following. 

Theorem 4.1: The Hamiltonian form of the generalized 
T oda lattice equations (3.3) and (3.4) is generated by the Pois
son structure on the dual to the Lie algebrag <0 egp togeth
er with the two-cocycle wp on gp. 

Remark 4.3: If the highest term 5 PI of Lin (1.4) is taken 
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to be sPc, C = diag (cto ... cr ), the corresponding form (l) ceases 
to be a two-cocycle when c is not a scalar matrix. 
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A formulation of Noether's theorem is given for Fokker-type variational principles describing 
directly interacting particles. Many-body as well as two-body interactions depending at most on 
the particle positions and velocities are considered. Invariance up to a divergence of the action 
integral under infinitesimal transformations, as usual, leads to divergences that equal linear 
combinations of the Lagrangian derivatives. Conservation laws can be obtained when the 
Lagrangian derivatives vanish. The use of the formulation, which is independent of any specific 
tr~sf0m:'ations, is illustrated by rederiving the form of the conserved quantities following from 
the lDvanance of general two-body Fokker-type variational principles under the infinitesimal 
transformations of the Lorentz group and of the Galilei group; such conservation laws were 
p~evious~y derived using a m~thod that, although exploiting the symmetries of the action integral, 
did not directly connect the divergence of the conserved quantities with linear combinations of the 
Lagrangian derivatives. Other applications and extensions are discussed. 

I. INTRODUCTION 

Noether's theorem 1 is well known in connection with 
the generation of conserved quantities that result from the 
invariance of variational principles under infinitesimal 
transformations. Detailed formulations exist for field theor
ies, 1-3 where the action is an integral over a volume element, 
and for Newtonian action-at-a-distance theories,2-5 where 
the action is an integral over a universal time parameter. 
Lacking in the literature, however, is a formulation for the
ories of directly interacting particles whose equations of mo
tion can be derived from variational principles of the type 
first introduced by Fokker6 in electrodyamics and general
ized by Havas4 to include general two-body Galilei- and Lor
entz-invariant interactions. In such principles the action in
volves a sum of multiple integrals over timelike parameters, 
with the number of parameters equaling the number of parti
cles involved in the interaction. The distinguishing feature of 
this type of variational principle is that the resulting equa
tions of motion are integrodifferential equations involving 
many parameters, rather than ordinary or partial differen
tial equations. No general methods exist for solving such 
equations exactly and their initial value problem is not yet 
understood. 

Noether's theorem is not a statement about conserva
tion laws per se, but rather a statement about the existence of 
linear combinations of Lagrangian derivatives that are di
vergences; conservation laws are obtained when the equa
tions of motion are satisfied, i.e., when these Lagrangian de
rivatives vanish. It should be noted, however, that Noether's 
theorem does not determine the total number of divergence
free (conserved) quantities following from invariance under a 
group of infinitesimal transformations. It only determines 
the number of quantities that become divergence-free by vir
tue of the vanishing of the Lagrangian derivatives. 5 

Although an explicit formulation of Noether's theorem 
for Fokker-type variational principles is lacking, conserva
tion laws have been derived from invariance properties of 
such principles under specific transformations. In the case of 

electrodynamics, Dettman and Schild7 have derived the ten 
conservation laws following from the invariance of the ac
tion under the infinitesimal transformations of the ten-pa
rameter Lorentz group. Included in their conservation laws 
was the conservation of energy-momentum, obtained earlier 
without the aid of symmetry invariance arguments.6,8 Fol
lowing closely the method of Dettman and Schild, Havas4 

obtained the conservation laws that follow from the invar
iance of Fokker-type action principles under the infinitesi
mal transformations of the Lorentz and Galilei groups; the 
interactions considered were general two-body interactions 
depending at most on the four-dimensional positions and 
velocities of the particles. 

It is the purpose of this paper to give, independently of 
any specific transformations, a formulation of Noether's 
theorem for Fokker-type variational principles that depend 
at most on positions and velocities. A formulation for two
body interactions is given in Sec. II and generalized to in
clude n-body interactions in Sec. III. The formulation is used 
to rederive the conserved quantities associated with the Lor
entz and Galilei groups in Sec. IV. This formulation, how
ever, is applicable to all groups, such as the conformal group 
and conformal extensions of the Galilei group. (These 
groups are being studied by P. Havas and J. Plebanski with 
the results to be published shortly.) Section V contains a 
discussion of the results. 

II. TWO-BODY INTERACTIONS 

Fokker-type variational principles describing a system 
of N particles with two-body interactions have the form 

of = 0, f =f K + f(2), (la) 

fK=:f.J:codT;A;, (lb) 

,f<2)= L L J: co J: co dT; d1j AIj , (lc) 
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where AI depends on the ith particle's coordinates, 

zf(TI)==(z? ,z: ,z; .r;) 
= (tl(TI ), xl(TI)'YI(TI ), zl(TI)), (2) 

and their derivatives with respect to an arbitrary parameter 
TI , 

dzf 
uP=-- (3) 
1- dT. ' , 

while AI} depends on the variables of both particle i and 
particlej; in particular, 

AI = AI(zt,ut), 
(4) 

AI} = AI} (zt,ut ,zj,uf). 

The equations of motion, which follow from performing the 

variation zf - zf + 8zf , with 8zf - 0 as TI - ± 00, are 

Lip =2' Ip (AI - VI2}) = 0, (5) 

where the Lagrangian operator 2' Ip is defined by 

a d a 
2' =-----

Ip - azt dTI aut' 
(6) 

and V\2} is the generalized two-body potential 

(7) 

It is well known that the Lagrangian operator .:t' jp iden
tically annihilates any function that is a total T j derivative. 
Thus, if 

_ dC!.I} dC(2} 
A. = A. + -'-, V!.2) = VI.2) + -'-' (8) 

, 'dTj , , dTj ' 

where C\I} and C\2} are arbitrary functions of zf, then 
AI - V\2} and Aj - V\2} both yield the same equations of 
motion (5). Since integrating V\2} in Eq. (7) from T j = - 00 

to TI = + 00 and summing over all i yields - 2f<2), Eq. (1) 
can be written as 

(9) 

Writing f also in this form, subtracting Eq. (9), and making 
use ofEq. (8), we obtain 

- fco dC(1} 1 fco dC\2} 
f - f = L dTj -'- - - L dTj dT,. 

j -co dTj 2 I -co 

rCO } 

= dC, (-co) (10) 

where 

C(TI,T2, ... ,TN )=L CII) (TI ) -! L C12
) (T;), (11) 

i i 

and the parentheses around a limit indicates a complete set 
of T's, viz. (T1,T2, ... ,T N)' Thus, f and f differ by the inte
gral of a total differential. More generally, any two action 
integrals that differ by the integral of a total differential yield 
the same equations of motion. 

We now consider ap-parameter group Gp ofinfinitesi-
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mal transformations 

r: =zf + AZt, Tj = TI + AT, , (12) 

where AZt and ATI are functions ofzf ,tit, and Tj , depend
ing linearly on the infinitesimal parameters of Gp • Since we 
are concerned with the effect of these transformations on the 
functional form of the action integral, we will consider the 
inexact differential 

if==LdTj(A, _! V\2}). (13) 
I 

Equation (9) can be obtained from (13) by performing the 
integration 

L
T •• ) 

if, 
(T·) 

(14) 

followed by letting Tr - - 00, Tr* - + 00, i = 1, 2, 
... ,N. 

For infinitesimal transformations that leave if func
tionally invariant up to a total T differential, we have 

(15) 

where C depends linearly on the parameters of Gp • Func
tional invariance, as usual, means that the A's are the same 
functions of the zP 's and uP's as the A's are of the zI" 's and 
uP's. The equations of motion in the new coordinates will 
then have the same form as in the old coordinates. 

It will be convenient to introduce the variations 

8zt=='Zt(T;) - zt(Tj) = Azt - uf ATj , (16) 

dulf 
8uf=uf(Tj ) - uf(TI) = Auf - --' ATj , (17) 

dTj 

where 

Auf=uf(T;) - uf(Tj ) (18) 

dAzt dATj 
=---u~--

dT. 'dT.' , , 
Unlike the AZt and Auf, the variations possess the useful 
property 

8u~ = d8zt . 
, dT

j 

(19) 

In the above notation, Noether's theorem for Fokker
type variational principles states the following: "If if is 
invariant under the infinitesimal transformations of Gp up to 
a divergence, there exist precisely p linearly independent 
combinations of the Lagrangian derivatives Lip that are di
vergences. Conversely, if p such combinations are diver
gences, there exists a set of p linearly independent infinitesi
mal transformations that leave if invariant up to a 
divergence; these transformations generate a Gp provided 
the 8zf depend at most linearly on the uf ."9 Here divergence 
means total T differential. 

To obtain the form of these divergences, we begin by 
writing AiJ in terms of the variations (16) and (17). We 
obtain 
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when use is made of the definitions (13) and (7). By making 
the substitution 

1 d d 1 d 
(21) 

2 dT/ dTj 2 dTj 

in the double sum, interchanging indices, and rearranging 
terms, Eq. (20) can be written in the form 

f:Jf = 6if + d [ ~ (Aj - V\2))aTj] 

+ ~ ~:: (dTj f: 00 d1j - d1j f: 00 dT/) 

X [~(Alja1j) - ~ (A/jaT/)] . 
d1j dTj 

The operator identity 

d1j f: 00 dT/ - dT/ f: 00 d1j 

= d [(L~ f~ 00 - f~' 00 f~OO) dTjd1j ] 

can be used to further simplify this to 

f:Jf = 6if + dF, 

F = L (Aj - V\2)) aTj 

/ 

1 ( roo f~ fT, rOO) 
+ "2 ~ ~ JT, _ 00 - _ 00 J~ dT

j 
d1j 

'<J 

(22) 

(23) 

(24a) 

X [~(AijaT/) - ~ (A jja1j)] . (24b) 
dTj d1j 

To evaluate 6if it is useful to define the single particle 
variation 

a a 
6·=6# - + 6ulf- - . (25) 
, 'aZ/ 'auf 

Then 

6if = LdTj (6j A/) 
j 

The substitution 

(27) 

followed by an interchange of indices and rearrangement of 
terms, yields 
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6if = LdTj6j(Aj - V\2)) 
/ 

+ ~ L L (dTj f: 00 d1j - d1j f: 00 d1j) 
I<j 

X(6j - 6j )Aij . (28) 

This in turn can be reduced to the form 

6if = L dTj 6Z/ Lip. + dA, (29a) 
j 

1 ( roo f~ fT, rOO) 
+ "2 L L JT, _ 00 - _ 00 J~ 

I<j 

xdTjd1j(6 j - 6j )Ajj , (29b) 

by use of the operator identity (23) and the relation 

6j = 6Z/ !L'ip. + ~ (6Z/~) , (30) 
dT/ auf 

which follows from Eqs. (6) and (25). 
Thus, Eqs. (24) and (29) combined with (15) result in the 

identity 

L dTj 6Z/ Lip. = dB, 
j 

(31) 
B=C-F-A 

= C - ~ (A. - V(2)) aT. - ~ 6# ~ (A. - V(2)) 
~ I , '~lap. I I 

, ,U; 

1 ( roo f~ fT, rOO) 
- "2 L ~ JT, _ 00 - _ 00 J~ dTj dT j 

'<J 

X [(6 j - 6j )Aij + d~j (AjjaTj) - d~ (Aija1j)] , 

which establishes Noether's first theorem. The converse fol
lows by the arguments given in Refs. 1 and 2. When the 
equations of motion Lip. = 0 are satisfied, the vanishing of 
the total T differential of B gives rise to p conserved quanti
ties, since B depends linearly on the p independent param
eters of the infinitesimal transformation. 

III. n-BODY INTERACTIONS 

The derivation of the form of the "divergences" follow
ing from the application of Noether's theorem to Fokker
type principles with many-body interactions parallels the 
case of two-body interactions dealt with in Sec. II, except 
that the total differentials involved are considerably more 
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complicated. In the development that follows, the two-body 
terms will not be explicitly written since they are the same as 
those given in Sec. II, while three-body terms will be written 
out completely to help clarify the notation for the general n
body term. 

Jiq)==L L ... L J: 00 J: 00 ••• J: 00 dTld1j ... dT, 
i<i< '" <I 

xAij ... /(zf ,zt,··· ,zr,uf,u'j,· .. ,ur); (32b) 

The n-body variational principle has the form 
note that the Ai} ... 1 in f(q) has q indices. The resulting 
equations of motion have the form 

" 
J.P Ip (AI - VI) Lip = 0, (33) 

8f = 0, f ==f K + f l , f l = L f(q), (32a) 
q=2 

where fK is given by Eq. (Ib), Ji21 by Eq. (Ic), and the 
general term Jiq) by 

where the generalized potential is now 

" Yt= L V\q), 
q=2 

with V\2) given by Eq. (7), and 

V\"):=; - L L'" L J: 00 J: 00 ••• J: 00 d1j dTk ... dT, A1ijk ... /) . 
Ii k ... I) 

(34) 

(35) 

The parentheses around the indices indicates a sum of q such terms consisting of the even permutations ofijk ... I. The sum in 
each term is over all indices except i and is subject to the restriction that a given index must be larger than any to the left of that 
index and smaller than any index to its right; this is because, for example, A1369 completely describes the four-body contribu
tion to the interaction between particles 1, 3, 6, and 9 and therefore a kernel such as A3196 is not needed, does not appear in Ji4), 
and is undefined. 

The imperfect differential that gives f when integrated from ( - co) to ( co ) is 

If = L dTi(AI - .± 1. V\q)). (36) 
i q=2 q 

When this is subjected to the infinitesimal transformations (12), there results 

~f = 81f + d [ ~(Ai - Vi )aTi ] + two-body terms 

+ (d1j foo dTk - dTk foo d1j) foo dTi [....!!.....- (AijkaTk) -....!!.....- (Aiik a1j)]} 
- 00 - 00 - 00 dTk d1j 

+ ... + n-body terms, (37) 

where, for the three-body terms, the identity 

1 d dId 1 d ---=----------
3 dTi dTi 3 dTi 3 dTi 

(38) 

has been used to split off terms making up d (1: V\3)aTI), indices have been interchanged and the terms with common 
i 

integrands grouped together; similar operations were performed on the other many-body terms. Using the operator identity 
(23) then gives 

~f = 81.F + dF, (39a) 

F = ~ (AI - Vi )aTI + two-body terms 
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(39b) 

The curly brackets with the subscript c in an n-body term mean that the quantity enclosed is a sum of n parameters, each of 
which is an even cyclic permutation of the indicated operator; note that the T derivatives act on the product of Aij k . .. / and the 
appropriate I1T. 

To evaluate Uf, the identity 

1 1 
-8=8; +-(8) -8; +8k -8; + .. , +8/ -8;), 
n n 

(40) 

which is valid when 8 acts on an n-particle function, is used to split off terms contributing to v\n) . An interchange of indices 
followed by a regrouping of terms yields 

8if = L dT;8;(A; - V;) + two-body terms 
; 

+ (d1j f: 00 dTk - dTk f: 00 d1j) f: 00 dT;(8k - 8j )A;j k 

+ (dTk f: 00 dT; - dT; f: 00 dTk) f: 00 d1j(8; - 8k)A;jk} 

+ .. , + ! L L L ... L {( dT; f: 00 d1j - d1j f: 00 dT;) f: 00 dTk ... f: 00 dT,(8j - 8;)} c A;} k· .. / . 
;<j<k<.·· </ 

Use of the operator identity (23) then gives 

8if = L dT;8z!, L;p. + dA, 
; 

a 
A = L 8z!, - (A; - V;) + two-body terms 

; auf 

Thus, if if is invariant up to a total differential dC under 
the infinitesimal transformation (12), Eqs. (39) and (42) give 

L dTI 87!t Lip = dB, B:aC - A-F. (43) 
I 

As in the two-body case, conservation laws result when the 
equations of motion Lip = 0 are satisfied. 
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(41) 

(42a) 

(42b) 

I 
IV. GALl LEI- AND LORENTZ-INVARIANT VARIATIONAL 
PRINCIPLES 

The conservation laws resulting from the invariance of 
Fokker-type variational principles under the infinitesimal 
transformations of both the Galilei and Lorentz groups have 
been obtained by Havas,4 who used the method of Dettman 
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and Schild7 for each subgroup (translations, rotations, 
boosts) separately. Here we obtain the same conserved quan
tities using the explicit formulation of Noether's theorem 
developed in Sec. II for two-body interactions. In this sec
tion, equation numbers with a sUbscript L or G identify 
equations that apply only to the Lorentz case or only to the 
Galilei case, respectively; equations numbered with no sub
script apply to both cases. 

In the Lorentz case, we choose the nonsingular metric 
tensor 7J p.v and its inverse ~v to be 

7Jp.v=diag (1, - 1/e2
, - 1/~, - 1/e2

), (44d 

~v=diag (1, - e2, - e2, _ e2), 

which satisfy 

7JI'P 7J Pv = 8; . (46d 

In the Galilei case, the metric tensor is singular10 and, fol
lowing Ref. 4, can be chosen as 

gp.v=diag (1,0,0,0). 

In addition, it is useful to define another tensor 

hI''' diag (0, - 1, - 1, - 1). 

(440) 

(450 ) 

(54) 

In the Galilei case, however, tDlp does not transform like a 
covariant vector under Galilei velocity boosts and if; cannot 
be obtained from tDlp by raising indices with hp.v. 

The variational principles for the Lorentz and Galilei 
cases can both be written in the parameter-invariant form 

8..F = 0, ..F ==.F K + ..F(2), 

..F
K

= - Lfoo dT; m;,o;puf , 
i-co U j 

..F(2)= - L L f: 00 f: 00 dT; dTj 
;<j 

where m; is the mass of particle i, 

u;=(Gp.v uf U;)I/2, 

(55a) 

(55b) 

(55c) 

(56) 

The tensorsgp.v and hp.v correspond to the limits as e - 00 of and 
7J p.v and ~v /c2 and satisfy 

gl'phPV = 0. 

Introducing the notation 

GI'V = 7Jp.v' 

Gp.v =gl'v , 

the proper time 1"; of the ith particle is defined by 

d1";=(Gp.v dzf dZ;)I/2, 

(460 ) 

(47d 
(470) 

(48) 

for both cases. Note that in the Galilei case, the proper time 
1"; equals the coordinate time i/ up to an additive constant. If 
the proper time is chosen to parametrize the particles' world
lines (i.e., T; - 1";), then it follows from Eq. (48) that 

Gp.v if; if; = 1, GI'V if; ar = 0, 

where 

dz" 
vf=-' , 

d1"; 

dvf 
af= . 

d1"; 

(49) 

(50) 

Unlike the Lorentz case, in the Galilei case it is not pos
sible to lower and raise indices reversibly with gp.v and hl'v. 
Clearly since 

gp.vav = 0, (510) 

it is not possible to regain aCT by raising with hp.u. On the 
other hand, one can introduce a covariant vector 

alp=(a; • V;, - a;), (520) 

which has the property that contraction with hp.v yields ar ; 
here V; and a; are the ordinary three-velocity and three-ac
celeration, respectively. If we also define 

tDlp =7Jp.v v7 = vip , 

tDlp=H vf, - VI)' 

then for both cases, 
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(53d 

(530 ) 

u; = (u: ,U: ,utI . 

(57d 

(570) 

The equations of motion are obtained by performing the 
variation with arbitrary parametrization T;; proper time 
parametrization (T/ - 1"; ) can be chosen after the variation 
is completed. 12 

Comparison of Eqs. (1) and (55) yields the indentifica
tions 

A; = - m;b;p uflu;, Ai] = - u;uj Uij . (58) 

Note that in the Galilei case, U; = u?, and using Eq. (570 ), 

1 u: 
A.=+-m.-

I 2' 0' u; 
(590 ) 

which isjust the Newtonian kinetic energy when T; - 1"; (in 
which case u?_l). From Eqs. (590 ) and (570 ), it follows 
that 

(600 ) 

holds for the Galilei case just as for the Lorentz case. 
To simplify the subsequent calculations, we will make 

use of the following relations, valid for an arbitrary param
eter-invariant functionJlzf, uf Iu;, ... ): 

aj _ aj [8{: Gp.uufuf] 
auf - a(uflu;) -;;; - (U;)3 • 

(61a) 

uf aj = 0, uf a (uJ) = uJ. 
auf auf 

(61b) 

With the aid of these relations and the definitions (16) and 
(17) of 8zf and 8uf , it can then be shown that 
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B.(u I) = l17ff a (ud) + d(Azf) a(ud) 
I / I az: dT/ auif' 

I I 

(62) 

This expression together with Eqs. (61) and the identifica
tions (58) tum Eq. (31) into 

L dI: &'t L;,. = dB, 
; 

(63) 

+G ~ V(2)_ U; ; p ( u aV(2) )] 
,..p u/ I U; a (uflu;) 

+ 1. L L ( roc f1j - fTI rOC) dT; d1j 
2 . JT, - oc - ocJ1j 

I<J 

+ G Uf (U"j _ uf aU;j )] 
,..p UI I U; a (uflu;) 

dllzf [ aU;j 
- U; d1j a (uflu

j
) 

+ G,..p uf (u;) _ u'J a~;j )]}, 
Uj u) a (u)lu)) 

where, in parameter-invariant form, the potential V~2) de
fined in Eq. (7) goes over into u/ V~2) , so that 

V~2) = l:. foc d1j u) Uij + L. foc d1j uj ~; • (64) 
}>. -00 j<I -00 

We can now obtain the conservation laws following 
from invariance (or invariance up to a divergence) under the 
Lorentz and Galilei groups. We here assume that the inter
action U;) is invariant under the respective groups; U;) can 
be made manifestly invariant by assuming dependence on 
the independent two-body invariants given in Ref. 4. 

Invarlance of the action (55) under the infinitesimal 
space-time translations 

Azf = e' (65) 

leads to a law of conservation of energy-momentum 

dP,..("Tl,"T2, ... ,"TN ) = 0, 

( 
aV(2))] + G vi?" V(2) - vp --

I
-

I'U I / / au p 
I 

(66) 

(i
OC [J [' i'"') au.) + L L - d"T; d"T) _' , 

;<) "1", - oc - '"' "l"J aslt) 
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where 

sit) ==Zt - z'f ' (67) 

we have putB = PI' e' , and proper-time parametrization has 
been chosen. 

The infinitesimal spatial rotations and velocity boosts 
for both groups can be expressed in the form 

where the El'v are arbitrary constants, and 

H,..V=rfV, 

HI''' h"'v. 

(68) 

(69d 

(690 ) 

In the Lorentz case, both f K and, by assumption, Ji2) are 
invariant under the infinitesimal transformations (68). In the 
Galilei case, however, f K is not invariant since D;p is not a 
covariant vector. Instead, we have 

(70) 

In order to treat both cases at once, it is helpful to put C in the 
four-dimensional form 

(71) 

which vanishes in the Lorentz case, and reduces to the form 
(70) in the Galilei case. 

UsingEqs. (71) and (68) in (63), withL;,. = 0, we obtain 

dB=O, 

B = L m; [E,..v rIt zr - E,..vH,..PW;pzn 
; 

[ 
aV(2) 

+ LH,..PEpu zf m;w;,. + __ '-
; aut 

(72) 

( 
aV(2))] v (2) I + G v· VI -11--

,..V , I all 
I 

H ,..p u[G . ...t(u v
au/)) au;)]} - EpuV) ,..;.u) ;) -Vj -- +-- . 
av/ auf 

In the Galilei case /FP G,..;. = 0, whereas in the Lorentz case 
/FPEpuv'JG,..;.uf = Epuvf v'J = 0, by antisymmetry of Epu. 
Then defining B = Ll'v E,..vl2, and simplifying, Eq. (72) re
duces to the law of conservation of angular momentum and 
the center-of-mass theorem 
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(73) 

[
au. au· x HJ..P(z':+z':)-'-' _HJ..V(zP+zP)_'_' 

, J a.J.. I ~ a.J.. 
'Sij 'Sij 

v. DISCUSSION 

In Sec. II a formulation of Noether's theorem was ob
tained for Fokker-type variational principles depending at 
most on the positions and velocities of particles interacting 
via direct two-body interactions; the generalization to n
body interactions was presented in Sec. III. Equation (31) 
gives the form of the divergence (here a total T differential) 
that equals a linear combination of Lagrangian derivatives 
for the two-body case, and Eq. (43) gives the corresponding 
result for the n-body case. As usual, conservation laws can be 
obtained from these equations when the Lagrangian deriva
tives vanish. The formulation is independent of any specific 
transformations. In the past,4,7 conservation laws for 
Fokker-type variational principles were derived from the in
variance properties of the action integral by choosing specif
ic transformations and applying the method of Dettman and 
Schild.7 This method requires a lengthy calculation for each 
transformation and does not in any obvious way indicate the 
connection of the "divergence" of the resulting conserved 
quantities to a linear combination of the Lagrangian deriva
tives-a connection which lies at the heart of Noether's 
theorem. 

To illustrate the use of the formulation given here, the 
form of the conserved quantities following from the invar
iance of two-body Fokker-type variational principles under 
the infinitesimal transformations of the Lorentz group and 
ofthe Galilei group were obtained in Sec. IV. These conser
vation laws are in agreement with those obtained earlier by 
Havas,4 who used the method of Dettman and Schild but did 
not present the details of the calculations due to their lengthy 
nature. While in the Lorentz case no direct connection 
between the conservation laws and Noether's theorem has 
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heretofore been demonstrated, it is worth mentioning that 
the approximately relativistic conserved quantities obtained 
by expanding these exact quantities in powers of 1/ e to order 
1/ e2 have been shown to be obtainable by applying Noether's 
theorem (formulated for a single independent time param
eter) to the approximately relativistic Lagrangians derived 
from the exact variational principles by a similar expansion 
in powers of 1/e to the same order. 14 

As mentioned earlier, the formulation is not restricted 
to any particular group and can be used, for example, for the 
conformal group and conformal extensions IS of the Galilei 
group, which are currently under investigation by P. Havas 
and J. Plebanski. The formulation of No ether's theorem giv
en here can be extended to include additional dependent var
iables, such as the classical analog of spin; the result of such 
an extension has already been used for the classical analog of 
isospin. 16 The formulation can also readily be generalized to 
include derivatives of arbitrary order. 
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Three characterizations of all self-adjoint extensions of the Laplacian in one, two, and three 
dimensions are discussed. 

I. INTRODUCTION 

Starting from the self-adjoint (sa) d-dimensional Lapla-
cian 

d a2 -.:1 = - L -, d= 1,2,3, 
j=t~ 

(1.1) 

defined on the dense domain 

D = {t/JeK\;:; absolutely continuous, .:1t/JeK} (1.2) 

in K = L 2(Rd ,dd y), we shall restrict -.:1 to the set offunc
tions vanishing at n different xjERd,j = 1, ... ,n, and obtain 
a closed symmetric operator H, which is given in a momen
tum representation by H = p2 defined on the domain 

D (H) = {f/!eL 2(lRd ,d dp ) I f d dp 1 p2tP(p) 12 < 00, 

f ddp tP(p)eipxJ = 0, j = 1, ... ,n} (1.3) 

and related to the Laplacian -.:1 via Fourier transforma
tion. 

From the general theory of operator extensions it is well 
known that H with deficiency indices (n,n) admits an n2

_ 

parameter family of sa extensions. A particular n-parameter 
subfamily of extensions corresponding to local8-like point 
interactions is discussed in the literature t- tt 

In this paper we investigate to which situation the other 
extensions correspond. In Sec. II all extensions of H for d 
= 1,2,3 are given, following the general mathematical the

oryt2.t3. In Sec. III it is shown that these extensions can be 
obtained as the norm resolvent limit of separable potentials. 
In the one-dimensional case the connection to nonlocal 8-
like interactions, which can be defined by special boundary 
conditions [see Eq. (3.12)] is indicated. Finally in Sec. IV a 
third characterization following Ref. 1 is given. It is shown 
that scaled separable potentials converge in the norm resol
vent sense. Like in the case of local potentials one has to 
distinguish between the cases where there are zero energy 
resonance states present or where there are not. 

II. EXTENSIONS OF SYMMETRIC OPERATORS 

Here we give a short account of theory of sa extensions 
of a closed symmetric operator and apply the abstract con
struction to the operator H. In the general theory one makes 

.) On leave of absence from the Institute of Theoretical Physics, Wroclaw 
University, Wroclaw, Poland. 

use of the Cayley transform, which provides a correspon
dence between symmetric and isometric operators. 

Let A be a closed symmetric operator and z a nonreal 
number. The Cayley transform V of A is then defined on 
D (V) = Ran (A - Z) by 

Vf= -(A -z)(A -Z)-tf, V feD (V), (2.1) 

and is isometric. TheA can be recovered from Vby 

Ah = (z +zV)(1 + V)-th, VheD(A). (2.2) 

The deficiency indices (m,n) of A are given by 

m = dim Nz" n = dim Nz" NZI = Ran(A _Zj)l, 

(2.3) 

where 1m z t < 0 and 1m Z2 > 0; these for V are similarly de
fined with Iz t 1 < 1 and IZ21 > 1. The deficiency indices do not 
depend on the chosen point in the appropriate half-planes 
and are identical for A and V. 

If V is an isometric extension of V then V maps a sub
space of D (V)l = HeD (V) of the Hilbert space K onto a 
subspaceof(Ran V)l = JY9Ran(V) of the same dimension. 
The V is maximal (Le., has no proper extensions) iff 
Min(m,n) = 0, unitary iff m = n = 0, and can be extended to 
a unitary operator V iff m = n; then V = Ve U with U: 
D (V)l -+ Ran( V)l . The inverse Cayley transform (2.2) gives 
then all extensions A of A. 

It follows that all sa extensions are parametrized by a 
family of unitary operators U. The domain of an sa extension 
A U of A consists of vectors f 
f = /0 + gz + Ugz, /oeD (A), gzeNz, 1m z> 0, (2.4) 

where U is a unitary mapping U: Nz -+ Nz ; the action of AU 
is given by 

A uf=Afo+zgz +zUgz' (2.5) 

Let R !' and R :' be the resolvents of two sa extensions AU 
and A W of A. Denote by lI:,k = 1, ... ,n a basis of Nz. The 
difference of the two resolvents satisfies Krein'sformula 

n 

R!, = R:' + L II:Mk/(Z)(iz,·), 
k.l= t 

where the matrix function m obeys 

M (z) - M (zo) = (z - zo)M (z)S (z,zo)M (zo) 

and the matrix function S (Z,zo) has elements 

(2.6) 

(2.7) 

(2.8) 

The vectors II: can be determined as regular analytic 
function of z with the help of the one-to-one mapping 
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~ = {1 + (z - zo)R !"1S'!., (2.9) 

where the S'!. are fixed vectors. 
Next we apply the above construction to the densely 

defined, symmetric, and closed operator H given by Eq. (1.3). 
The deficiency subspace N _ i is spanned by n linearly inde
pendent functions. 

1 e-lpxl 
it(p) = (2 )d/2 -2-" (2.10) 

1T P-I 

Next we use the Fourier transform of - 1:1 (call it Ho) as 
an extension of H. Here Ho plays the role of A W in the gen
eral construction. The analog of R !" is now the resolvent 

Rz(p) = l/(p2 -z), (2.11) 

and according to (2.9) we set 

1 e-lpxl 
iz(p) = (2 )d/2 -2 -. (2.12) 

1T p-z 

Note that izEL 2(Rd,ddp) for d>4; this indicates that H is 
already self-adjoint; therefore 15-like interactions cannot be 
defined in this way.ll 

The domain of the extension H U is now given by 
n 

D(HU)=D(H)+ Lallit + Ui), aleC, 1= 1, ... ,n, 
1=1 

(2.13) 
where the unitary operator U; N _ I --NI can be written as 

n 

Uit = L Ulm~I' (2.14) 
m=1 

The n X n matrix Ulm satisfies 

U·S( - i, -11U T = S(i,i) =S( - i, -11, (2.15) 

where S (i,11 is a special case of the matrix function (2.8) 

f 
d d Ip(xi - Xm) 

Sim (Z,zo) = (2~d (p2 ~ Z)(p2 _ zo) . (2.16) 

H U acts on f/!eD (HU) like 

(H ulfo)(p) = (p2lfo)(p) 

+ It I a{iit(p) - i mt I Ulm~ I (P))' 

f/!eD (H), (2.17) 

therefore Ulm = -151m = ;(Uohm corresponds to the exten
sionHo· 

In order to use Krein's formula we have to determine 
M (z) entering into (2.6). Since the resolvents of H U and Ho 
are known for z = - i we get 

where V denotes the Cayley transform of H. Thus 

M( -11 = (l/211(UT + 1)S -I(i,i), (2.19) 

andfordet(ur + 1):;i:0 we find from (2.7) 

M -I(Z) = 2iS (i,i)( U T + 1) -I - (z + i)S (Z, - i). (2.20) 

This is a special case of Ref. 12, p. 372, Eq. (12), and holds for 
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zEp(HUlnp(Ho), where pIA ) denotes the resolvent set of an 
operator A. Equations (2.6) and (2.20) imply that the spec
trum of H U is given by the absolutely continuous spectrum 
of Ho and the pure point spectrum is determined by 

l7p(HU) = {zeC!detM-I(z) = OJ. (2.21) 

III. FIRST LIMITING PROCEDURE 

Here we define a family of operators H N and show that 
the sa extensions constructed in Sec. II are obtained as norm 
resolvent limits from H N for N -- 00. We start by defining 

n 

(HNlfo)(p) = (Holfo)(p) + L A ~Ef(p)(E~lfo), 
l.m=1 

(3.1) 

where 

E N( ) _ {er(p), for Ipl<N, E ( ) _ elp'xl 
rP- IP---, 

0, for Ipi >N, (21T)d 
(3.2) 

and (E ~ ,lfo) denotes the scalar product in K. AN is a Her
mitian matrix, which we shall relate to the unitary matrix U 
of (2.17) later on. 

Since the potential in (3.1) is bounded (for N finite) we 
can write down explicitly the resolvent R ~ = (H N - z) - I in 
terms of R z = (Ho - Z)-I; 

n 

R~=Rz+Rz L EfM~(z)(RzE~,.), (3.3) 
l.m=1 

(3.4) 
G~(z) = (Ef,RzE~). 

Since 

lim IIRzlE f - Eilil = 0, 
N-oo 

(3.5) 

we conclude that (3.3) converges in norm to R:' ofEq. (2.6) 
iff 

lim M ~ (z) = M lm (z), (3.6) 
N_ 00 

with M (z) given by (2.24). Next we have to choose the matri
ces ANand discuss separately the cases of one, two, and 
three dimensions. 

d = 1: ON (z) from Eq. (3.4) converges as N __ 00 to G (z), _ f dp elp(x,- Xm) 

Glm(z)- - 2 • 
21T P -z 

(3.7) 

Note that (2.24) can be rewritten in terms of G (z) as 

M -I(z) = [G(n - G( -111(U T + 1)-1 - G(Z) + G( - i). 
(3.8) 

If we therefore choose A to be independent of Nand 
equal to 

-A -1= _(AN)-I 

= (G(i) - G( - i))(UT + 1)-1 + G( -11, (3.9a) 

(3.9b) 

we obtain the relationship between the Hermitian matrix A 
and the unitary matrix U. Equation (3.6) is trivially fulfilled, 
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Hermiticity of A easily follows from (2.15). 
There is an interesting interpretation in terms of bound

ary conditions for functions/ED (HU
). Denote the difference 

between the right and left derivative of a function t/J by 0 '( t/J), 

o '(t/J)(x) = lim [t/J'(x + E) - t/J'(x - E)], 
EIO 

and observe that we have 

o '(g:)(xk ) = - 0lk, 

(3.10) 

(3.11) 

where g: denotes the inverse Fourier transform of g:. Calcu
lating 0' for an element of t/JED (HU) and using (3.11) shows 
that the domain of the sa extension may be characterized by 
the non local condition 

n 

o '(t/J)(x /) = L Aim t/J(xm ), (3.12) 
m=1 

where A represents coupling constants in front of nonlocal 0-
function potentials. 

d =2 and 3: Here we may choose AN of Eq. (3.4) as 

(A N)-I = 2iS(i,i)(UT + 1)-1 + G N ( - i), (3.13) 

with GN 
( - i) being defined by (3.4). Note that the diagonal 

elements of this matrix diverge logarithmically (resp. linear
ly) in d = 2 (resp. d = 3) dimensions. Equation (3.13) gener
alizes the result of Ref. 11. 

Example: We have nonlocal interaction with two 
centers (n = 2) at x = XI and x = X2 =1=x I for d = 1. Let 

A = ~(a r), 1= IXI - x2 1, a,bER, rEe. 
I r b 

(3.14) 

The pure point spectrum is determined by (2.21) or more 
explicitly by imposing 

(
a + reik 

- ik 
det 'k-

be' +r 
(3.15) 

where k = ..[z . I. Solving this transcendental equation for 
k = x + iy, x,y real, gives bound states for x = 0, y> ° and 
virtual states for x = O,y<O. Resonances correspond to solu
tions of(3.15) with x =1=0. The case a = band r = ° has been 
discussed in Ref. 1. Let us therefore concentrate on the other 
extreme case of nonlocal 0 interactions with a = b = ° and r 
real. Equation (3.15) means that 

reik 
- ik = ± r. (3.16) 

Bound states are given as solutions of 

re-Y+y= ±r, (3.17) 

withy> 0. For ° < r < 1 there is no such solution, for r > 1 or 
r < ° one bound state appears. Resonances are determined 
by solving simultaneously 

x - r sin xe - Y = 0, 

Y + r cos xe - Y = ± r. 
(3.18a) 

(3.18b) 

Because of the x _ - x symmetry it suffices to concentrate 
on thecasex>O. It can be seen from (3.18a) that there are no 
resonances in strips 

xE[2k1T,(2k + 1)1T], k = 1,2, ... , ifr<O, 
(3.19) 

xE[(2k - 1)1T,2k1T], k = 1,2, ... , ifr>O. 
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In all other strips there are exactly two solutions, with the 
exception of XE[O,1T], where there is only one solution. This 
can be seen by eliminatingy from Eqs. (3.18), getting 

In (rs~nx) +x cot x = ± r, (3.20) 

and studying the asymptotic behavior of both sides of (3.20) 
as x _ k1T. As a function of r these resonances move in the 
appropriate strip. 

IV. SECOND PROCEDURE: SCALING LIMIT 

Since the local point interactions can be obtained in a 
nice way with the help of a suitable scaling limit l

-
5

, it is 
natural to try to obtain the nonlocal point interaction also in 
that way. For the case of one center, the starting point is the 
separable interaction 

H= -..1 +AtP(tP,.). (4.1) 

The unitary dilatation group on L 2(Rd
) is defined by 

UE(tP)(x) = (l/~/2)tP(x/E) = tPE(x) (4.2) 

and a scaled Hamiltonian by 

lIE = (l/e)UEHU E- I = -..1 + (A le)tP E( tP E, • ). (4.3) 

Since we intend to discuss nonlocal point interactions 
with n discrete centers we start with the Hamiltonian 

H E= -..1 +~ ± tPiClm(E)(tP~,.), (4.4) 
l,m=1 

where C (E) denotes a Hermitian matrix and tP i is centered 
around x = XI' e.g., 

(4,5) 

for some function tPl EL I(Rd
) n L 2(Rd

). The E dependence of 
C (E) will be specified for d = 1,2,3 below. 

The separable case is particularly simple since the resol
vent R : = (H E - z) -I can be written down in closed form in 
terms of R z ; similar to (3.3), 

n 

R:=Rz+oR:, oR:= L RztPiDlm(E)(RztP~,.), 
l,m=1 

(4.6) 

with 

- D I;.I(E) = cC I;.I(E) + (tPi,RztP~), (4,7) 

Next we observe that there is norm convergence of 
11·11 n 

oR: - L izMlm(Zj{g;,.), Imz>O, (4.8) 
'-~O/,m=1 

if E - d D -I(E) converges towards M -I(Z) and S~ xtPdx) 
= 1 =1=0; this allows us to adjust the E dependence of D (E). 

d = 1: We may take a universal dependence of Clm (E) on 
E:C I;.I(E) = (E- I + O(I))C 1;.1; a study of the limit 

limE - dD -I(E) = M -I(Z) gives 
.-~O 

- C- I = (G(i) - G( - i))(UT + 1)-1 + G( -11- (4.9) 

Again C corresponds to coupling constants of nonlocal point 
interaction. 

d=2: Since the diagonal elements of C -I(E) have to 
compensate a logarithmic divergence of (tP i,Rz tP i> as 
E_O, we take 
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C I;;; 1(£) = - 81m In £11(4)) - Jim (4)) + C I;;; 1, (4.10) 

where II and Jim are defined by expanding 

£-2( 4> i,R _ i4> ~) = 81m In £11(4)) + Jim (4)) + 0 (£) 
(4.11) 

and C -I will be determined immediately in order to get 

lim{CI;;;I(£)+£-2(4>i,Rz4>~)} = -M-1(z). (4.12) 
£10 

Therefore we identify 

C -I = - 2iS(i,'l(UT + 1)-1 + (z + '1S(Z, - i) (4.13) 

and the correct z dependence results in (4.12). 
d = 3: This time assume an expansion 

C I;;; 1(£) = C I;;; 1 + £C I;;; 1 + O(~). (4.14) 

Expanding (4) i,Rz 4> ~) one notes again a different behav
ior of diagonal and off-diagonal matrix elements: 

£-2(4) i,Rz4> i> 

-+ fd3xJd3Y4>r(X-XI) 1 4>1(Y-xl ) 
£_0 41rlx - yl 

'k + -'- £ + 0 (~), k = .,fZ 
41r 

iklx/-xml 
£-2(4)i,Rz4>~) -+ £ ell' I =/=m. (4.15) 

£_0 41T XI - Xm 

In order to obtain a nontrivial extension a cancellation 
of terms 

C I;;; 1 + J d 3X J d 3y 4> r(x - XI) 

1 
X 4> m (y - xm) = 0 

41Tlx - yl 

is necessary. 

(4.16) 

Note, that the self-energy expressions in (4.15) and (4.16) 
are finite, since 114> 116/5 < 00 under our assumptions. Equa
tion (4.16) implies that there exist n resonance functions for 
the operator 
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II 

-.:1 + L 4>IClm (4)m'')' (4.17) 
I,m = 1 

given by R04>k' which do not belong to the Hilbert space. 
The terms of 0 (£) in (4.15) allow us to determine C -I via 

C-1+H(z)= -M-1(z), 

{
ik /41T, for I = m, 

Hlm(z) = eiklx/-Xml/41Tlxl _ Xm I, for I =/=m, (4.18) 

k =.,fZ. 

The z dependence of both sides in (4.18) is identical; Cis 
related to the matrix U characterizing the extension through 
Eqs. (4.18) and (2.20). 

Let us finally remark that the second limiting procedure 
is conceptually not so different from the first one, but shows 
also the connection of the scaling limit with the low energy 
expansion for separable potentials. 

ACKNOWLEDGMENT 

One of us (L.D.) would like to thank Professor W. Thir
ring for the kind hospitality at the University of Vienna. The 
other (H. G.) thanks F. Gesztesy for discussions. 

IS. Albeverio and R. Hoegh-Krohn, J. Operator Theory 6,313 (1981). 
2S. Albeverio and R. Hoegh-Krohn, J. Math. Anal. Appl. 101,491 (1984). 
3S. Albeverio, F. Gesztesy, and R. Hoegh-Krohn, Ann. Inst. H. Poincare, 
Sec. A 37, I (1982). 

's. Albeverio, F. Gesztesy, R. Hoegh-Krohn, and W. Kirsch, J. Operator 
Theory 12, 101 (1984). 
~S. Albeverio, F. Gesztesy, H.' Holten, and R. Hoegh-Krohn, Solvable 
Models in Quantum Mechanics (book in preparation). 

6M. Breitenecker and H. R. Griimm, Commun. Math. Phys. 15, 337 (1969). 
7 A. Grossmann, R. Hoegh-Krohn, and M. Mebkhout, J. Math. Phys. 21, 
2376 (1980). 

SA. Grossmann, R. Hoegh-Krohn, and M. Mebkhout, Commun. Math. 
Phys. 77, 87 (1980). 
~. Kirsch and F. Martinelli, Commun. Math. Phys. 85, 329 (1982). 
IOL. E. Thomas, J. Math. Phys. 20, 1848 (1979). 
"J. Zorbas, J. Math. Phys. 21, 840 (1980). 
12N. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert 

Space (Ungar, New York, 1981), Vol. II. 
I3G. Flamand, in Applications of Mathematics to Problems in Theoretical 

Physics, edited by F. Lurcat (Gordon and Breach, New York, 1967). 

L. Dabrowski and H. Grosse 2780 



                                                                                                                                    

Uncertainty relations in stochastic mechanics 
s. Galin 
Fakultiitfjjr Physik, Theoretische Physik, Universitiit Bielefeld. and Forschungszentrum Bielefeld-Bochum
Stochastik. Postfach 8640. D-4800 Bielefeld 1. Federal Republic of Germany 

(Received 4 February 1985; accepted for publication 10 May 1985) 

Position-momentum uncertainty in Nelson's stochastic mechanics [Phys. Rev. 150, 1079 (1966)] 
has previously been investigated by de la Peiia-Auerbach and Cetto [Phys. Lett. A 39, 65 (1972)]. 
In this paper their result is generalized, and full equivalence between the uncertainty relations in 
stochastic mechanics and conventional quantum mechanics is established. Force-momentum 
uncertainty is also considered. 

I. INTRODUCTION 

Nelson's stochastic mechanics 1-3 allows for an alternate 
description of quantum systems. In this framework, the Hei
senberg position-momentum uncertainty relation can easily 
be rediscovered.4 1t corresponds to a purely kinematical fact 
about diffusions, namely the nondifferentiability of their 
sample paths. 

In fact, stochastic mechanics yields a stronger result 
than the usual Heisenberg uncertainty relation. Schro
dinger was the first to recognize that in quantum mechan
ics, too, the familiar uncertainty relations can be given a 
stronger form. 

In this paper, it will be shown that SchrOdinger's version 
of the position-momentum uncertainty relation is fully equi
valent to the result in stochastic mechanics. This also applies 
to force-momentum uncertainty. 

II. UNCERTAINTY RELATIONS A LA SCHRODINGER 

In this section SchrOdinger's derivation of uncertainty 
relations will be recalled. Since the consideration of domains 
of operators is irrelevant for our purposes, the domains will 
not be made mention of in the sequel. 

We start by noting that, in general, the product of two 
Hermitian operators A and B is not Hermitian anymore. But 
it can be split in a way reminiscent of the decomposition of a 
complex number into its real and imaginary parts: 

AB = !(AB + BA) + UA,B]. 

Of course, AB + BA is Hermitian, whereas [A,B] is an 
anti-Hermitian operator. Let ( . ) denote expectation. Then 

Re (AB) =~(AB+AB), 

1m (AB) = (1!211([A,B]). 

Define, as usual Var A: = (A 2) - (A )2. We also intro
duce the notion of covariance, taking care of the noncommu
tativity of the operators 

Cov(A,B): = !(AB + BA) - (A )(B). 

The covariance of observables has been discussed by Mar
genau and Hill. 6 They conclude that it has physically attrac
tive features. 

For the sake of brevity set a:=A-(A), b:=B 
- (B ). By the Schwarz inequality, (a2

) (b 2);;;0 1 (ab W. Ac-

cording to the above remarks we have 1 (ab) 12 
= !(ab + ba)2 + !I ([a,b ]) 12. Therefore, 

Var A Var B;;;oCov2(A,B) + !1([A,B])I2. 

This is Schrodinger's version of the uncertainty rela
tions. It differs from the usual form by the additional first 
term on the right-hand side (rhs). It really gives a stronger 
bound on the uncertainty of the observables, since Cov(A,B) 
does not vanish in general. For instance, let us consider the 
position and momentum operators in one dimension 

1 iiI [a a ] - (XP - PX) = --:- dx 1/1. x - 1/1 + - (xl/1) 
2 21 ax ax 

= Ii·IdXX[I/1.~I/1-I/1~I/1.] 
21 ax ax 

=!!. I dx X 11/112 ~ In L, 
2i ax 1/1. 

Cov(X,P) = Ii(f dx X 11/112 ~~ 

-f dx' x' 11/112 I dx 11/112 ~~ ], 

where we have set 1/1 = 1 1/1 1 eiq> • Now it is obvious that 
Cov(X,P)¥=O; for example, if 11/112 is an even function and 
a<p lax is odd, then the rhs need not vanish. Further exam
ples are discussed in Ref. 6. 

The reason why the uncertainty relations a fa Schro
dinger are not particularly well-known is that one normally 
makes use of the uncertainty relations in the interpretation 
of the noncommutativity of observables: noncommuting ob
servables cannot simultaneously be measured within arbi
trary accuracy. And for this statement, of course, the usual 
uncertainty relations suffice. 
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III. POSITION-MOMENTUM AND FORCE-MOMENTUM 
UNCERTAINTY 

Nelson's theory of stochastic mechanics provides a dif
ferent mathematical-and possibly physical-representa
tion of quantum mechanics. The main object in this scheme 
is a diffusion process t (t) associated to the quantum-me
chanical system. For simplicity we restrict the following ex
position to a particle in one dimension, the generalization to 
higher dimensions being trivial. 

The diffusion is determined by a stochastic differential 
equation 

dt(t) = b (S(t), t)elt + dw(t), 

where wIt ) denotes the Wiener process with variance 2v. The 
probability density p(x,t) of the process connects the forward 
drift b (x,t) to the backward drift b. (x,t) (cf., e.g., Ref. 2) 

b. (x,t ) = b (x,t ) - 2v.!..... In p(x,t ). ax 
In fact, these drifts represent nothing but the mean forward 
and backward velocities of the process t (t). The osmotic ve
locity u(x,t ) and the current velocity v(x,t) are defined by 

u(x,t ): = ..!.. (b (x,t) - b. (x,t )) = v .!.....In p(x,t ), 
2 ax 

v(x,t): = !(b (x,t ) + b. (x,t )). 

We now tum to the uncertainty relations in stochastic 
mechanics which are due to de la Peiia-Auerbach and Cetto 
(see also Ref. 7). 

To simplify the notation, quantities as Var u(t (t ),t) will 
be abbreviated by Var u. By use of the Schwarz inequality, 

Var t Var u = E [(t - Et )2)E [(u - EU)2) 

;;;. IE [(S - Et)(u - Eu)W 

= Cov2(t,u). 

On the other hand (provided the density falls off sufficiently 
fast), 

Eu = v J dx .!..... p = 0, ax 
E [tu] = v J dx x .!..... p = - v, ax 

since f dx p(x,t ) = I. So we can conclude that 

CoV2(S'U) = V. 
Similarly, Var S'Var v;;;'Cov2(S,v). Therefore the uncer

tainty relations in stochastic mechanics assume the form 

Var t(Var u + Var v);;;'Cov2(S,v) + V. 
We shall now interpret this result in the language of 

conventional quantum mechanics. So far we have only con
sidered the kinematical aspects of the diffusion. In order to 
relate the stochastic point of view to ordinary quantum me
chanics, we have to add the dynamics. This can be accom
plished, e"g., by the Guerra/Morato variational principle. 3.8 

As a result of this, the diffusion coefficient v is then 
given in terms of Ii, Planck's constant divided by 217', and the 
particle mass m, 

v= li/2m. 
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The probability density p(x,t ) of the process and the (normal
ized) solution r/J{x,t) of the Schrodinger equation are related 
by 

p(X,f) = lr/J{x,tW. 

Moreover, 

Ii a 
u(x,t) = - Re -In r/J{x,t ), 

m ax 
Ii a 

v(x,t) = - 1m - In r/J{x,t ). 
m ax 

Clearly, Var Q = Var S'. Also, 

(P) = ~ J dx r/J* .!..... r/J = ~ J dx p(u + iv) 
I ax I 

=E[mv), 

(P 2
) = -eJdXr/J*~r/J ax2 

= m2 J dxp(u2 + v2) 

= E[m2u2] + E[m2v2
] = Var[mu) + E[mV], 

and therefore 

Var P= Var[mu) + Var[mv). 

Likewise, 

!(XP+PX) = Re(XP) 

Hence 

= Re J dx xr/J* ~ .!..... r/J 
I ax 

= Ii 1m J dx xr/J* .!..... r/J ax 

= IiJdX xp 1m .!.....In r/J ax 

= m J dx xpv = E£S(mv)]. 

Cov(X,P) = Cov(S',mv). 

Now the stochastic uncertainty relation can be rewrit
ten in quantum-mechanical terms as 

Var XVar P;;;'Cov2(X'p) + e/4, 

and this is exactly the quantum-mechanical position-mo
mentum uncertainty relation in Schrooinger's formulation. 
We also note that the Heisenberg uncertainty principle fol
lows already from 

Var S' Var [mu);;;.e /4, 

i.e., it can be traced back to the nondifferentiability of the 
trajectories of t (t), which shows up in b #b. or u #0. 

What other uncertainty relations could be thought of in 
the framework of stochastic mechanics? Rather than taking 
position we might consider a function of it, e.g., we could 
take the force ma = (a /ax)V, where a denotes acceleration 
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and Vis the potential. The uncertainty relations in stochastic 
mechanics are easily obtained: 

Var a(Var u + Var v»Cov2(a,v) + (E [au])2, 

sinceEu = O. 

Let F denote the operator corresponding to force [i.e., F 
is multiplication by (d / dx)V]. The computations for position 
and momentum can be mimicked and one obtains 

Var F= Var[ma], 

Cov(F,P) = Cov(ma,mv), 

([F,P]) = - 2iE [(ma)(mu)], 

i.e., 

Var FVar P>Cov2(P,F) + II ([F,P]) 12. 

Again, there is full correspondence between stochastic 
mechanics and conventional quantum mechanics. 

IV. CONCLUSION 

We have seen that the position-momentum and force
momentum uncertainty relations gained in stochastic me
chanics are equivalent to those in quantum mechanics. In 
the stochastic approach the basic underlying fact for these 
relations is the nondifferentiability of the sample paths. 

There are, however, more observables that can be con
sidered in this scheme (some of them cannot even be formu
lated in conventional quantum mechanics). Can we establish 
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uncertainty relations for them, too? The possibility of 
further uncertainty relations is under present investigation. 
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The complete solution for the quantum -mechanical problem of a particle in an equilateral triangle 
is derived. By use of projection operators, eigenfunctions belonging explicitly to each of the 
irreducible representations of the symmetry group Cw are constructed. The most natural 
definition of the quantum numbers p and q includes not only integers but also nonintegers of the 
class! and ~ modulo 1. Some relevant features relating to symmetry and degeneracy are also 
discussed. 

I. INTRODUCTION 

The two-dimensional SchrOdinger equation for a parti
cle confined within an equilateral triangle has been consid
ered by several authors. l

-4 Mathews and WalkerI derived a 
solution in the form of a double Fourier series after generat
ing a periodic lattice by successive reflections and rotations 
of the triangle. Krishnamurthy et al.2 applied an ingenious 
transformation of the solution for three fermions in a one
dimensional segment into that for a single particle in a trian
gle. Shaw3 reduced the SchrOdinger equation to a quasi-one
dimensional form involving a complex coordinate 
Z = x + iy. However, he obtained only those eigenstates 
transforming as theA 1 andA 2 representations of the symme
try group Cw ' The corresponding problem in a classical 
context was solved by Lame4 a very long time ago. 

The various solutions of the problem result in functional 
forms and energy expressions of rather different appearance. 
In common with the problem of the isosceles right triangle, 
recently solved by one of us,s the Schrodinger equation for 
the equilateral triangle is not soluble by separation of varia
bles. Recently, analogous nonseparable solutions for tetra
hedral boxes also have been obtained. 2,6 

II. METHOD OF SOLUTION 

We seek solutions of the SchrOdinger equation 

-(::J [::2 + :;] ~(x, y) = EW(x, y), (1) 

such that ~(x ,y) = 0 on the three sides of an equilateral tri
angle of side a situated as shown in Fig. 1 (a). It is convenient 
to introduce the altitude of the triangle, given by 

A = (./3/2)a. The three boundary conditions thus require 
that 

f
=O' 

~(x, y) = 0, when y = ./3x, 

= ./3(a - x) = 2A - ./3x. 

(2) 

It will be expedient to introduce three auxiliary varia
bles 

u = (217/A lv, v = (217/A)( - y/2 + ./3x/2), 
(3) 

w = (217/A)( - y/2 - ./3x/2) + 217. 

These are proportional to the perpendicular distances from 
an interior point to the three sides of the triangle, as shown in 
Fig. l(b). The sum of these perpendiculars equals the altitude 
of the triangle and thus 

u +v + W= 217. (4) 

The boundary conditions (2) now assume the more symmet
rical form 

{

u = 0, v = 217 - W, 

~ = 0, when v = 0, W = 217 - U, 

W = 0, u = 217 - V. 

(5) 

The equilateral triangle problem is invariant under the 
point group Cw ' Equivalently, the sides (or vertices) can be 
permuted according to the symmetric group S3' isomorphic 
with C3V ' Let the variables u,v,w transform under S3 as fol
lows: 

(6) 

Thus the vector (u,v,w) generates the following 3 X 3 reduc
ible representation ofS3 or C3V : 

Cl ~G ~ ~). u,~G ~ ~). 

u,~G ! ~} u,~G ~ D· 

(7) 

Boundary conditions aside, the free-particle Schro
dinger equation (1) admits solutions of the form 
l(c1x + c2 y), in which I(z) is a harmonic function such as 
sin z, cos z, or exp( ± iz). With the use of Eqs. (3), let this 
function be expressed in the form I(pu - qv), in which p 
and q are constants. 
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(0) (bl 

FIG. 1. (a) The coordinate system for an equilateral triangle showing 
boundary conditions. (b) The auxiliary variables u,v,w. 

III. A1 SOLUTIONS 

We shall next construct Cw-symmetry adapted func
tions by application of projection operators. Recall that C3V 

admits of three irreducible representations: A] and A 2, which 
are nondegenerate, and E, which is doubly degenerate. The 
A I projection operator 

9(All = E + C3 + C~ + 0'1 + 0'2 + 0'3' (8) 

applied to the "basis function" f(pu - qv), with the use of 
(6), gives 

'l'p,q(A]) = f(pu - qv) + f(pv - qw) + f(pw - quI 

+ f(pv - quI + f(pw - qv) + f(pu - qw). 

(9) 

It is readily shown that the boundary conditions (5) can be 
fulfilled only if f = sin andp,q are integers. We find further 
that 

'I' q,p = - 'I' p,q , 

lfI_p,_q = - 'l'p,q, 

'l'p+q,_p = - 'l'p,q' 

(10) 

Thus, without loss of generality, the quantum numbers p,q 
can be restricted such that p > q>O, with p and q integral. 
The eigenfunctions (9) can be reduced to more compact tri
gonometric forms as follows: 

'l'p,q(A I ) = cos[q~17'x/A ]sin[(2p + q)11J'/A ] 

- cos [ P~17'x/ A ] sin [(2q + p)11J' / A ] 

- cos[(p + q)~17'x/A ]sin[(p - q)17'y/A ], 

q = 0,1,2, ... , P = q + 1,q + 2,... . (11) 

Specifically, for q = 0, 

'l'p,o(A I ) = sin(2p11J'/A) - 2 sin(p11J'/A) 

xcos(p~17'x/A), p = 1,2,3... . (12) 

Note that the above functions are not normalized. These 
agree with the specific cases listed by Shaw.3 The energy 
eigenvalues corresponding to (11) and (12) are given by 

Ep,q = (p2 + pq + q2)Eo, 
(13) 

Eo == h 2/2mA 2 = E1,o' 
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IV. AI SOLUTIONS 

For the A2 representations, the projection operator 

9(A2) = E + C3 + C~ - 0'1 - 0'2 - 0'3 (14) 

applied to f(pu - qv) results in 

'l'p,q(A2) = f(pu - qv) + f(pv - qw) + f(pw - quI 

-/(pv - quI - f(pw - qv) -/(pu - qw). 
(IS) 

These fulfill the boundary conditions with f = cos and, 
again, for integralp,q. In analogy with (10), we find for theA2 

functions, 

'I' q,p = - 'I' p,q' 

'I' _»,_q = 'l'p,q, 

'l'p+q,_q = - 'l'p,q' 

(16) 

The last relation shows that 'I' p,q = 0 if q = O. Otherwise the 
same spectrum as theA 1 functions is obtained. with p > q > 0, 
p and q integral. The A2 eigenfunctions in trigonometric 
form analogous to (11) are given by 

'l'p,q(A2) = sin [qv'317'x/A ] sin [(2p + q)11J'/A ] 

- sin [ ~1TX/A ]sin[(2q + p)11J'/A ] 

+ sin[(p + q)v'31TX/A ]sin[(p - q)11J'/A ], 

q = 1,2,3, ... , P = q + l,q + 2, .... 

(17) 

The eigenvalues are again given by (13), except that q = 0 is 
missing. Remarkably, every A2 eigenstate is degenerate with 
an A eigenstate carrying the same quantum numbers. The 

1 • 
only nondegenerate eigenstates are theA I with q = 0. A SlDl-

Har situation arises for a particle in a square, as discussed by 
Shaw,3 in which there occur degenerate pairs of Al + B 1 spe
cies and again of A2 + B2 species. 

V. E SOLUTIONS 

Finally, for the E representation, we make use of the 
projection operator 

9(E)=E+EC3+E*C~ -0'19f -E0'29f -E*0'39f, 
(18) 

where E = exp(217'i/3) and 9f represents the operation of 
complex conjugation. Applying (18) to /(pu - qv) we ob
tain 

'I' (E) = /(pu - qv) + E/(pV - qw) p,q 

+ E* f(pw - quI - f*(pv - quI 

- E/*(pW - qv) - E* f*(pu - qw). (19) 

The boundary conditions are satisfied with the function 
f(z) = exp( + ,z), but now with p,q = n +! (n = integer). 
The complex conjugate of (19) gives the partner in this de
generate representation. One can alternatively apply (18) 
with E = exp( - 217';/3). This generates a second class of E 
eigenfunctions (19) with p,q = n + ~, The following relation
ships among the E functions can be demonstrated: 
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(5,0) (4,2) 

ReE ImE 

FIG. 2. The graphical representation of some lower eigenstates (p,q) of each 
symmetry type. For visual simplicity, only the sign (+ or -) of the wave 
function is plotted. 

'II q,p = - 'II p,q' 

'II _ p, _ q = '11;+ 1/3,q + 1/3 , (20) 

'lip + q, _p = - '11;+ 1/3,q+ 1/3' 

Thus, E states can be labeled by the quantum numbers 
q = !,M,i, ... , p = q + l,q + 2, .... The real and imaginary 
parts of'll p,q (E) turn out to have the same forms as (17) and 
(11), respectively, but withp,q now equal to! or j modulo 1, 
viz., 

Re 'IIp,q(E) = 'IIp,q(Az), 

1m 'II p,q (E) = 'II p,q (A ii, 
q=M,M, ... , p=q+ l,q+2, .... 

VI. SUMMARY 

(21) 

The Schrodinger equation (1) subject to the boundary 
conditions (2) has solutions 'IIp,q' The Al eigenfunctions are 
given by Eq. (9) or Eq. (11) [Eq. (12) if q = 0], the Az eigen
functions by Eq. (15) or Eq. (17), and the E eigenfunctions by 
Eq. (19) or Eq. (21). Figure 2 represents some of the lower
energy eigenfunctions of each symmetry species. For visual 
simplicity, only the sign of the wave function (+ or -) is 
plotted. The energy eigenvalues are given by the formula 
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Ep,q = (pZ + pq + q2)Eo, 

{

0,1,2, ... , for A J, 

q = 1,2,3, ... , for A z, 

~,j.~.j, ... , for E, 

p=q+ l,q+2 •.... 

As discussed in Refs. 3 and 7, systems of high symmetry 
often exhibit "accidental" degeneracies beyond those im
plied by the purely geometrical symmetry of the Hamilton
ian. Thus, in the equilateral triangle problem. E = 49 (in 
units of Eo) represents a threefold-degenerate level com
pounded ofanA J state with aAJ-Az pair. corresponding to 
the (p,q) = (7,0) and (5.3). This is the first of an infinite num
ber of such combinations. The first fourfold degeneracy 
from two coinciding AJ-Az pairs occurs for E = 91. with 
(p,q) = (6.5) and (9.1). We eventually encounter a sixfold de
generacy atE = 1519 with states (23.22). (33.10). (35.7) and 
an eightfold degeneracy at E = 1729 with states (25.23). 
(32.15). (37,8). (40,3). Degeneracies also arise from coinci
dent E levels. Thus E = 3D! is fourfold degenerate with 
states (.y.J) and PI.!); E = 212j is sixfold degenerate with 
states (Jf.V), Pi,.y) and (~M). Such nongeometrical degener
acies can often be enumerated by applying results from num
ber theory. For example, the number of integer combina
tions (m.n) such that mZ + mn + nZ equals a particular 
integer is calculable.8 

An amusing correspondence can be drawn between 
equilateral triangle eigenstates and families of leptons and 
quarks. The doubly degenerate levels with the quantum 
numbers n + 1 and n + j are quite suggestive of pairs of 
quarks (right and left handed) with charge + l and - j, 
respectively. Similarly. the degenerate AJ.Az states might 
correspond to pairs of (right and left) leptons such as elec
trons or muons. Finally. the nondegenerateAJ's with q = ° 
suggest left-handed neutrinos (the right-handed partners be
ing nonexistent). 
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A vector coherent state theory is formulated as a natural extension of standard coherent state 
theory. It is shown that the Godement representations and the coherent state representations of 
the Sp(N,R ) groups of Rowe and of Deenen and Quesne are special cases of this more general 
theory. 

I. INTRODUCTION 

We give the theory of vector coherent states as a natural 
extension of standard coherent state theory. The extension is 
related to Mackey's induced representation theory. 1 Both 
the standard and vector coherent state representations may 
be regarded as induced from a subgroup Ko of a group Go. 
However, for the standard coherent states, the representa
tions are induced from one-dimensional representations of 
Ko, whereas in the vector generalization, the induction is 
from finite-dimensional vector representations of Ko. 

Vector coherent state representations were recently in
troduced for the noncompact Sp(N,R) groups.2-4 They 
proved to be extraordinarily powerful for the evaluation of 
matrix elements of the Sp(N,R ) algebra in a U(N) basis. In 
particular, they provided analytic expressions for the matrix 
elements whenever the Sp(N,R ~U(N) branching is multi
plicity-free and simple recursion relations for the evaluation 
of matrix elements in general. 5.6 

The Sp(N,R ) vector coherent states are holomorphic 
vector-valued functions defined on the generalized unit disk 
DN , i.e., the complex manifold of N XN symmetric complex 
matrices w with 1- w·w positive definite. We shall prove 
that this set of coherent state representations is directly relat
ed to the Sp(N,R ) discrete series of Godement,7 which was 
studied by Rosensteel8 and Rosensteel and Rowe.9 The rep
resentation spaces of this series were given therein as Hilbert 
spaces of hoI om orphic vector-valued functions on the Siegel 
half-plane SN' i.e., the complex manifold of symmetric 
N XN complex matrices z with Imz positive definite. The 
connection is provided by the bijective and analytic Cayley 
transformation 10 from the unit disk onto the upper half
plane UJ--+Z = i(1 + w)(1 - w) -I. Thus, the Godement repre
sentations may be regarded as a special case of vector coher
ent state theory. 

More generally, for the discrete series of a noncompact 
group Go, Okamoto ll has shown that the representations 
induced from its maximal compact subgroup Ko decompose 
naturally into irreducible subspaces of hoI om orphic sections 
of vector bundles over Gol Ko. The Sp(N,R ) case fits into the 
Okamoto scheme when we identify Sp(N,R )/u(N) with ei
ther the Siegel half-plane or the unit disk. Moreover, the 
strategy of attempting to realize the discrete series represen
tations in Hilbert spaces of hoI om orphic functions was initi-

ated by Bargmann 12 for SUI 1,1) and generalized to the Her
mitian symmetric case GoiKo by Harish-Chandra13 and 
Schmid. 14 

Boson representations of the Lie algebra are given natu
rally in this setting from the Lie derivatives of the group 
actions. Thus, the Sp(N,R ) boson representations on the Sie
gel half-plane were determined by Rosensteel8 and Rosen
steel and Rowe.9 In spaces of analytic functions defined on 
the generalized unit disk, Deenen and Quesne3 and Rowe4 

computed the boson representations using coherent state 
ideas. 

The plan of this paper is to first present the general the
ory of vector-valued coherent state representations, then ap
ply the construction to the Sp(N,R ) case, thereby recovering 
the results of Rowe,4 and finally relating this construction to 
the realizations on spaces of functions defined on the unit 
disk and half-plane.8

,9 

II. VECTOR-VALUED COHERENT STATE 
REPRESENTATIONS 

Let Go be a semisimple Lie group with Lie algebra 110 
and suppose Go has a faithful finite-dimensional representa
tion. Let g be the complex extension of 110 and let G be the 
corresponding Lie group. Let Ko be a compact semisimple 
Lie subgroup of Go with Lie algebra ko. Let k be the complex 
extension ofko and K the corresponding Lie group. We sup
pose that Ko contains a Cartan subgroup of Go. Then, g may 
be decomposed as the direct sum 

(1) 

where D+ and D_ are, respectively, spaces of positive and 
negative roots. Let PC G be the parabolic subgroup with Lie 
algebra 

p= D+ +k. (2) 

Let U be a unitary irreducible lowest weight (often 
called highest weight) representation of Go acting on a Hil
bert space H with lowest weight state 10). We require that 
10) also be a lowest weight vector for Ko. Then, let u be the 
irreducible representation of Ko acting on the subspace 
Hu CH containing 10). Suppose that Tis an extension of U 
to II and p is the extension of u to K (see Ref. 15). 

We canonically identify GoiKo with an open submani-
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fold of G IP (Harish-Chandra,13 Schmid,14 Bott,16 Griffiths 
and Schmid17

). Let {E j- J denote a basis for n_. An arbi
traryvectorin n_ can then be expanded asz·E -==~jzjE j-' 
where (Zj) are complex numbers. By regarding z·E - as a rep
resentative of a left coset 

P exp(z.E -lEG IP, (3) 

the complex numbers z = (z/) become complex coordinates 
for G I P. If the unitary irreducible representation (UIR) u of 
Ko is of dimension 1, so that 

u(x)IO) = elA.(x)IO), xEKo, 

andifT(X)lO) isnotinHu for any nonzeroXEO+, thenKois 
the little group of U at 10) and we have the situation for 
standard coherent state theory. For any normalized state 
Itfo)EH, we then have the unnormalized coherent state wave 
function 

(4) 

With this normalization, tfo(z) is evidently a holomorphic 
function on Go!Ko. 

More generally, if dim Hu > 1 and T (X) la) is not in Hu 
for any la)EHu andanynonzeroXen+, wecanregardKoas 
the little group that leaves Hu invariant. If (Ia») is an ortho
normal basis for Hu we define a vector coherent state wave 
function t,b(z), for any Itfo)EH, by 

(5) 
a 

This is evidently a vector-valued holomorphic function G I 
K_H. 

The group action is given by 

r(g)tP(z)=Lla) (aIT(e'·E-)U(g)ltfo), gEG. (6) 
a 

III. THE IDENTITY RESOLUTION AND THE INNER 
PRODUCT 

For square-integrable irreducible representations, it is 
well known that 

1= r U(g-I)IO) (OIU(g)dv(g), 
JGo 

(7) 

where dv( g) is the Go-invariant volume element [suitably 
normalized for each U], 10) is the lowest weight state, and I 
is the identity on H (see Ref. 18). 

The coset in G IP defined by z was given by Eq. (3). To 
identify the corresponding coset in Go!Ko- G IPwe need to 
specify the diffeomorphism. This can be done by choosing 
coset representatives 

GIP-Go, Pexp(z.E-)-+K(z) (8) 

having the property 

K(Z) = e""z).E + X(Z)e'·E - , (9) 

where lV(z).E +e n+ and x(z)e K. We then have 

G IP-Go! Ko, P exp(z.E -)-+KoK(Z). (10) 

An arbitrary group element gEKoK(Z) can now be ex
pressed g = kK(Z) for some kEKo. Hence 
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1= r T(e'·E - )tp(x(z))tu(k -1)10) (01 
JGo 

X u(k) p(x(Z))T(e'·E - )dv( g). (11) 

It now follows from a theorem of Helgasonl9 (Theorem 1.7) 
that 

1= r T(e'·E -)tp(x(z))t 
JGoIKo 

X {LoU(k -1)10) (Olu(k JdV(k)} 

Xp(x(z))T (e'.E - )djt(z), (12) 

where dv(k) is the invariant measure on Ko and djt(z) is the 
Go-invariant measure on Go!Ko. But the quantity in paren
thesis is just the identity on H u' which also can be expressed 
as 

LoU(k -1)10) (Olu(k Jdv(k) = ~Ia) (al. 

Therefore, we have the resolution of the identity 

1= L r T(e'·E -)tp(x(z))tla) (al 
a JGoIKo 

Xp(x(z)) T (e'.E - Jdjt(z). 

(13) 

(14) 

The inner product for coherent state wave functions is 
now given immediately by 

(\f1I<1» = r (p(x(z))\f1(z),p(x(z))<I>(z)Jdjt(z), 
JGoIKo 

where ( , ) is the Hilbert space inner product for Hu' 

IV. APPLICATION TO Sp(N,R)::>U(N) 

(15) 

It is convenient to regard Go = Sp(N,R ) as the subgroup 
ofSp(N,C) given by the isomorphism 

Sp(N,R )-Sp(N,C)nU(N,N). (16) 

Thus an element geSp(N,R ) is a 2N X 2N matrix of the form 

(17) 

with 

aat - pp t = I, alJ = fJii, (18) 

where I is now the N X N identity matrix and lJ is p trans
posed. 

The group Ko = U(N) of N XN unitary matrices 
{ a;aa t = I J is embedded in Sp(N,R ) as the subgroup of 
2N X 2N matrices of the form 

(~ ~. )eSP(N,R ). (19) 

A basis for the Lie algebra k of K is given by the matrices 

(
E.. 0) 

Cij = ; -Eij' i,j= t, ... ,N, PO) 

where Eij is the N XN matrix with elements 

(Eij)lk = BaBjk' (21) 

Bases for n+ and n_ are given, respectively, by 
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AI' =A .. = (0 
V JI 0 

-EIj -~i) 
o ' (22) 

BIj =Bji = (EO E 00). 
Ij + ji 

(23) 

A realization T of g that restricts to a unitary realization 
U of Ko = sp(N,R ) is given in terms of the familiar n-particle 
harmonic oscillator raising and lowering (Weyl) operators 
by 

" 
T(AIj) = L b lib lj' 

a=1 

" T(BIj) = L baibai , (24) 
a=1 

where 

[baiJb bj] = aapalj' 

(25) 
[ baiJbpi ] = [b lob bJ] = o. 

This realization exponentiates to a unitary realization of the 
Sp(N,R ) group for n even (and, in general, of the twofold 
metaplectic covering group). 

A UIR q = (q I' q2, ... ,q N) under this action is defined by 
a lowest (often called highest) weight state Iq) that satisfies 

T(BIj)lq) = 0, ;,j = 1, ... ,N, 

T(CIj)lq) = 0, kj, 

T(CI/)Iq) =qilq ), ;= 1, ... ,N. (26) 

Evidently Iq) is a lowest weight state for a UIR u of the 
subgroup Ko = U(N). 

It is convenient to define 

z·E - = ~ rlljBIj' (27) 
IJ 

where z = (zlj) is a complex symmetric matrix. The Sp(N,R ) 
vector-valued coherent states are then obtained from the 
general definition 

(28) 

To obtain the group action, Eq. (6), observe that any 
Sp(N,C) matrix can be factored as 

(
a b ) = (I bd -I) (it -I 0 ) (I 0) 
e d 0 I 0 d d - Ie I . 

(29) 

Then, for geSp(N,R ) of the form (17), 

~) ~* !*) (30) 

can be rearranged 

e<.E - = (I /3 (z/3 + a*)-I) ((.Bz + at)-I 
g 0 I 0 

X (~z{3 + a*)-I(za + /3 *) ~) . (31) 

One easily ascertains, using Eq. (18), that (z{3 + a*)-I 
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X (za + {3 *) is symmetric. Hence we obtain the coherent 
state action 

r( g)\fI(z) = p(( .Bz + at) -I )\fI((az + /3 t)( .Bz + at) -I). 
(32) 

Note that, on restriction to U(N), 

r(a)\fI(z) = u(a)\fI(aza), aEU(N). (33) 

The coherent state realization of the Sp(N,R ) algebra 
was derived in Refs. 2-6. If, for convenience of notation, we 
define 

CIj=p(CIj), (34) 

the coherent state realization is given in general by 

r(Alj) = (1Cz)1j + (lCz)ii + (zVz)1j - (N + 1)z1j' 

r(BIj) = VIj' (35) 

r(CIj) = CIj + (zV)Ij' 

where 

(36) 

The practical utility of this realization of the Sp(N,R ) 
algebra for the evaluation of matrix elements lies in its sim
plicity, which becomes apparent when r(AIj) is expressed in 
the form 

(37) 

where A is the U(N) invariant operator 

A = !Tr[(C +zV)(C +zV)] - !Tr(zVzV) - l(N + I)Tr(zV), 
(38) 

which is diagonal in the natural Sp(N,R ):> U(N) basis. The 
discovery ofEq. (37) proved to be the vital step which facili
tated the use of vector coherent state theory to evaluate ma
trix elements of the Sp(N,R ) algebras for arbitrary discrete 
series representations.5

-6 Similar expressions hold for other 
Lie algebras.2o,21 

Finally, to obtain the identity resolution and the inner 
product, we choose the coset representatives of Eq. (9) by 

K(Z) = ( a az*) 
a*z a* 

(39) 

with 

a = at = (I - z*z)-I/2. (40) 

This choice defines the domain of the complex coordinates 
(zlj) by 

det(I - z*z) > 0 (41) 

to be the multidimensional unit disk. The identity resolution 
is now given, from Eq. (14), by 

I= Li T(e<·E-)tp((I _z*z)1/2)tla) (al 
a Sp(N,R )IU(N) 

xp((I - z*z) I 12)T(e<·E - )d,u(z) (42) 

and the inner product by 
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('1'1<1» = r (0((1 - Z*Z)1/2)'I'(Z), 
JSP(N.R )/UIN) 

p((I - Z*Z)1/2)<I>(Z))dJL(z). (43) 

To obtain the Sp(N,R) invariant measure dJL(z) on 
Sp(N,R )!u(N) it is sufficient to consider the special represen
tations (u I = ... = UN = u) for which the corresponding re
presentations (u,u, ... ,u) of U(N) are one dimensional. Then, 

p(I - Z*Z)1/2IO) = 10)det(I - z*zt12. (44) 

The coherent state wave functions reduce to 

'I'(z) = 10) (OIT(e"E-lI'1'), 

with inner product 

(45) 

('1'1<1» = r (OI'l'(z)*(OI<l>(z)det(I - z*zt dJL(z). 
JSP1N.R )/u(N) 

(46) 

One way to determine dJL(z) is to require that the group ac
tion should be unitary. This is most easily done infinitesimal
ly by requiring that the Lie algebra has the desired Hermi
tian adjoint properties, eg., r(Aij)t = r(Bij)' etc. One obtains 

dJL(z) = k det(I _Z*Z)-(N+ I) ITdzij dzt, (47) 
i>i 

where k is a constant.4 This simple technique for determin
ing dJL(z) is consistent with other methods (cf. Sec. V and Ref. 
22). 

V. REALIZATIONS ON THE SIEGEL HALF-PLANE 

We now consider explicitly the relationship between the 
vector coherent state representations ofSp(N,R ) and the dis
crete series studied previoosly by Godement 7 and Rosen
steelS and Rosensteel and Rowe.9 A unified treatment of 
both realizations is achieved by recognizing that Sp(N,R )1 
U(N) is identified in the former case with the generalized unit 
disk DN and in the latter case with the upper half-plane SN' 

Set 

A=_I- (I .!"I)eGL(2N,C). -J2 iI 

Then, Sp(N,R ) is embedded in U(N,N) via the map 

Sp(N,R ) -+U(N,N), 

M-+AtMA. 

(48) 

(49) 

GL(2N,C) acts on the N XN complex matrices MN(C) as 
generalized linear fractional transformations according to 
the rule 

g • z==(az + P )(yz + 6) -I, 

where 

(50) 

g= (; ~€GL(2N,C) 
andzeMN(C). Notethatg l ' (g2 .z) = (glg2) ·z. 

The upper half-plane S N and the unit disk DN are given 
by 

(51) 

They are in I-I correspondence by the analytic Cayley 
transformation 10 

DN-+SN, 

W-+Z = A· w = i(I + w)(I - W)-l, 

and its inverse 

SN-+DN, 

z-+w = At. z = (z - i)(z + i)-I. 

(52) 

(53) 

Moreover, the action of Sp(N,R) on SN and the action of 
Sp(N,R ):>U(N,N) onDN commute: 

At r Z~M'Z' rAt, 
(54) 

DN .... ------DN 

w-+AtMA·w 

where MeSp(N,R ) and AtMAeSp(N,R )CU(N,N). 
Now letp be a finite-dimensional irreducible representa

tion of GL(N,C) and let Hp denote its carrier space. Define a 
right (Le., anti-) representationRp ofGL(2N,C) on the space 
of hoi om orphic functions I fromMN(C) intoHp: 

(Rp( g)f)(z)==p(yz + 6)-1 I( g . z), (55) 

for 

g = (; !)eGL(2N,C) 

andzeMN(C). Note that, for historical reasons, we use here 
the right representation, for which Rp( g2)Rp( gl) 
= Rp (g I g2)' To obtain the standard (left) representation of 

Eq. (32) one has simply to replace g by g; i.e., put 
r(g) = Rp(g). 

The irreducible discrete series representations of 
Sp(N,R ) and Sp(N,R ) C U(N,N) are realized on the Hilbert 
spaces Hp (S N) and Hp (D N)' respectively 

Hp(SN)={ I:SN-+Hpl(i)1 is holomorphic, (ii) LNdO(Z)1I p(y)1/2 l(z)lI~p < 00, Y = Imz}, 

Hp(DN)=={ t/r.DN-+Hp IIi)", is holomorphic, (ii) iNdO(W)1I p(I - w*w)1/2"'(w)lI~p < 00 }. 

(56) 

(57) 

Here dO(z) and dO(w) are the Sp(N,R) invariant measures onSN andDN, respectively, 
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SN:dO(z)=(dety)-N-1 IIdxpq dypq, 
p<q 

(58) 

DN:dO(w)=det(I - w*w) - N - I II dxpq dypq' 
p<q 

(59) 

The factors (det y) - N - I and det(I - w*w) - N - I, which give 
the invariant measures in terms of the Euclidean measures, 
are known as the Bergman kernels. 22 

The irreducible representations of Sp(N,R ) on Hp (S N) 
(denoted by IIp) and Sp(N,R ) C U(N,N) on Hp (DN) (denoted 
by ep ) are just the relevant restrictions of Rp ' 

IIp(M)f==Rp(M)f, MeSp(N,R), fEllp(SN)' 

ep(AtMA)f/!==Rp(AtMA)t/J, (60) 

AtMAeSp(N,R )CU(N,N), t/JEllp(DN)' 

These two irreducible representations IIp and e p are unitar
ily equivalent. The intertwining is given by the isometry Up' 

Up:Hp(SN)~Hp(DN)' 

Up Rp(A). (61) 

Clearly, Up intertwines IIp and e p since all these operators 
are defined in terms of the representation Rp. The inverse 
transformation is evidently Up (At). Moreover, Up is an iso
metry: 

IIUpfll~p(DM 

= r dO(w)lIp(I - W*W)1/2(Upf)(wlll~ 
JDN p 

= f dO(w)1I p(I - w*W)1/2pC~(I - WI) - I 

Xf(A • w)lI~ . (62) 
p 

Let z = A . weSN • Then, we have the identity 

[(I - w*w)1/2(I - w)-I]t[(I - w*w)1/2(I - W)-I] 

= (I - w*)-I(I - w*w)(I - W)-I 

=Imz. 

=y. 
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(63) 

Hence, 

IlUpfll~p(DNI = r dO(z)11 p(y)1/2f(zlll~p 
JSN 

= IIfll~plSM' (64) 

where the measure has been normalized appropriately. 
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Doubly degenerate energy levels of the two level atom interacting with a single mode of the 
electromagnetic field are exactly calculated. The dependence of the number of such levels on the 
values of the level separation energy and a coupling constant is determined. Some general 
conclusions about the spectrum are drawn. 

I. INTRODUCTION 

The simplest model used in quantum optics to describe 
interaction of light and matter is that of a two-level atom 
coupled to a single quantized mode of the electromagnetic 
field, for which the Hamiltonian reads 

H = !"'oO'3 + ",a+a +A0"1(a+ + a}. (1.1) 

Here, the Pauli matrices 0"1,0"2,0"3 with the commutation 
relations [0"1' 0"]] = 2iO"IJkO"k describe the two atomic levels 
separated by the energy "'0' a+ and a are the Bose operators 
of the quantized electromagnetic mode with frequency w, 
and A is the atom-field coupling constant proportional to the 
dipole moment of the transition. 

Despite its simplicity, the exact solutions of the two
level model are not known. Instead, many approximate as 
well as numerical methods for finding energy levels were 
developed. For example, widely studied approximation (so
called rotating-wave approximation) consists of disregard
ing in (1.1) the terms O"+a+ and O"-a [where 
O"± = !(0"1 ± i0"2)]' This leads to the exactly solvable case 
known as the Jaynes-Cummings model. • Such an approxi
mation can be well justified in a nearly resonant case ("'o~w) 
and indeed was successfully adapted in analysis of many fun
damental optical processes (see, for example, Ref. 2). 

Recently the properties of the Hamiltonian (1.1) at
tracted increasing interest, since it has been shown that its 
classical counterpart exhibits a chaotic dynamical behav
ior.3

•
4 The natural question arises whether (1. I} can be treat

ed as a simple example describing the phenomenon of 
"quantum chaos. "S 

It is believed that such a phenomenon is connected with 
certain properties of the energy spectrum like irregularities 
in the level spacings, sensitive dependence on variation of the 
parameters, etc.,6 though it should be stressed that there do 
not exist either definition or criteria of quantum chaos which 
are widely accepted. 

The aim of this paper is to present and investigate some 
special solutions to the model described by the Hamiltonian 
(1.1). As a result it will be possible to find all values of the 
parameters "'0' w, and A for which doubly degenerate energy 
levels exist. This can give a deeper insight into the structure 
of all energy levels as well as the dependence of this structure 
on the involved parameters W o, w, A. The presented analysis 
seems to help in the further investigation of possible "quan
tum chaos" of the model (1.1). 

a)Pennanent address. 

The possibility of finding special, exact solutions of the 
problem was recently pointed out by Reik, Nusser, and 
Amarante Ribeiro.7 The authors made use of the Bargmann 
representation8 of boson operators a+ and a (see next sec
tion) and expanded the stationary Schrodinger wave func
tions in Neumann series. They observed that the series ter
minates, giving the exact solution of the Schrodinger 
equation with energy E = n - A 2 (n = 1, 2, ... ), every time 
when a certain condition connecting parameters wo, w, and A 
is satisfied. Because all such conditions have the form 

Wn(A 2,(",0/",}2) = 0, (1.2) 

where Wn is an n-degree polynomial, it is not obvious that 
the physical values of parameters [i.e., A 2> 0, (",0/",}2> 0] 
fulfilling (1.2) can be found. For n = 1 and 2, Eqs. (1.2) are 
simple and can be easily analyzed. For the next several val
ues of n, the existence of the above-described exact solutions 
was confirmed by the authors of Ref. 7 by the very elegant 
numerical method which they used to find all low-lying ener
gy levels of(I.I). 

In the following part of the present paper I shall investi
gate carefully the existence of the above-described solutions 
for an arbitrary n as well as the dependence of the number of 
these solutions on the parameters "'0' w, and A. 

The occurrence of the solutions with the energies 
En = n - A 2 can also be deduced from the formula obtained 
by Schweber,9 who also used the Bargmann representation 
and was able to produce a transcendental equation for ener
gy levels. (See Ref. 10 for the generalization to other quan
tum-optical models). 

II. BARGMANN REPRESENTATION, ANALYTICITY OF 
SOLUTIONS . 

To simplify further calculations it is convenient to per· 
form the unitary transformation which puts the interaction 
term AO"l(a+ + a} into a diagonal form A0"3(a+ + a} and 
(without losing generality) change the time scale to obtain 
w = 1. After these operations the Hamiltonian reads 

H(A,f..L}=/-LO". +a+a+A0"3(a+ +a}, (2.1) 

where /-L = !"'o and H is labeled by the actual values of the 
parameters A and /-L. 

In what follows we shall extensively use the Bargmann 
representation of the boson operators. 8 Here a+ and a are 
realized as the multiplication and differentiation over the 
complex variable z(a + -+ Z, a -+ d / dz} and act in the Hilbert 
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space of entire functions of the order less than 2, equipped 
with a scalar product 

(fIg) = ! f /(z)g(z)e -lzl' d (Re z)d (1m z). (2.2) 

The stationary Schrodinger equations for the two-com
ponent eigenfunction 

tP = [tPI(Z)] (2.3) 
tP2(Z) 

have in this representation the following form: 

(z + A) .!!....tPI = (E - AZ)tPI - /-LtP2' (2.4a) 
dz 

(z - A) .!!....tP2 = (E + AZ)tP2 - /-LtPI' (2.4b) 
dz 

where E is an energy eigenvalue. 
Because we are looking for the analytic solutions of(2.4) 

it is worthwhile to perform the standard Frobenius analy
sis ll to investigate analytic properties of tPI and tP2 in the 
singular points z = ± A. Inserting 

00 

tP1.2 = (z - A)' L C~·2(Z - A t 
n=O 

into Eqs. (2.4) we obtain the "indicial equation" 

s(E + A 2 - s) = 0. (2.5) 

A similar analysis in the point z = - A leads to the identical 
equation. Because one solution of (2.5) is s = ° there always 

. I· .1. [tPI] al· . h ... f eXIsts one so utton If' = tP2 an ytlC 10 t e vlclmty 0 

z = ± A. On the other hand, a second linearly independent 
analytic solution can occur (in consequence the energy level 
can be degenerate) only when E = n - A 2, where n is a non
negative integer. 

III. EXACT SOLUTIONS 

Let us start with considering several simple properties 
of the Hamiltonian (2.1) and Eqs. (2.4) 

(a) If 

tP = [tPI(Z)] 
tP2(Z) 

is a solution of (2.4) then 

tP' = [tP2( - Z)] 
tPI( - z) 

is also a solution. This is an immediate consequence of the 
fact that there exists a constant of motion 
P = exp(i1r(a + a + !(u I + 1))) and can be proved by inspec
tion. Consequently, eigenfunctions can be classified with re
spect to their parity, i.e., according to the sign in the equation 

[~::;:] = ± [~~: = ;:] . 
(b) H (A,O) has a doubly degenerate spectrum with ener

gy levels En = n - A 2, n = 0,1,2, .... The same is true for 
H ( - A,O). Indeed, Eqs. (2.4) for /-L = ° reduce to 

(z + A ) .!!....tPI = (E - AZ)tPI' 
dz 
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(z + A ) .!!....tP2 = (E + AZ)tP2' 
dz 

and have the solutions 

tPI(Z) = e -Az(Z + A )E+A', 
(3.1) 

Because solutions should be analytic, E + A 2 must be equal 
to a non-negative integer, i.e., E = n - A 2, n = 0,1,2, .... 

From (3.1) one can construct two linearly independent 
solutions of opposite parity 

[ 
(z +A te- AZ 

] (/>+-n - (_ tr(z - A t~z ' 
_ [ (z+Ate- AZ 

] 

(/> n = (_ l)n + I(Z _ A )n~ . (3.2) 

Similarly, 

H ( - A,O)4> n± = (n - A )24> n± , 

where 

(3.3) 

are the eigenvectors of positive and negative parity, respec
tively. 

(c) Simple calculations show that 

u I(/> n+ = 4> n±, u l 4> n+ = (/> n+ , (3.4) 

H (A,O)4> n+ = (n + 3A 2)4> n+ - 2nA.4> n+- I - U4> n++ I , 
(3.5) 

and quite similar relations hold for (/> n- and 4> ;; . 
Let us now construct the following finite linear combi

nation of the vectors (/> n+ and 4> n+ : 

tPn+ = (U )n(/> n+ + /-L ± (U)~ -I 
1=1 l. 

XP7-1 (p(/> n+-I + I(/> n+-/)' 
(3.6) 

where the P~) are defined by the recursion relations 

Pbn) = 1, p~n) = (U)2 + /-L2 - 1, 

P~) = (k(U)2 + /-L2 - k2)p~~ I (3.7) 

-k(k-l)(n-k+ 1)(U)2P~~2. 

Using identities (3.4) and (3.5) one can establish that 

H(A,J.L)tPn+ = (H(A,O) + /-LutltPn+ 

= (n - A 2)tPn+, n = 1,2, ... , (3.8) 

provided that 

(n(U)2 + /-L2 - n2)p~~ I - n(n - I)(U )2p~~2 = 0, (3.9) 

which can be written in the form 

(3.10) 

The analogous formula can be constructed for the states of 
negative parity 
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·1,- = (U )ntl> - + II. ~ (U )"-1 p(nl (uti> - + Iq, - ) 
'f'n n r- ~ I' 1-1'1'" n-I n-I, 

1=1 . 
(3.11) 

(3.12) 

Thus we are able to identify two linearly independent 
eigenfunctions of H (A,p,) corresponding to the energy 
En = n - A 2. According to the previous analysis only these 
eigenvalues can be degenerate. 

The possibility of constructions (3.6) and (3.11) is limited 
only by the existence of physical (A 2 > 0, p,2 > 0) values which 
satisfy (3.10). 

IV. EXISTENCE OF EXACT SOLUTIONS 

From the recurrence relations (3.7) one can easily de· 
duce that Pn (A,p,) is the polynomial of n degree in the varia
bles (U )2 and p,2. After establishing the value of p, we ask 
whether solutions of Eq. (3.10) with positive (U )2 exist. To 
simplify the notation let us fix the value of n and denote (U f 
by x. The formulas (3.7) now have the form 

Qo(x) = 1, QI(X) = (x -AI)' 

Qk(X) = (x -Ak)Qk_ dx) -BkxQk_2(X), 

where 

Qdx) = (l/k!)P~I(x,p,2), 
Ak = (k 2 -Jl2)1k, Bk = (n - k + 1), 

and Qk depends onp,2 parametrically. 

(4.1) 

(4.2) 

(4.3) 

The following three theorems establish the existence of 
positive roots of Qk (x). 

Theorem 1: For 0 <p, < 1, Qk (x) has exactly k different, 
positive roots a\k l, ... , a~l; moreover, 

O<a\k l <a\k-II <al,{I <al,{-II < .. , <a~~ll <a~l, (4.4) 

wherea\k-I I ... a~~:1 denote the roots ofQk_I' 
Proo!' From (4.3) we have Ak > 0 for 0 <p, < 1 and al-

ways Bk>O. From (4.1), a~I=AI>Oandq2(x) 
= (x - A 2 )(x - a~l) - B~; thus 

Q2(0) = A2a~1 > 0, Q2(a~l) = - B2a~1 < 0, 

sgn Q2( 00) = 1, (4.5) 

where sgn a = - 1,0, + 1 for a < 0, a = 0, a > 0, respective
ly. Relations (4.4) prove that Q2(X) = (x - a~I)(x - a~l) and 
O<a~11 <a\11 <a~l. 

Let us assume that the theorem is valid for 1< k, i.e., 

Qk- I = (x - a\k-I I , ,,(x - a~~ :1), 

Qk-2 = (x - a\k-21) .. ·(x - a~~i'), 

and 

o <a\k-II <a\k-21 <a~k-II <a~k-21 < ". <a~~il <a~~III. 
(4.6) 

Then from (4.1) we have 

Qk = (x -Ak)(X - a\k-II) .. . (x - a~~III) 

- B kX(X - a\k - 21) •• • (x - a~ ~ 221). (4.7) 
Thus, 
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sgn QdO) = sgn( - I)KAka\k-I I ... a~~ll = (- 1)k, 

sgn Qda~k - II) 

= _ sgn(Bka\k - II(a~k - II _ a\k - 21) .. . (a\k - II _ a~k_-121 

Xa~k-II- a~k-21) .. . (a~k-II - a~~il)) 

=(-W-i, 

sgn Qd 00 ) = 1. 

It means that Qk(X) changes sign on each of the intervals 
(0, a\k-II),(a~k-ll,a\k+-III), i=I, ... ,k-2 and (a~~ll,oo), 

which proves that 

Qk (x) = (x - a\k I) •• • (x - al" I), 

and an ... ,a~1 fulfill the inequalities (4.4). 
Thus we proved the theorem by induction. 
In the exactly analogous way one can prove the follow

ing theorem. 
Theorem 2: For 1 <p, < 2,Qk (x) has exactly k - 1 differ

ent roots, i.e., Qk(X) = (x - ad(x - a\k l) ... (x - a~!....I)' 
where 

a k <O<a\k l <a\k-II <a~kl <al,{-II < ... <a~~i' <a~!....l> 

anda\k-II ... a~~~ldenotethepositiverootsofQk_ dx). To 
perform the proof by mathematical induction it is sufficient 
to observe that AI<O and Ak>O, k=2,3, ... ,n, 
sgn Qk ( - 00) = ( - W, and sgn Qk (0) = sgn( - l)k A I 
.. . Ak = ( - l)k + I , and repeat the scheme of the preceding 

proof. 
The above theorems can be generalized to the following. 
Theorem 3: For k<p,<k+ 1, Qk+m(X), m 

= 1,2,3, ... ,n - k has at least m positive roots. 
To prove this statement we observe the following. 
(1) QI(O) = (- 1)IA IA2·· ·AI, 

thus 
sgn QI(O) = sgn( - 1)IAI .. . AI = (- 1)21 = 1, 0<:. 1<:. k, 

sgn Qk+m(O) = sgn( - W+mAI .. . AkAk+ I .. . Ak+ m 

= ( _ l)k + m( _ W = ( _ 1 )m, 

m = 1,2, ... , n - k. 

(2) If a> 0 and Qi (a) = 0, then Qi + I (a) and Qi + I (a) are 
of opposite sign. This follows immediately from the basic 
recurrence relations (4.1). 

(3) If Qi(a) = 0 for a:;60 then Qi-I (a):;60. Indeed, as
suming Qi (a) = 0 and Qi _ I (a) = 0, we obtain 

Qi_2(a) = (I/Bia)(Qi(a) - (a -Ai)Qi_ da)) = 0, 

and consequently, by the continuation ofthis procedure, 

Qi_3(a) = Qi_4(a) = .. ·Qo(a) = 0, 

which contradicts the definition of Qo(x). 
The proof of Theorem 2 is now analogous to a proof of 

the Sturm theorem. 12 
Let us denote by V(x) the number of changes in sign in 

the sequence 

Qk + m (X),Qk + m - I (x), ... ,Qo(x), 

for fixed x>O. 
When x is varied from 0 to 00, V (x) can change its value 

only when x passes through a root of the functions QI, 
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/ = 0,1, ... ,k + m. As a consequence of (2) and (3) above, 
V(x) cannot change when x passes a root of Q/f/ = 1,2, ... , 
k + m - 1. When x passes through a root of Qk + m' V (x) has 
a change of ± 1. On the other hand, 

Qk + m (O),Qk+ m - dO), ... ,Qk+ dO),QdO), .. , , Qo(O) 

have signs 
(_ l)m,( - l)m-I, ... , - 1,1, ... ,1, 

which means that VIOl = m, while sgn Qt(oo) = 1, i.e., 
V( (0) = 0. Thus, when x passes from ° to 00, V(x) changes 
from m to 0, which indicates the existence of at least m posi
tive roots of Qk + m (x). 

From the definition (4.2) it is obvious that Qn (x) has 
exactly the same roots as P ~n)(x"u 2), thus we have established 
that for ° <J.t < 1 there exist J.t different values of J.t for which 
eigenfunctions (3.6) and (3.11) can be constructed. For 
1 <J.t < 2 there exist n - 1 such values (and generally for 
k <J.t < k + 1 at least n - k of them). 

v. CONCLUDING REMARKS 

The situation is particularly simple when ° <J.t < 1 
(which includes the most interesting resonant case J.t = ~) 
and from the existence of the solutions (3.6) we can draw 
some conclusions about the whole energy spectrum. If, for 
an established value of J.t, we plot the energy versus the 
squared coupling constant the picture will have the follow
ing characteristic features. 

(1) The neighboring energy levels will cross on the par
allel straight lines E = n - A 2. 

(2) For each n there will be n crossings. 
(3) There will be no crossings not lying on one of these 

lines. 
(4) For A -+ 00 two neighboring levels will tend to the 

line E = n-A 2 corresponding to the doubly degenerate level 
of unperturbed Hamiltonian H (A,O)(here J.t is treated as a 
perturbation parameter). 
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Moreover, the changes of parameter J.t (until ° <J.t < 1) 
will not disturb the above picture (only the positions of the 
crossings can change). This observation seems to have a 
deeper meaning for the directions of investigation of quan
tum chaos in the model: it suggests that the spectrum can be 
rather insensitive on the changes of the perturbation param
eter J.t. Although a careful numerical analysis is undoubtedly 
needed it seems that "quantum chaotic" behavior cannot be 
observed in the resonance. 
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A local spectral sum rule for nonrelativistic scattering in two dimensions is derived for the 
potential class VEL 4/3 (JR2). The sum rule relates the integral over all scattering energies of the trace 
of the time-delay operator for a finite region l: C R2 to the contributions in l: of the pure point and 
singularly continuous spectra. 

I. INTRODUCTION 

Spectral sum rules involving the time delay for a region 
l: of finite volume and the bound-state density for the same 
region were derived in Ref. 1 in the context of classical scat
tering. Here we rigorously derive the quantum mechanical 
counterpart of these local sum rules in two Euclidean dimen
sions (see Theorem 4). 

We consider the quantum mechanics of a single spinless 
particle in two dimensions. The state space is a Hilbert space 
71' L 2(JR2), in which Ko denotes the self-adjoint extension 
of - t:.. describing the free Hamiltonian of the particle (with 
If = 2m = 1). We shall assume that the potential v, describ
ing the interaction, is a measurable function in L 4/3 (JR2). 

The total Hamiltonian H = Ko + v will be defined by 
the quadratic form method2 and we write 71' ac (H) and 
71'. (H) for the absolutely continuous and singular spectral 
subspaces respectively for the self-adjoint operator H. Also 
Rz , p(H), and E [R ~,p(Ko), and EO, respectively] will 
denote the resolvent, the resolvent set, and the spectral 
measure, respectively, for H (for Ko). The symbols ~ , ~ 0' 
~ 2' and ~ I denote the linear spaces of all bounded, 
compact, Hilbert-Schmidt, and trace-class operators in 
71' with 11·11, 1I·lb, and 11·111 denoting the operator, 
Hilbert-Schmidt, and trace norms, respectively. We 
also set ~4 = {AE~oIA· AE~2J. Then one has 
~ I ~~2~~4~~0~~' We shall use the factorization 
scheme u(x) = Iv(x)11/2, w(x) = sgn v(x)u(x), so that u, w 
E L 8/3 (JR2). The first theorem collects the results relating to 
the definition of H. 

Theorem 1: Let VEL 4/3 (R2). 
(a) For every X2 > 0, u(Ko + X2)-1/2 and w(Ko + X2)-1/2 

belong to f!iJ 4' 

(b) The total Hamiltonian H = Ko + v, defined as a qua
dratic form on D (K :(2), the domain of K ~/2, can be extended 
as the quadratic form of a self-adjoint operator, also denoted 
by H, which is bounded below. Also, D(IH 11/2) =D(K~/2). 

(c) For every z E C - {O J. the integral kernel A (z)(x, y) 
=u(x)R ~(x, y)w( y) defines a ~ 2 operator, also denoted A (z), 
which is ~ 2 holomorphic in the open upper- and lower-half 
planes separately. 

(d) IIA (zlllz-<> as Izl--+oo, and A (z) has boundary values 
in ~ 2 norm as z--+A. ± iO, uniformly for A. in every closed 

"On leave from the Indian Statistical Institute, New Delhi, 110016, India. 
bOnderzoeksleider N. F. W.O., Belgium. 

subset ofR - {OJ. 
(e) Forz Ep(H)np (Ko),[1 +A (Z)]-IE~ and one has the 

second resolvent equation 

Rz-R~= -R~w[I+A(z)]-luR~. (1) 

Furthermore, the function z--+[1 + A (z)] -I is ~ holomor
phic in the open upper- and lower-half planes. 

Since many of the calculations are standard we only 
sketch the proof. 

Proof The Green's function for the free Hamiltonian is 

R ~(x, y) = (;/4) H~) (~Ix - yil, where H~) is the Hankel 
function of the first kind, and where we have chosen the 

branch of the square root so that 1m ~ > O. Using the bound 

IH~)(a)1 <colal- 1/2 e- 1ma
, (2) 

for all a E C - {O J with 1m a>O (see Ref. 3, pp. 962 and 
963), we have that for z E C - {OJ. 

IIA (z) II 2 =-h-f f dxdylu(xWIH~)(~lx-yWlw(Y)12 
" 20 ff dXdy Iv(x)llv(y)l" cllvll~/3 (3) 

161z1 112 Ix - yl Iz1 1/2 ' 

by an application of the Sobolev inequality4 in R2. This 
proves (a) and parts of (c) and (d). The ~ 2hoiomorphyofA (z) 
follows by writing 

A (z) = u(Ko + X2)-1/2 [I + (z + X2) R~] 

x(w (Ko + X2)-1/2)., 

and observing that while the middle factor is clearly ~ holo
morphic, each of the other two are ~ 4' 

Part (b) follows from (a) on using standard results on 
quadratic forms.2.s.6 The existence of boundary values uni
formly in A. is the consequence of an application of the domi
nated convergence theorem and the estimate (3). The resol
vent equation (1) can be established as in Refs. 2 or 7. 0 

Scattering theory for such a system can be developed 
along standard lines and the next theorem summarizes the 
,results. 

Theorem 2: Let vEL 4/3 (R2). Set g' = {O J u {A 
ER\{OJII +A(A +;O)orl +A(A-;O)isnot I-IJ. 

(a) g' is a closed and bounded set of Lebesgue measure O. 
(b) u is Ko bounded and w is H bounded. Furthermore, 

uE ~ and wE.Il. are Ko and H smooth, respectively (see Refs. 5 
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and 8 for the definition of smoothness), where A is any half
open interval in R - 'C. 

and 

(c) The wave operators 

o ± == s-lim e+ iHt e- iKot, 
1 __ ± 00 

no, E = s-lim eiKo t e - iHt E U± R-IJ'- R-'l/ I __ ± 00 

exist. The scattering system defined by the pair (H, Ko) is 
asymptotically complete, i.e., 

Range 0+ = Range 0_ = K ac (H) = ER _ 'l/ K, 

andK.(H)~E'l/ K. 
Sketch o/the proof" As in Ref. 5, p. 364, the observation 

that IIA (A. ± iO)lb-o as IA. I~oo and an application of the 
analytic Fredholm theorem gives us (a). For (b), we use the 
resolvent equation (1) and note that I/l1 + A (A. ± i1])]-I1/ is 
bounded, uniformly for A.EA and 0<1]< 1. The part (c) then 
follows by an application of Kato--Lavine theory (Proposi
tion 9.16 in Ref. 5). 0 

II. TIME DELAY AND A TRACE THEOREM 

Following the reasoning in Ref. 9 we see that the expres-
sion 

r(f,1".)= f~ 00 (f,e iKo t [0'!r P~ 0 + - P~ ] e - iKo t /)dt 

formally describes the time delay in the state / E K for the 
region 1". ~ R2, where we have written P ~ for the orthogonal 
projection defined by mUltiplication with the characteristic 
function x~ . 

Let Ko==L 2(T), with (-")0 denoting the inner product 
and where T is the unit circle embedded in R2, and let ~ 0: 

L 2(R2~L 2([0,00 ), Ko) be the spectral transformation (see 
Ref. 5 for details) for the free Hamiltonian Ko so that 
(~ 0 Ko/);. = A. (~o/);. for a.a. A. E [0,00) and for/ED (Ko). 
Then one has the following theorem describing the proper
ties of 7" (see Theorem 2 in Ref. 9). 

Theorem 3: Let Ko and Hbe as described in Theorem 1, 
and let 1". be a measurable subset of R2 with finite Lebesgue 
measure, i.e., 11".1 < 00. Then we have the following. 

(a) P~ R ~ and P~ Rz are both ~ 2 operators for every 
ZEP (H)np(Ko)· 

(b) Set !iJ 0 = [ /eKlA.~II( ~ 0/);. 110 is a bounded func
tion of bounded support in [0,00 )}. Then !iJ 0 is dense in K 
and there exists a unique measurable family Q (A.,1".) oftrace
class operators in Ko, interpreted as the energy-shell time
delay operator, such that 

r(f,1".) = 100 

(( ~ o/);.,Q (A., 1". )( ~ 0/);' )0 dA., 

for every je!iJ o' 
(c) Denoting q(A.,1".) = tro Q (A.,1".), the trace of Q (A.,1".) in 

Ko, one has furthermore that 
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(4) 

(CO q(A.,1".) dA. = 21T tr R o' [0* P 0 _ P ] R 0 Jo IA. _ zI2 z + ~ + ~ z, 

(5) 
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and 

1 loo 1 - q (A.,1".)lm -- dA. = tr P~ 1m (Rz Eac - R~) Pl'.' 
21T 0 A. - Z 

(6) 

for every Z E P (H) n p (Ko). 
The function q(A.,1".) is interpreted as the average time

delay function of energy A. for the region 1".. 
Proof" Since 11".1 < 00, it is easy to see that Pl'. R ~E~ 2' 

This combined with (1) proves that Pl'. RzE~2' Part (b) is 
proved as in Ref. 9 by using the intertwining relation and 
noting that 

R~' [0'!r Pl'. 0+ - Pl'. ] R ~ = O'!r R: Pl'. Rz 0+ 

-R~' Pl'. R~ 

is a !!lJ 1 operator. Equations (4) and (5) are consequences of 
this as in Ref. 9. 

Using the cyclicity of the trace, the asymptotic com
pleteness of 0 +' and the resolvent equation, we write 

trR~' [0'!r Pl'. 0+ -P~] R~ 

= tr R : Pl'. Rz 0+ O'!r - tr R~' P~ R ~ 

= tr Pl'. (Rz Esc Rz - R ~ R~) Pl'. 

= (z - Z)-1 tr p~: ((Rz - Rz ) Esc - (R ~ - R ~)} P~, 

which leads to (6). 0 

III. SUM RULE 

A spectral sum rule for the time delay q( .,1".) is derived in 
this section. It is convenient to introduce a standard nota
tion6 for the Fourier transform that maps L q (R") (1<q<2) 
into its conjugate spaceL p (Rn)(p-l + q-l = 1). The Four
ier image of an element / E L q (Rn) will be denoted by 
i E L P (R"). With this notation our main result may be stated 
as follows. 

Theorem 4 (Spectral Sum Rule): (i) Suppose VEL 4/3 (R2) 
and let 1". be a measurable subset of R2 with finite Lebesgue 
measure, i.e., 11".1 < 00. 

(ii) Assume, furthermore, that Vi~EL I(R2). Then the 
function q(.,1".): [0, 00 )~R has a finite improper integral 

(00 q (A.,1".) dA. = lim (" q (A.,1".) dA., Jo n __ oo Jo 
which satisfies 

(00 q (A.,1".) dA. = _ 21T tr Pl'. Es Pl'. -..!... ( v (x) dx. (7) 
Jo 2 Jl'. 

Theorem 4 is demonstrated by breaking the proof into 
three propositions. The basic idea is to apply Cauchy's inte
gral theorem to the holomorphic function z~tr Pl'. (Rz 
- R ~) Pl'. + tr Pl'. R ~ vR ~ Pl'. on a suitable contour in 

p(H In p(Ko). Proposition 5 determines the real axis contribu
tion oftr Pl'. (Rz' - R~) Pl'.' The second factor proportional 
to v is the Born term and its real axis contribution is found in 
Proposition 6. Finally the large radius contribution of both 
terms to the Cauchy integral is described in Proposition 9. In 
Propositions 5, 6, and 9 the set 1". is defined to be a measura
ble subset of R2. 
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Before proceeding to these propositions it is helpful to 
identify the region in z (the complex energy plane) where 
Born dominance prevails. Let n be the canonically cut plane 
composed of the complex plane with the non-negative reals 
removed. Theorem I (d) shows that A (zl, zen, has 8iJ 2-norm 
continuous extensions to the real axis from either above or 
below. For positive reals these two extensions are different. 
Take ne to be the closure of the canonically cut plane which 
maintains the distinction between the two possible boundary 
values along the positive real axis. The large z bound for 
IIA (zllb allows the following definition of AI} < 00. 

Definition: For each 0e(0, 1), let AI} be the infinum of the 
set 

{AeR+IIIA(zllb<O<I, Vzene with Izl>A}. 

In the Born dominant region of IIe, i.e., Izl > AI}, it is 
evident that [1 +A (Z)]-1 is a bounded operator on K and 
has norm bound 11[1 + A (z)]-II1«1 - 0 )-1. Thus for each 
8e(0, 1 I, ff is contained in [ - AI}, Ag ] . Our first proposition 
describes the behavior of tr P~ 1m [R;l +II) - R 1 +11>1 P~ 
on the finite intervals of the real axis that contain ff. 

Proposition 5: Suppose veL 4/3 (R2) and I.I I < 00. For 
every finite interval (a,b ):J [ - Ag, AI} ] :J ff, 1> 0> 0, 

lim r
b 

d,1. tr P~ 1m [R;lH5 - R1+i.d P~ 
<HO+ Ja 

1 Lb = - q (,1.,.I) d,1. + 11' tr P~ Es P~. 
2 0 

(8) 

Proof: Take ~ > O. Theorem 2 (a) and the resolvent equa
tion (1) for Rz implies that P~ 1m R;l +ic5 P~ e8iJ I' The spec
tral decomposition of K = Kac 6l K. (with the associated 
orthogonal projectors Eac and E.) leads to 

trP~ ImR;l+i6 P~ 

= tr P~ 1m R;l+ i6 Eac P~ + tr P~ 1m R;l+ i6 E. P~. 

Thus (for ~ > 0) the left-hand-side integral in (8) is the sum 
lac + Is, where 

Iac(~) = fdA. tr P~ 1m [R;l+i6 Eac -R~+i6] P~, 

I.(~) = ib 
dA. tr PI. ImR;l+i6 E. PI.' 

First, consider the «5-0+ limit of lac (<<5). Theorem 3, Eq. 
(6), gives us the representation 

1 i b 

Loo «5 lac (<<5 ) = - dA. dJ-L 2 2 q (J-L,.I). (9) 
211' a 0 (J-L - A.) + ~ 

The elementary dA. integral can be written in either of two 
equivalent forms: 

rbd,1. «5 =tan-lb-J-L+tan-lJ-L-a 
)0 (J-L - A. )2 + ~2 ~ ~ 

= tan-I ~(b - a) 
(J-L - J-L+)(J-L - J-L-) 

(10) 

If U < b - a the roots J-L ± are real, given by 2p. ± = b + a 
± [(b - a)2 - 4B2j112, and always fall inside (a, b). Specifi

cally, J-L+ = b - €+ and J-L- = a + €_, where € ± -0+ as 
~-O. The inequality I tan -I J-L I < IJ-L I and estimate (4) suffices 
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to establish that the double integral in (9) is absolutely con
vergent. Fubini's theorem allows a change of integration or
der whereby (9) becomes 

1 Loo lac (~) = - dJ-L q( J-L,.I) 
21T' 0 

X [tan-I b ~ J-L + tan-I J-L ~ a] . (11) 

Treating the J-L > 2b and the J-L < 2b contributions to inte
gral (11) separately leads to the construction of a ~-indepen
dent L I (d J-L) majorant. For 0 < «5 < 1 andJ-L > 2b a majorizing 
function is Iq( J-L,.I)I{b - a)[( J-L - b)( J-L - a)]- \ whereas for 
0<}-L<2b the bounding function is 11'Iq(J-L,.III. Theorem 3, 
estimate (4), confirms that this majorant is L I (d J-L). Domi
nated convergence now applies to (11) yielding 

1 Lb lim Iac(~) = - dJ-L q(J-L,.I). 
chO+ 2 0 

(12) 

It remains to investigate the limit of Is (15). A useful inter
mediate result is the following. Suppose {Cn } is a sequence 
of operators in 8iJ converging strongly to C. If A, Be8iJ 2' then 

lim tr ACn B = tr ACB. (13) 

(See Ref. 5, Lemma 8.23.) 
Recall u.(H)~ f6' C [a, b ]. Since E[a. b) P,£e8iJ 2' it fol

lows that E. P~ e8iJ 2' The function [a, b ] 3,1. 
-+Im R;l + i6e8iJ is 8iJ -norm continuous (for «5 > 0) and has a 
8iJ -valued strong Riemann integral on [a, b]. Likewise the 
map [a, b ] 3,1._P,£ E. 1m R;l + i6 Es PI. e8iJ I is 8iJ I-norm 
continuous and so ,1.-tr P~ Es 1m R;l + i6 E. PI. has an or
dinary Riemann integral on [a, b ]. By the definition ofthese 
two integrals, the linearity of the trace, and (13) it follows 
that 

I. (~) = tr P-x Es rib dA. 1m R;l + i6 ] E. P-x' (14) 

Neither a nor b are eigenvalues of H. The strong Rie
mann integral ofIm R;l + i6 gives the standard result (Ref. 5, 
p.36O) 

~~ ib 
d,1. ImR;i+i6 = 11'E[0.b)' (IS) 

A second application of (13) together with (15) controls the 
6-0+ limit of (14), 

~+ Is (<<5) = 11' tr PI. E. E[a. b ) E. PI. = 11' tr PI. E. PI.' 0 
Proposition 6: Let veL 4/3 (R2) and suppose that (i) 

Il:l < 00, and (ii) jji~eL I (R2
). Then for a < - AI} with 

Oe(O,l), 

lim lim I (b,«5) 
b--+ 00 6--0+ 

= ..!.. i v(x)dx. 
4 1: 

Proof: Note that as in the proof of Theorem l, Eq. (3), we 
have IIP~ R ~ ± i6 ulb<cl,1.I- 1

/
4 (cindependent of A. and 15), 
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2itrP~ Im(R~+i<'l VR~+i/J)P~ 

_tr(p~ R~H) VR~H) P~ -P~ R~_.o VR~_iO P~), 

for every A ;i:O as 8-0+, and that P~ R ~ +.0 vR ~ +.0 P~ 
= P~ R ~ -.0 vR ~ -.0 P~, for A < 0. Thus by an application 

of the dominated convergence theorem, 

2iI(b,0+)=2i lim /(b,c5) 

Upon writing 

/J--.O+ 

= [ dA tr (P~ R~+.o VR~H) P~ 

- P~ R ~-.o vR ~-.o P~). 

P~ R~+iO VR~+iO P~ -P~ R~_iO vRLiO P~ 

=P~ R~+iO v(R~+.o -RLiO)P~ 

+ P~ (R~+.o -R~_.o)vR~_iO P~, 

(16) 

and observing that the trace of the product of two f!lj 2 opera
tors can be evaluated as the iterated integral of the associated 
L 2 kernels (see Ref. 10, p. 524), one has that the integrand in 
(16) is 

J dx J dYX~(x)[R~+.o +R~_.o](x,y) 
xv(y)[R ~+iO - R ~-iO ](x,Y)X~(x), 

where we have also used the fact that R ~ ± iO (x, y) 
= R ~±iO(y,x). 

Note thatR ~+iO(X,y) = (i/4)H~)(fflx - yi) for A >0 
and then the choice of the branch of.JZ leads to R ~ _ .0 (x, y) 

= -(i/4) H~)(fflx - yi), so that 

[R~+.o +RLiO](X,y) = - !No(fflx - yi) 

and 

[R ~+iO - R ~-iO ](x,y) = ~ Jo(fflx - yi), 

where Jo and No are the Bessel and Neumann functions of 
order 0. Thus 

2; /(b,O+) = - ! J:b dA J dx X~(x) J dyJo (fflx - yi) 

XNo (fflx - yi)v( y). 

Denoting SA (x) = SA (Ixi) = - (;/4) Jo(fflxi) No(fflxi) 
for A > 0, we can rewrite this as 

2iI(b,0+) = [dA J dxX~(x) J dysA(x-y)v(y) 

= J:b dA J dxsA(x)(X~*v)(x), (17) 

where we have written (X~ *v)(x) = f X~ (x + y)v( y) dy and 
also noted that the above integral converges absolutely by 
the estimate (lsA(x)1 <clxl- I

), and by an application of the 
Sobolev inequality so that Fubini's theorem can be used. 

From Ref. 3, p. 673, formula (6), we note that the im
proper Riemann Fourier transform of SA exists, i.e., 
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-1-1 e- ik.x SA (x) dx 
21T Ixl<" 

= -.!... r JoUklr)Jo(ffr)No(ffr)rdr 
4 Jo 

converges pointwise for ° < I k I ;i: 2ff as n- 00 to a function 
SA with 

_ ; {O, ifO < Ikl < 2ff, 
sA(k)="4 (2I1T)lkl- l (k 2 -4A)-1/2, if2ff <Ikl<oo. 

(18) 
It is clear that SA E L P (R2) with 1 <p < 2 and thus by the 
Hausdorff-Young theorem (Ref. 6, p. 11) its inverse Fourier 
transform Y- 1 SAEL q (R2) with p-I + q-I = 1 and fur
thermore Y- 1 is a continuous linear map from L P (R2) into 
L q (R2). Also since convergence in theL q norm implies con
vergence pointwise almost everywhere for a subsequence 
(Ref. 4, p. 18) we conclude that the improper Riemann in
verse Fourier transform oHA> 

lim _1_ i eik-x SA (k )dk, 
N-oo 21T Ik I <N 

if it exists, equals (Y-1 sAlIx) a.e. That this improper Rie
mann integral exists and is equal to SA (x) is the formula (6) of 
Ref. 3, p. 682. Therefore, by Lemma 8, Eq. (17) reduces to 

2i/(b,0+) = J:b dA J sA(k)X'7f"V(k)dk 

=21T J:b dA JSA(k)i~(k)V(-k)dk, (19) 

where we have observed that since X~ ELI (R2), (h *v)(k ) 
= 21T i~(k )v( - k). 

An elementary integration shows that 

Sb(k)=21T J:b sA(k)dA, 

i {I, ifO< Ik 1<2$, 
= '2 1- (1- 4b/k2)1/2, if 2$ < Ik I. 

Since ISA(k)1 = - i sA(k), it follows that 

rb 
ISA(k )ldA = -; rb 

sA(k)dk = - ~Sb(k )«41T)-1 Jo Jo 21T 

for all I k I > 0, and recalling the hypothesis i ~ VeL I, we can 
apply Fubini's theorem to (19) and obtain 

2iI(b,0+) = J Sb(k)i~(k)v( - k)dk. (20) 

Note that S b converges to i/2 pointwise for alII k I > ° as 
b-oo and that ISb(k)I<!. Therefore, we apply dominated 
convergence to (20) to arrive at 

lim /(b,O+) =~Ji~(k)V( - k)dk. (21) _00 4 

Finally an application of Lemma 7 to (21) gives the required 
result. 0 

Lemma 7: Let tP E L r (R") for some re[I,2] and Ie L 2 

nL t (R"), where r- I + t -I = 1. Assume furthermore that 
if i ELI (R"). Then 

J ¢(x) f(x)dx = J if (k )i(k )dk. (22) 
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Proof: See the Appendix. 0 
Lemma 8: Assume vEL 4/3 (JR2) and Il: I < 00. Let SA and 

SA be as defined in Proposition 6. Then 

f SA (x)X ~ *v(x)dx = f SA (k ).x;::v(k )dk. (23) 

Proof: Set "'==SA and/ X;;V and utilize Lemma 7 with 
JRn = JR2 and r =~. As noted in Proposition 6, SA E L 4/3. The 
function/is the Fourier transform of a convolution and is 
proportional to the product i~ (k )u( - k). Because i~ E L 2 
n L co and UE L 4 we have from Holder's inequality that 
/ E L 2n L 4. It remains only to verify that the requirement - - ,--..-
'" / ELI is met. Both X~ *v and X~ *v are in L 2 and thus a.e. 
fIx) = x~ *v( - x). Since X~ ELI and VE L 4/3 it follows that 
IE L 4/3. Finally, SA E L 4, so Holder's inequality implies if I 
ELI. 

Observe that ip(x) = SA ( - x) and that both SA (x) and 
SA (k) have purely imaginary values. Thereby, it is seen that 
(23), with", = SA and/ = X-;;V, is equivalent to the ident!!x 
(22). U 

For b > A e , define a large radius integration contour m 

II by C..,(b) = {zEllllzl = ..jb 2 + 82 and 11m zl>8 if 
Re Z > 0 j. The contour integral over C.., (b) will be taken in 
the conventional right-hand sense. 

Proposition 9: Suppose VE L 4/3 (JR2) and Il: I < 00. Then 

lim lim r tr Pd Rz - R ~ + R ~ vR ~] P~ dz = O. 
/J--. co 1>-+0 + J c 6( b ) 

(24) 

Proof' The identities (valid for zElle' Izi > Ae, 1> e> 0) 

[1 + A (z)] - I = 1 - A (z) + A (Z)2 - A (Z)3 [1 + A (z)] -I 

and R ~ vR ~ = (R ~w)(uR ~), when combined with (1), give 
3 

PdRz -R~ +R~ vR~] P~ = L Ki(z), 
i=1 

where 

K3(Z) = P~ R ~ wA (z)3[l +A (z)] -luR ~ P~, 

Ki(Z) = (- l)i+ I P~ R ~w[A (Z)]i uR ~ P~, i = 1,2. 

Consider the K3 contribution first. If we take the polar 
representation ofz = Izlexp (i",), t/JE [0,21T], thenzEC..,(b) re
quires¢<"'<21T - ¢, where tan ¢ = 8 lb. Bound estimate (3) 
is of the form IIA (z)112 = O(lzl-I/4). Since X~EL 4/3 (JR2), a 
similar Sobolev estimate shows that both IIP~ R ~W1l2 and 
lIuR ~ P~ 112 decay like O(lzl-I/4) for large Izi. After noting 
that 11[1 +A (z)]-III«l- e)-I, one finds 

I L,,(..,) tr K3(Z)dz I 

< (b 2 ;582)1/8 {2(; -=-t) Ilx~ 114/3 II vll!/3 }, (25) 

where c is the constant arising in the Sobolev estimate. The 
right side of (25) vanishes in the double limit 8-+0+, hoo. 

The analysis of the contribution of both K I and K2 to the 
limit in (24) is similar, so we shall restrict the discussion to 
the K I term. The operator K I is the product of three !!lJ 
operators, so tr KI may be calculated as the triple iterated 
integral of the kernels associated with these Hilbert-
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Schmidt operators (Ref. to, p. 524). Upon using estimate (2) 
for R ~(x, y) and setting r = (b 2 + 8 2)1/2 we have, for 
zEC..,(b), 

Itr KI(z) I < r~/4 f dx X~(x) f f dYI dY2 

X IV(YI)v(Yz)le- rImv'Z 

Ix - YII I/2IYI - Y21 1/21Y2 _xl l
/
2 ' 

where r = Ix - YII + IYI - Y21 + IY2 - xl- Doing the Idzi 
integral along contour C..,(b) gives the bound 

r Itr KI(z)lldzl < 2~~ f f f dx dYI dY2 
JCb (<5) r 

X x~(x)lv(YIlllv(Y2)1 
rlx - YII I/2IYI - Y21 1/21Y2 _ XII/2 ' 

(26) 

where the fact that the integrand is non-negative has been 
used to justify changing the order of integration. Clearly if 
the triple integral in (26) is finite, then the b---+oo, 8-+0+ limit 
of the K I term in (24) vanishes. The finiteness of this triple 
integral follows by the inequality r> Ix _ YII I/4 

IYI - YzI I /2IY2 - XII/4 together with Schwartz inequality to 
bound the dx integral and the Sobolev inequality to estimate 
the dYI dY2 integral. 0 

Pro%/Theorem4:Forz Ep (H) np (Ko) define <I>(Z)E!!lJ 
by 

<I>(z)=P~ [Rz - R ~ + R ~ vR~] P~. 

From Theorem 1, Eq. (1) it is seen that <I> may also be repre
sented as 

<I>(z) = ( P~ R ~w)A (z)[ 1 + A (z)] -1(uR ~ P~). (27) 

The outer two factors on the right side of (27) are !!lJ 2 holo
morphic in p(Ko) while the inner factors are norm holomor
phic in p(H). It follows that z---+<I>(z) is trace-norm holomor
phic on the domain p(H) n p (Ko). 

Select a and b such that (a,b ) ~ [ - A e, Ae] for some 
0< e < 1. For fixed a, b, and 8 > 0 choose a closed contour in 
the canonical cut plane II to be CT =C<5(a) + C ± (b,8) 
+ C..,(b), where C..,(b) has been given above and 

C ± (b,8) = {zElllz =,.1, ± i8, AE[a,b] j, 

C..,(a) = {zElllz = a + i7J, 7JE[ - 8,8]J. 

Define a holomorphic function on p(H) n p (Ko) C C by set
ting h (z) = tr <I>(z). Cauchy's integral theorem asserts that 
the CT contour integral of h (z) vanishes. Specifically, for 
each 8>0, 

i f<5 h (a + i7J)d7J + r h (z)dz 
-<5 JC6 (b) 

+ 2i f 1m h (A + i8)dA = O. (28) 

Consider that 8-+0+ limit of the first integral in (28). 
Use (27) to rewrite the argument oftr <1>. After applying the 
Sobolev inequality to estimate the 11·112 norm of P~ R ~w, 
A (z), and uR ~ P~, and using 11[1 +A (z)]-III«l - e)-I, it 
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follows (if a < - All) that Ih (a + i7J)1 is uniformly bounded 
in 7J. Thus the integral Sc5_ c5 h (a + i7J)d7J vanishes as <5-0+. 

Now take the <5-0+, b~oo limit of identity (28). The 
limiting value of the middle term is determined by Proposi
tion 9 to be zero, leaving us with 

lim lim rb 

1m h (A + i<5)dA = O. (29) 
b-- 00 5---+0 + J a 

Inserting the results of Propositions 5 and 6 into (29) yields 

1 i b 

1 i lim - q(A,~)dA + 1T tr p~ Es p~ + - v(x) dx = O. 
b--.", 2 0 4 ~ 

Here, the second and third factors are both finite. This re
quires that 

lim rb 

q(A,~)dA 
b--.oo Jo 

be finite; i.e., the improper integral of A~(A,~) satisfies 
(7). D 

IV. DISCUSSION 

We conclude by making a number of remarks concern
ing the spectral sum rule. 

(1) Consider the behavior of hypothesis (ii) in Theorem 4. 
The condition (ii) acts as a joint constraint on v and~. Given 
a fixed set ~, (ii) restricts the choice of v; or given a fixed 
vEL 4/3, (ii) defines an admissible class of sets ~ C JR2. Two 
examples illustrate how (ii) works. For every VEL 4/3, one 
can find a ~ such that (ii) is valid. Suppose ~ is a rectangle. 
Then i reel E L 4/3, and furtheremore, since vEL 4, Holder's in
equality implies vi reel ELI. On the other hand, hypothesis 
(ii) need not be fulfilled by all pairs (v,~) allowed by (i). Let ~ 
be a disk. Then idisk E L 4/3+ n L 00. In this case, if the poten
tial class is restricted tOVE L 4/3 n L 4/3+, then (ii) will besatis
fied for the disk. Finally, we observe that ifthe potential class 
is further narrowed to VEL 4/3 n L 2, then (ii) is obeyed for all 
~ with I~I < 00. 

(2) It is often desirable to separate the contributions of 
the point spectrum and the singularly continuous spectrum. 
Suppose {'¢; J is the family of independent L 2(JR2) eigenfunc
tions of H having eigenvalues A; and normalization II,¢; II 
= 1. These eigenvalues always lie within the interval 
[ - All' All ] and may assume negative, zero, or positive val
ues. The family {'¢; J may be empty, finite, or infinite. (In 
particular, the assumption vEL 4/3 is not known to rule out an 
infinite number of positive eigenvalues.) The spectral sub
space decomposition Es = Epp + Esc implies 

tr p~ Es p~ = ~ L 1,¢;(xWdx + tr p~ Esc P~. 
(3) Various sufficient conditions on v are known to en

sure the absence of the singular continuous spectrum and of 
the positive point spectrum of H. We quote only two repre
sentative results. 

Theorem: Let (1 + Ix J)vV(X)E L 4/3(JR2) + L '" (JR2), v> 1. 
Then JYsc (H) = {O J. Furthermore, there are a finite num
ber of positive eigenvalues of H with finite multiplicity in 
every compact subset of (0, 00 ). 

This result follows from both time-dependent Enss
Mourre theory 1 1 as well as from time-independent theory. 12 
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Theorem: Let (1 + IxJ)v(X)EL 2(JR2). ThenH has no posi
tive eigenvalues. 

This is a specialized version of the more general results 
obtained by Froese et al.13 

(4) For any I ~ I < 00, Remark (1) shows the spectral sum 
rule identity (7) is valid for all vEL 4/3 n L 2. The potential 
classL 4/3 n L 2 does not prohibit the appearance of zero ener
gy resonances (see Refs. 14 and 15). For example, if one var
ies v in L 4/3 n L 2 by changing the coupling constant it is 
possible to introduce zero energy resonances in the scatter
ing system. However, the local spectral sum rule (7) [takes 
the same form (7) for all VEL 4/3 n L 2, and so] is structurally 
insensitive to the presence or absence of a zero energy reso
nance. 

(5) Global sum rules (Levinson'S theorem) obtain if 
~ = JR2. A result of the literature that is closely related to the 
spectral sum rule in Theorem 4 is the JR2-Levinson theorem 
derived by Cheney. 16 Let S (k ): L 2( T ~L 2( T) denote the 

energy-shell S-matrix operator, where I k I =..[T ;;00. Then 
for a potential class that prohibits (1) the singularly contin
uous spectrum, (2) non-negative eigenvalues, and (3) zero
energy resonances, it is found thae6 

i[log det S (0) - log det S ( 00 )] = - 21TN - ~ r v(x)dx, 
2 JR' 

where N is the number of negative energy bound states. 
For scattering in JR3 the effect of zero-energy resonances 

on the form of Levinson's theorem has been discussed sever
al times. 17,18 In a notation analogous to the above, Newton l7 

finds 

<5(0) - lim [<5(k) + ~ r V(X)dX] = 1T( N + ~ q), 
k~", 41T JR' 2 

where <5 (k ) is an appropriately chosen phase parametrization 
for the S matrix, In(det S (k )) = 2i <5 (k). The factor q = 0, if 
there are no zero-energy resonances, and q = 1, otherwise. 

Here N is the number of zero-energy and negative-ener
gy eigenfunctions. It is this type of zero-energy resonance 
modification of Levinson's global sum rule that does not 
occur in the local sum rule of Theorem 4. 
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APPENDIX: PROOF OF LEMMA 7 

Set tP(x) = (21T) - n12 exp ( - x 2/2) and for every E> 0, 
tPE(X) = E- n tP(xIE) so that S tPE(X) dx = 1 and 
~E(k) = (21T) - nl2 exp( - k 2e/2). Define 

'¢E(X) = J '¢(x + y) tPE(Y) dy = J '¢(x + ry) tP(y) dy. (30) 
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Note that ¢'EeL'(Rn) and II¢'EII,<II¢'II,. Since the map 
A-+IA I' is convex on R + for r> 1 and since f ~(y)dy = 1, we 
have, by Jensen's inequality19 and (30), 

II¢' - ¢'EII~ = fl¢'(X) - ¢'E(Xli' dx 

<f dx f Ir/J(x + Ey) - ¢,(xli' ~(y) dy 

= f II(TEy -I)¢,II~ ~(y)dy, 

where (Ty ¢')(x) = ¢'(x + y). 
Now T Ey ¢'-¢' in L ' norm as €-o+ for every y fixed. 

Furthermore Ty is an isometry. Therefore, by dominated 
convergence one has that II¢' - ¢'EII,-o as €-o+. Since 
¢' EeL 2 (Rn) by Young's theorem (Ref. 6, p. 28), we have by 
Plancherel's theorem that 

f ¢'E(X) f(x)dx = f ipE(k )l(k )dk. ' (31) 

The left-hand side of (31) converges to f ¢'(x)f(x)dx since 
II¢'E - ¢'II,-o as €-o+ and sincefeL 2 (Rn). On the other 
hand, ipE(k) = (21T)n/2 fp(k) ~E( - k) = fp(k)e - k

2E'/2-+fp(k) 
pointwise and lipE(k)1 < lip(k)1 so that an application ofthe 
dominated convergence theorem to the right side of (31) 
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along with the hypothesis ip 1 eLI (Rn) leads to the ori8i!!al 
result. 0 
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Exact equations governing three-dimensional time-domain inverse scattering are derived for the 
plasma wave equation and the variable velocity classical wave equation. This derivation was 
announced for the plasma wave equation in a short note by the authors. That work was motivated 
by Newton's three-dimensional generalization of Marchenko's equation. This paper gives the 
details of the new derivation and extends it to the classical wave equation. For the time domain 
derivation in this paper, the scattering region is assumed to have compact support and smoothly 
joins the surrounding three-dimensional infinite medium. The derivation contains the following 
ingredients: (1) a representation of the solution at a point in terms of its values on a large sphere, (2) 
the far-field form ofthe Green's function, (3) causality, and (4) information carried in the wave 
front of the solution. The derivation of the classical wave inverse scattering equation requires that 
the velocity in the scattering region be less than that of the surrounding medium. This condition is 
natural, for example, in the scalar wave model of electromagnetic scattering from dielectric 
nonconducting bodies in free space. Finally, an experiment to verify the inverse scattering 
equations is proposed. 

I. INTRODUCTION 

In a recent note1 the authors proposed a simple physi
cally motivated derivation of an exact Marchenko-like in
verse scattering equation for the three-dimensional linear 
plasma wave equation2

-6 

(a - a~ - V(x))U(t,e,x) = O. (1) 

Here a is the Laplacian and a ~ is the second derivative with 
respect to time. The potential V(x) is a scalar function. For 
simplicity we make the following assumptions about V: (1) 
- a + V supports no bound states, and (2) V is infinitely 

differentiable and has compact support (i.e., VEe;). As
sumption (2) can certainly be relaxed. Also, U(t,e,x) is the 
wave field, e denotes the direction of incidence, t the time, 
and x a point in R 3. Note that potentials and field quantities 
are denoted by captialletters when discussing Eq. (1). 

The derivation just noted will be generalized to provide 
a set of exact inverse scattering equations for the variable 
velocity scalar wave equation 7-9 (from now on called the 
classical wave equation): 

(a - [l/c2(x)]a:) u(t,e,x) = O. (2) 

Here c(x) is a positive real valued function which denotes the 
velocity at x and u(t,e,x) is the corresponding wave field. We 
assume that c(x) is asymptotically constant; in this sense the 
scatterer is situated in an otherwise isotropic and homogen-

-I Ames Laboratory is operated for the U.S. Department of Energy by Iowa 
State University under Contract No. W-7405-ENG-82. 

bl Permanent address: Department of Physics and Astronomy. University of 
Missouri. Columbia. Missouri 65211. 

eous host medium. We assume, moreover, that the velocity 
c(x) is everywhere less than or equal to that of the host medi
um. (This assumption is physically natural if Eq. (2) is used, 
for example, to model electromagnetic scattering from a di
electric body in free space.] In addition, we assume that c(x) 
is in CO' and differs from the host velocity only in a region of 
compact support. Lowercase letters will be used to denote 
the velocity and field quantities for the classical wave equa
tion. The wave equations used imply that for the underlying 
physical problems (1) attenuation is negligible and (2) the 
system is passive; i.e., there is no spontaneous introduction 
of energy into the system. 

The historical development of our method proceeds as 
follows. In 1950, MarchenkolO

•
l1 introduced a method for 

solving the inverse scattering problem for the time-indepen
dent Schrooinger equation (single particle scattering from a 
scalar potential) assuming a spherically symmetric potential. 
Recently, Newton, 12-17 in an important development, gener
alized Marchenko's approach to the three-dimensional 
Schrodinger equation. The authors then showed that, for 
positive V(x), the same approach can be used to solve the 
three-dimensional inverse problem for the plasma wave 
equation. The exploration ofthis result led to (1) the physi
cally motivated derivation to be discussed in this paper and 
(2) its generalization to the classical wave equation. 

The derivations to be carried out in this paper have the 
following structure. One starts with the scattered wave field 
measured on a large sphere S at infinity. If the exact far-field 
Green's function, including the effect of the potential, is 
known, a representation theorem can be used to determine 
the wave field at all points interior to the sphere S. That is, 
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the wave field is determined by the scattering data and the 
far-field Green's function. Since, as we discuss, the far-field 
Green's function is proportional to the wave field itself, we 
obtain an integral equation for the wave field in terms of the 
scattering data. Under the conditions noted on V(x) and c(x) 
this integral equation reduces to the three-dimensional ana
log of Marchenko's approach. 

Causality is an essential element of exact inverse scatter
ing methods. In frequency-domain derivations, causality 
shows up via repeated use of the analytic features of the wave 
functions. By contrast, our time-domain approach includes 
causality in a transparent way in terms of the wave fronts 
(characteristic surfaces). We feel this adds considerable intu
itive clarity to our approach. 

The structure of this paper is as follows. Section II is 
devoted to notation and preliminaries. Section III is used to 
review and discuss the time-domain representation theorem. 
The far-field form of Green's function and its physical inter
pretation is given in the fourth section. Section V contains 
the derivation of the integral equation for the wave field 
mentioned above. In Section VI the extraction of the poten
tial from the wavefield is described. At this step, the treat
ment of the two wave equations differs. In particular, the 
role of curved wave fronts and caustics for the classical wave 
equation is discussed. The last section notes that the two 
wave equations can be physically realized. In particular, the 
plasma wave equation governs acoustic scattering if the ve
locity of the fluid is the same at all points in space (the density 
and compressibility may, however, vary). The paper is con
cluded with two appendices. These appendices give a careful 
frequency-domain treatment of certain aspects of the deriva
tion. These results are used to support the more heuristic 
time-domain discussion given in the main text. 

II. PRELIMINARIES AND NOTATION 

The scattering geometry is shown in Fig. I for both wave 
equations. To make our two equations appear as similar as 
possible, we assume that c(x) in Eq. (2) is asymptotically 1. 
The scattering region is defined to be that portion n of R 3 in 
which V(x) differs from zero and c(x) from 1. We chose the 
origin of coordinates to be in n. A scattering experiment 
may be qualitatively described as follows. At very early time 
the wave field is described by an incident plane wave delta 

/ 

-----8' 
8(t-Hl 

s 

/ 

/ 
/ 

/ 

as 

FIG. 1. The scattering geometry is shown. Here e and e' are the directions of 
incidence and scattering, respectively. The data is measured on the large 
spherical surface labeled as. 
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function 8 (t - e . x). This stipulation takes the place of both 
initial conditions so that for large negative times the time 
derivative of the wave field is specified by at 8(t - e ·x). This 
field propagates freely until it intersects the scattering region 
n. The wave field then interacts with the potential in a com
plicated way. The wave field is finally measured on a large 
spherical surface as, centered about the origin. Generally 
the scattering data will be described in the far-field limit and 
the radius of S will be taken as arbitrarily large. For very 
early times the wave field is zero in the scattering region 
since the incident wave has not yet arrived. It will be as
sumed that the wave field is zero in the scattering region n 
for large positive time. That is, for times sufficiently far in 
the future all of the energy has propagated out of n. (See 
Appendix A.) 

A. Plasma wave scattering formalism 

Scattering theory can be written using integral wave 
equations defined in terms of the Green's function. In parti
cular, the plasma wave equation may be written in two alter
native forms 

U ± (t,e,x) = U f (t,e,x) + f d 3X' dt' 

XGo±(t - t',x,x')V(x')U ±(tl,e,X' ) (3a) 

or 

U ± (t,e,x) = U o± (t,e,x) + f d 3X' dt I 

XG ±(t - tl,x,XI)V(X')U 0+ (t ',e,x'). (3b) 

Here U o± denotes the incident field and for this paper we 
uniformly require that U o± (t,e,x) = 8(t - e • x). The Green's 
functions appearing in Eq. (3) satisfy 

(a - a;)G o± (t - t ',X,X' ) = 83(x - x ' )8(t - t '), (4a) 

(a - a; - V(x))G ± (t - t I,X,X') = 83(x - x ' )8(t - t '). 
(4b) 

Explicitly 

Go±(t,x,x' ) = - (41Tlx - x ' I)-18(lx - xii =Ft), (5) 

where the + and - signs correspond to radiation and in
coming boundary conditions, respectively. We note that the 
free-space Green's functions G o± depend only on Ix - xii 
rather than on x and x' independently. The functions G ± 

and G o± are related via the equation 

G ± (t - t ',X,X' ) 

= Go±(t-t',x,x' ) + f d 3x" f dt" 

XG ±(t - t ",x,x")V(x")Go±(t" - tl,x",X'). (6) 

Finally the solutions U + and U - are related via 

U-(t,e,x) = U+( - t, - e,x), (7) 

as follows from Eqs. (3a) and (5). 
Causality plays a crucial role in inverse scattering the

ory. The wave front (a characteristic surface) occurs at 
t = e • x. For t < e . x the wave field U + (t,e,x) is identically 
zero. Similarly, from Eq. (7), U -(t,e,x) is identically zero for 
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t > e • x. The Green's functions also satisfy causality and 
G 0+ (t - t ',x,x') and G +(t - t ',x,x') are zero if 
t - t ' < Ix - x' I. Since Ix - x'i is always positive it follows 
that G 0+ and G + are zero if t - t ' < O. This ensures that the 
response at (x,t ) cannot occur before the cause at (x' ,t '). Thus 
G 0+ and G + propagate events from the past to the future. On 
the other hand, G 0- and G - are zero if t - t' > Ix - x'i or 
t - t' > 0 and propagate events from the future to the past. 

The scattering data is derived from the far-field asymp
totic value of the wave field and is conveniently represented 
by the impulse response function 

R(e,e',r)= lim Ixl{U(t,e,x)-8(t-e·x)J. (8a) 
t.lxl_oo 
'1"=t-lxl 

In other words, for large I x I ' 

U ±(t,e,x) = 8(t - e· x) 

+ R (+e,e', ± t-Ixl) + 0(_1_). (8b) 
Ixl Ix l

2 

Here, e' = xl I x I is the direction of scattering, and e denotes 
the direction of incidence. Equation (Sa) may be evaluated 
using (3a): 

R (e,e',r) = - (417')-1 f d 3x U+(r + e'· x,e,x)V(x). (9) 

It was noted earlier that in the absence of bound states, 
U+(t,e,x) vanishes in the scattering region as t_ ± 00. 

Consequently, we may infer from Eq. (9) that R (e,e',r) van
ishes as r - ± 00 under the same conditions. 

The inverse problem is to determine the potential V(x) 
given the impulse response function R (e,e',r). 

B. Variable velocity scalar wave equation 

The classical wave equation may be written more conve
nientlyas 

[ /1 - a; - v(x)a;] u(t,e,x) = o. (10) 

Here 

v(x) = [1/c2(x)] - 1. (11) 

We remind the reader that for the classical wave equation we 
use lowercase characters to denote the potential and field 
variables. For the scattering experiment described, Eq. (10) 
can be rewritten as 

u ± (t,e,x) = uo± (t,e,x) + f d 3X' dt' 

Xgo± (t - t ',x,x')v(x'ja;. u ± (t,e,x') (12a) 

or 

u ± (t,e,x) = uo± (t,e,x) + f d 3X' dt ' 

Xg ± (t - t ' ,x,x')v(x'ja;. uo± (t' ,e,x'). (12b) 

Here uo± (t,e,x) is given by 8 (t - e • x). The Green's functions 
appearing in Eq. (12) are defined by 

(/1 - a;)go±(t - t',x,x') = 83(x - x')8(t - t'), (13a) 
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and 

(/1 - a; - v(x)a;)g ± (t - t ' ,x,x') = 83(x - x')8(t - t '). 
(13b) 

Equation (13a) is identical to (4a) and explicitly 

go±(x,x',t - t') = - (41T1x - x'I)- 18(t - t' += Ix - x' I). 
(14) 

Again, + and - refer, respectively, to radiation and in
coming boundary conditions. Further, g ± and go± are relat
ed via 

g ± (t - t ',x,x') = go± (t - t ',x,x') + f d 3X " dt" 

xg±(t - t ",x,x")v(x")a;. 

xgo±(t" -t',x",x). (15) 

Finally, u+ and u- are related via 

u-(t,e,x) = u+( - t, - e,x). (16) 

Equation (16) follows immediately from Eqs. (12b) and (14). 
Causality also plays a crucial role for the variable veloc

ity scalar wave equation. By hypothesis we have chosen the 
velocity everywhere to be less than or equal to 1. Conse
quently, as with the plasma wave equation, u+(t,e,x) = 0 if 
t < e' x. Further g+(t - t ',x,x') and go+ (t - t ',x,x') are zero 
for (t - t') < Ix - x'i andg-(t - t ',x,x') and go- (t - t ',x,x') 
are zero for (t - t') > Ix - x'i. 

The impulse response for the classical wave equation is 
defined by 

r(e,e',r) = lim Ixi(u(t,e,x) - 8(t - e· xl). (17a) 
t,Is.)_QO 
.,.=t-I.I 

In other words, for large lxi, 

u ±(t,e,x) = 8(t - e' x) 

+ r( ± e,x, ± t -Ixl) + 0 (_1_). (17b) 
Ixl Ixl

2 

Large Ixl analysis of(12a) yields 

(18) 

and as above r(e,e',r) = 0 as r- ± 00. 

The inverse problem is to recover the velocity, c(x), giv
en the impulse response function. 

III. TIME DOMAIN REPRESENTATION THEOREM 

The representation theorem states that if the Green's 
function (g ± or G ±) is known and if the wave field and its 
normal derivative are specified for all time on a closed, sim
ply connected smooth surface as', then the field can be 
found at all interior points (x,t). Thus the representation 
theorem gives a formal solution of the boundary value prob
lem provided the Green's function is known. Below we will 
review the representation theorem for the two wave equa
tions we are discussing. The approach in the text is designed 
for maximum physical clarity. A careful treatment of the 
representation theorem is presented in Appendix A. This 
derivation is given since we have not been able to find a 
reference for the results in the form needed below. 

Rose, Cheney, and DeFacio 2805 



                                                                                                                                    

A. Plasma wave equation 

The derivation of the time domain representation 
theorem is presented for completeness. First multiply the 
plasma wave equation [Eq. (1)] by G ± (t - t ',x,x') to obtain 

G ±(t - t',x,x')(A' - a~. - V(x'))U+(t ',e,x') = O. (19) 

Here A' is the Laplacian for x' coordinates. Then multiply 
Eq. (4b) (which defines G ±) by U + (t ' ,e,x') to obtain 

U +(t ',e,x')(A' - a~. - V(x'))G ± (t - t ',x,x') 

= c5(t - t'W(x - x')U+(t',e,x'). 

Subtracting (19) from (20) 

U +(t ',e,x')c5(t - t 'W(x - x') 

= [U +(t ',e,x')A'G ± (t - t ',x,x') 

- G ± (t - t ',x,x')A' U +(t ',e,x')] 

- [U+(t',e,x')O~.G ±(t - t',x,x') 

(20) 

- G ±(t - t',x,x')O~. U+(t',e,x')]. (21) 

LetS' be the volume contained within the surface as'. Upon 
integrating (21) over S' and - 00 < t ' < 00 one finds 

U+(t,e,x) 

= r. d 3x 'J"" dt'V'·(U+V'G± -G±V'U+) 
Js - "" 
- r d 3x' J"" dt' ~ 

Js· - "" at 

x(U+ at·G ± - G ± at·u+). (22) 

The second term on the right-hand side vanishes upon inte
gration since U + (t ' ,e,x') = 0 as t ' -+ ± 00. Using Green's 
theorem the first term on the right-hand side leads to 

U+(t,e,x) 

= r dS'J"" dt'[U+(t',e,X,)aG± (t-t',x,x') 
Jas" - "" an 

au+ ] - G ± (t - t ' ,x,x') -a;;- (t ' ,e,x') , (23) 

for XES' and U + (t,e,x) = 0 otherwise. Equation (23) is the 
general form of the representation theorem. For the inverse 
scattering problem we will let S' be a ball with arbitrarily 
large radius centered about the origin. The integration over 
the boundary as' then involves only the far-field form of 
Green's function and the scattering data R (t ' ,e,x'), which 
suffice to determine U ± (t ' ,e,x') as Ix'i -+ 00. Consequently 
the wave field for a point x interior to as' can be determined 
from the scattering data once the far-field Green's function 
is known. 

The representation theorem (23) is actually two equa
tions since it holds if either G + or G - is used. The derivation 
sketched above also holds if U - is substituted everywhere 
for U + . One finds 

U-(t,e,x) 

= filS' dS' f:"" dt'[ U-(t',e,x') ! G+(t-t',x,x') 

au- ] - G +(t - t ',x,x') -a;;- (t ',e,x') , (24) 

2806 J. Math. Phys., Vol. 26, No. 11, November 1985 

and 

U-(t,e,x) 

= r dS'J"" dt'[U-(t',e,x')~G-(t-t',x,X') 
Jas' - "" an 

G -( , ') au - ( , A')] - t-t ,x,x -- t ,e,x . 
an 

(25) 

It follows from our discussion of the causal properties of G + 
that the representation theorem in the form 

U+ = -fdS' dt'[G+ au+ _ u+ aG+] 
an an 

(26) 

takes the initial data (incident field) and propagates it to the 
future. On the other hand, the form of the representation 
theorem 

U+= -fdS'dt'[G- au+ -u+ aG-] (27) 
an an 

propagates the final data (scattered field) into the past. Since 
we know the scattered data at late time and wish to recon
struct the field at earlier times, Eq. (27) is central to our 
development of inverse scattering. 

B. Classical wave equation 

The derivation of the representation theorem for the 
classical wave equation is almost identical to that for the 
plasma wave equation. The major difference can be seen by 
looking at the analog of Eq. (22), which is 

u+(t,e,x) = r. d 3x'J"" dt'V'·(u+V'g± -g±V'u+) 
Js - "" 

-i. d 3
x' f: "" dt'(l + v(x')) 

(28) 

In the second term on the right-hand side of(28) the potential 
occurs. However, the entire term vanishes upon integration 
by parts since u+(t,e,x) = 0 for fixed x as t -+ ± 00. Conse
quently the representation theorem for the classical wave 
equation is exactly of the same form as for the plasma wave 
equation 

u ± (t,e,x) = r . dS' J"" dt '{u ± (t ',e,x') °a'g± (t - t ',x,x') 
Jas - "" n 

au± } -g±(t-t',x,x')a;;(t',e,x') . (29) 

The interpretation of Eq. (29) in terms of the causal proper
ties of u ± and g ± remains the same as previously. 

IV. FAR-FIELD FORM OF GREEN'S FUNCTION 

The Green's function simplifies in the far-field limit. 

A. Plasma wave equation 

The far-field form of the free-space Green's function is 
obtained by letting Ix'i become arbitrarily large in Eq. (5) 
and is 

Rose, Cheney. and DeFacio 2806 



                                                                                                                                    

G o± (t - t ',x,x') 

= __ 1-8(IX'I-x'.x+(t-t'))+0(_1_). 
41rlx'l Ix'12 

(30) 

Substitution of G o± into the equation G ± 
= G o± + Gl VG ± for Ix'i arbitrarily large yields 

G ± (t - t ',x,x') 

= __ 1_[8(IX'I-x'.x+(t-t')) 
41rlx'l 

+ J d 3X " dt" G ± (t - t ",x,x")V(x") 

X8(lx'l-x' 'x"'f(t" - t'))] + 0CX~12)' (31) 

The term inside the bracket is the right-hand side ofEq. 
(36) with Uo = 8 (t - t' + (Ix'i + x'· x)). Consequently, Eq. 
(31) for Ix'i arbitrarily large becomes 

G ± (t - t ' ,x,x') 

= __ 1_ U ±(t - t' + Ix'I,x',x) + 0 (~2)' 
41rlx'l Ix'i 

(32) 

Equation (32) is derived in Appendix B where the order of 
the remainder term is established. 

B. Classical wave equation 

The derivation is again precisely the same as above. 
Equation (30) is replaced by 

go± (t - t ',x,x') = - _1_ 8(lx'l - x' • x + (t - t')) 
41Tlx'l 

(33) 

as Ix'i becomes arbitrarily large. Substitution of (33) in the 
equation g ± = go± + go± V if,go± yields 

g± (t - t ',x,x') 

= __ I_[8(lx'I-X'.x+(t-t')) 
41rlx'l 

+ f d 3X" dt" g± (t - t" ,x,x")v(x") 

xa:.8(lxl-x'·x"+(t" -t'))]. 

Equation (34) simplifies to yield the large Ix'i expansion 

g± (t - t ',x,x') = - _1_ u ± (t - t' + Ix'I,x',x) 
41Tlx'l 

0(_1 ) + Ix'12 ' 

C. Heuristic arguments 

(34) 

(35) 

An essential feature of the above results for G ± andg ± 

is that in the far field the Green's function becomes propor
tional to the wave field. Below we present a heuristic argu
ment, which is designed to explain the physical origin of this 
proportionality. A careful derivation is given in Appendix B. 
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This result could also be obtained by applying a stationary 
phase argument to the bilinear expansion of the Green's 
function in terms of the eigenfunctions. 

The far-field Green's functions just derived can be justi
fied on physical grounds. The Green's function 
g+ (x,x' ,t - t ') gives the wave field at (x,t ) due to a delta func
tion excitation at (x' ,t '). The response to such an excitation is 
a spherically spreading wave 

__ 1_ 8(t- t' -Ix -x'l) 
41T Ix - x'i 

(36) 

In the absence of the potential the response at (x,t) as 
Ix-x'l- 00 is 

-(41Tlx'I)-18(t-t'-lx'l +x'·x). (37) 

That is, the wave field is essentially a plane wave propagating 
in the direction - x' if the potential is absent. If a potential is 
present the wave field is given by u +, the field induced at (x,t ) 
by the incident plane wave. The Green's function thus is 
argued to be 

g+(t - t ',x,x') = - (41Tlx'I)-lu+(t - t' - Ix'I,x',x) 

+ 0(l/lx'1 2
). (38) 

This is, of course, in agreement with Eqs. (32) and (35). The 
argument for the plasma wave equation is the same. 

V. INVERSE SCATTERING EQUATIONS 

In this section we derive an integral equation that relates 
the wave field to the scattering data. The scattering data are 
now assumed to be measured on the boundary as' of a large 
ballS' centered about the origin of coordinates. Roughly, the 
integral equation is obtained by using the far-field asympto
tics to evaluate the representation theorem on the surface 
as'. The result yields the wave field interior to S'. The inte
gral equation comes about since the far-field form of Green's 
function is proportional to the wave field [Eqs. (32) and (35)]. 

A. Plasma wave equation 

The integrations in Eqs. (25) and (27) (the representation 
theorem for U + and U -) are taken over the surface as' and 
the equations are then subtracted. The result is 

U+(t,e,x) - U-(t,e,x) 

= r . dS' f"" dt'{(U+(t',e,x') - U-(t',e,x')) 
Jas - "" 

aG-
X----a;;- (t - t',x,x') - G -(t - t',x,x') 

(
au+ ('A') au- ( ,A 'i)} X -- t ,e,x --- t ,e,x . an an 

In (39), we use (8b) and (32); this gives 

U+(t,e,x) - U-(t,e,x) 

= __ 1_ r d 2x'f"" dt'[R(e,x',t'-lx'l) 
41r JS2 - 00 

- R (- e,x', - t' -lx'l)] 

X_a_ U -(t - t' + Ix'I,x',x) 
alx'i 
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+_1_( d 2x'f'" dt'U-(t-t'-lx'I,x',x) 
41T JS2 - '" 

X_a_ [R(e A, t'-lx'l) 
alx'i ,x, 

- R (- e,x', - t' - Ix'Il]. (40) 

Here S2 denotes the unit sphere. In (40), we change the Ix'i 
derivatives to t ' derivatives (putting in the necessary minus 
signs) and integrate by parts in the first t ' integral. The terms 
involving at.R ( - e,x', - t' - Ix'l) cancel, leaving 

U+(t,e,x) - U-(t,e,x) 

= __ 1_ ( d 2x'f'" dt'U-(t-t'+lx'I,x',x) 
211' JS2 - '" 

Xat·R (e,x',t' - Ix'l). (41) 

In (41), we make the change of variables 'T' = t' - Ix'i and use 
(7). We obtain 

U+(t,e,x) - U-(t,e,x) 

= __ 1_ ( d 2X'f'" d'T' U+('T' - t, - x',x) 
211' Js' - '" 

XarR (e,x',r). 

For t> e • x causality insures U -(t,e,x) = O. 
If we write 

U+(t,e,x) = <5(t - e· x) + U +SC(t,e,x), 

then for t>e· x 

U + SC(t,e,x) 

= __ 1_ ( d2x'~R(e,x',t-x'.x) 
211' JS2 dt 

__ 1_ r d 2X'f'" d'T'~R(e,x','T'+t) 
211' Js' - '" dt 

(42) 

(43) 

xU + SC('T', - x',x). (44) 

This is precisely the Newton-Marchenko equation for the 
plasma wave equation. It is a Fredholm II equation with 
eigenvalues in the closed interval [ - 1,1] (see Refs. 14 and 
15). For sufficiently weak potentials, Eq. (44) can be solved 
by iteration for U + if the scattering data are given. As we will 
see in Sec. VI, the potential can be recovered from the wave 
field U+. 

B. Classical wave equation 

The same procedure works for the classical wave equa
tion. We subtract the equations (29) involvingg- to obtain a 
representation for u + - u -. We then use the asymptotics 
(35) and (17b) as before to obtain 

u+(t,e,x) 

-( A) 1 Is d 2A, d r(A A, A, ) = u t,e,x -- x - e,x ,t-x ·x 
211' S2 dt 

__ 1_ r d 2X'f'" d'T'~r(e,x','T'+t) 
211' Js' - co dt 

xu+SC('T', -x',x). (45) 

Since we require that c(x) ,,1 everywhere, it follows that 
u-(t,e,x) = 0 if t> e· x (see Ref. IS). Consequently the fol
lowing integral equation is obtained for t> e • x 

2808 J. Math. Phys., Vol. 26, No. 11, November 1985 

u + SC(t,e,x) = - _1_ f d 2X' ~ r(e,x' ,t - x' • x) 
211' dt 

1 1 d 2A'f'" d dr(AA' +t) -- X 'T'- e,x,'T' 
211' s' - '" dt 

Xu+SC('T', -x',x). (46) 

The reader is reminded that Eq. (46) is quite different from 
Eq. (44). Indeed little is known about (46) at present. This is 
due to the fact that the potential term for the classical wave 
equation has the form V(x)a:u in contrast to the plasma 
wave equation whose potential term is Vu. Physically we 
note that this corresponds to the fact that PWE solutions 
propagate in straight lines, whereas in general the character
istics are curved for the classical wave equation. If Eq. (46) 
has a unique solution it determines the wave field from the 
scattered data. The extraction of the potential from this 
wave field solution is presented in the next section. 

VI. RECOVERY OF THE VELOCITY/POTENTIAL 

The integral equation that allows the reconstruction of 
the wave field from the impulse response function is formally 
identical for both wave equations. There are significant dif
ferences and also similarities in the recovery ofthe potential 
from the reconstructed wave field. The wave fronts (charac
teristic surfaces) play an essential role. However, the way the 
velocity or the potential is extracted differs. 

A. Plasma wave equation 

For this equation the characteristic surface occurs at 
t = e . x. Further, the wave field near the characteristic sur
face may be expanded as 

U +(t,e,x) = <5(t - e • x) + B (e,x)S(t - e • x) + ... . (47) 

Here S( y) is the Heaviside step function 

S(y) = 1, y;;'O, 

S(y) = 0, y<O. 

As discussed by Morawetz5 and others, 

V(x) = - 2e • VB (e,x). (4S) 

That is, the potential is determined if we can reconstruct the 
wave field near the characteristic surface. 

B. Classical wave equation 

In this section the recovery of the velocity function, c(x), 
from the reconstructed wave field u+(t,e,x) is discussed. The 
situation is complicated by the possible presence of caustics 
(e.g., a focal point within the scattering region). If we initiate 
the scattering from an incident delta pulse we find at a later 
time that the solution near the characteristic surface is 

u+(t,e,x) = A (e,x)<5(t - s(e,x)) + .... (49) 

Here A and s are functions determined by the equations of 
geometrical optics. In particular, the eikonal equation is 

IVs(e,xW = c-2(x) (50) 

and the first transport equation19 is 

2VA • Vs + (asjA = o. (51) 
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Since the wave field u is supposedly known [as a result of 
solving Eq. (46)], the position of the ~ function and therefore 
s(e,x) are also known. Equation (50) can then be used to re
coverc(x). 

If caustics occur in the reconstructed wave field the 
method just described may not be sufficient to determine the 
velocity everywhere. Clearly the velocity at those points that 
are not crossed by a characteristic surface cannot be inferred 
in this way. In this case the velocity can be reconstructed 
using the wave equation directly, but difficulties are expect
ed to arise due to the lack of high-frequency data in these 
regions. 

VII. PHYSICAL CONSIDERATIONS 

The plasma and classical wave equations have been used 
in other contexts to model many problems in acoustics, elec
tromagnetics, and elastodynamics. Consequently, it is ex
pected that the exact inverse scattering equations developed 
in this paper, if tractable, will have widespread application. 
In particular, they provide a common framework in which 
various aproximate methods can be compared and evaluat
ed. 

The simple scalar nature of the wave equations leads one 
to wonder ifthere is a physical situation governed essentially 
exactly by these equations. Such a physical situation could 
be used for a precise experimental test of the inverse scatter
ing equations. 

In this section, we show that both the classical and plas
ma wave equations may be realized by the propagation of 
pressure waves in a quiescent fluid. The classical wave equa
tion is realized when the fluid is chosen to have the same 
density everywhere [however, the compressibility, K(X), may 
vary in the scattering region]. As will be discussed, the plas
ma wave equation is realized if the velocity is constant 
throughout the fluid; however, K(X) and the density pIx) vary 
inversely to each other in the scattering region. 

Pressure propagation in an isotropic quiescent fluid is 
governed by the equation 

[1/ p(x)]Ap - [1/ p2(X)]V p. V P - K(X)a;p = 0, (52) 

where p(t,x) is the pressure at (x,t). 
If the density is assumed to be constant, Eq. (52) be

comes 

(53) 

Here we have used c2(x) = 1/(K(X)p(X)). Equation (53) isjust 
the classical wave equation. Consequently, the construction 
of experiments (sound scattering in fluid tanks) to test the 
classical wave inverse scattering equation appear feasible. 

The plasma wave equation may also be realized by 
sound scattering in a fluid tank. First make the transforma-

tionp(t,x) = ~p(x)¢(t,x) (see Ref. 20). One obtains 

/1¢ - v(x)¢ - [1/c2(x) ]a;¢ = O. (54) 
Here 

(55) 

If the velocity c(x) is chosen to be constant everywhere, Eq. 
(54) reduces to the plasma wave equation. 

An experiment to test the plasma wave inverse method 
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might proceed as follows. First, fluids with a common acous
tic velocity but differing densities are mixed to obtain the 
potential given in Eq. (55). Then sound waves are scattered 
from the potential and the pressure is measured in the far 
field. Far from the scattering region the density is a constant 
Po and the scattered wave field t/I'" is related to the scattered 
pressure by 

t/I'" = pscJPo. (56) 
This provides the input data for the inversion procedure, Eq. 
(45). 

The plasma wave equation can be related to the Schro
dinger equation by a Fourier transform. Consequently, the 
pressure waves scattered by the potential in Eq. (54) can in 
principle be related to the quantum mechanical scattering 
amplitUdes for the same potential. 
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APPENDIX A: DERIVATION OF THE REPRESENTATION 
THEOREM 

This appendix contains a careful derivation of the repre
sentation theorem. The derivations are essentially the same 
for the plasma wave equation and for the variable velocity 
wave equation; we derive the representation theorem for the 
former and then explain the modifications necessary for the 
latter. 

1. Plasma wave equation 

The derivation will be carried out in the frequency do
main; in other words, it will be carried out explicitly for the 
Schrodinger equation 

[/1 + k 2 + V(x)]tP(k,x) = O. (AI) 

When there are no bound or half-bound states,21 Eqs. (AI) 
and (I) are related22 by the Fourier transform 

U(t,x) = FtP(k,x) = (21T)-1 foo exp( - ikt )tP(k,x)dk. 
- 00 (A2) 

When V is positive and in CO', there are no bound states. 
Frequency domain notation is defined in Ref. 22. 

In our proof of the representation theorem, we will need 
information about the smoothness of the Green's function 
G (k,x,y), which is the kernel of the resolvent 
(/1 - V + k2)-I. We will obtain this information from the 
theory of elliptic partial differential equations.23 To do this, 
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we will compare G to Go, which is the kernelof(1l. + k2)-I. 
In what follows, we shall suppress the dependence of G and 
Go on k. 

The kernels G and Go are related by the equation 

G(x,y) - Go(x,y) = I Go(x,z)V(z)G(Z,y)d3Z • (A3) 

We multiply (A3) by I V(XW/2 and define 

K/(x)= I lV(x)II/2GO(X,y)v(y)lV(y)I-I/2/(y)d3y. 

With this notation, (A3) can be written 

I VI I/2GO = (I -K)(IVI I
/
2G). (A4) 

Newton24 has shown that under our asumptions on V the 
operator 1- K (which depends on k ) is invertible on L 2(R 3) 
for all k. We use this fact in proving the following proposi
tion. 

Proposition: Let V (x) be a bounded L I function, and as
sume that 1- K is invertible. Then for each y, 
G ( . ,y) - Go( • ,y) is bounded. 

Proof: We write (A4) as 

I VII/2G = (I - K)-I(I VI I/2Go). (A5) 

It is easily seen that for fixed y, I V 11/2GO( • ,y) is in L 2. Since 
(I - K) is invertible, I V 11/2G is also in L 2. We apply the 
Schwarz inequality to (A3), obtaining 

IG - Gol = II GVGol <IIG 1V1
1
/2112I1GolVl

l
/2Ib < 00. 

Q.E.D. 

In what follows we denote by n" any bounded, open set 
whose closure does not contain the point y. 

Next we will show that G - Go is actually Holder con
tinuous; we recall that G - Go is said to be HOlder contin
uous at xo with exponent a if 

[G _ G. ] = su I(G - Go)(x) - (G - Go)(Xo) I 
o a;Xo p I la :O:EO, X-Xo 

is finite. 
Lemma: Let V(x) be a boundedL I function, and assume 

that I - K is invertible. Then G ( . ,y) is HOlder continuous in 
n" with exponent a< 1. 

Proof: We shall show that G is Holder continuous with 
exponent a by showing that the same is true for G - Go. 

We show below that Go(x,y) = - exp(ik Ix 
- yl)/(41rlx - yl) is Holder continuous in n". 

We must show that 

[G G.] - I(G - Go)(x) - (G - Go)(XoIi (A6) 
- 0 a;Xo - sup I la :O:EO, X - Xo 

is finite. Clearly, by the above proposition, the right side of 
(A6) is bounded when x - Xo is bounded away from zero. We 
therefore restrict our attention to a ball Be(Xo) of radius € 

about Xo. We use (A3) to estimate the right side of (A6): 

I(G - Go)(x) - (G - Go)(Xo)1 
sup 

:O:EOynB.lXo) Ix - Xola 

I IXo - zleikl:o:-zl -Ix - zlelklXo-zll 
< sup 

:O:EOynB.lXo) Ix - zliXo - zllx - Xola 

X I V(z)G (z,y)ld 3Z• (A7) 
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Next, we need the estimates 

IXo - zleikl:o:-zl = Ix - zleikl:o:-zl + O(lx - Xol) 

and 
exp(ik IXo - zl) = exp(ik Ix - zl) + k O(lx - Xol). 

These we use in the right side of (A 7), which is then bounded 
by 

I 1 +klx-zl 
const sup 

OynB.lXo) Ix - zliXo - zl 

X V(z)G (z,y)lx - XoI 1 - a d 3Z• 

For large values of Ix - zl, the fraction 
(1 + k Ix - zl)lx - ZI-IIXo - Zl-I is bounded; theonlydif
ficulty is for small Ix - zl. For small Ix - zl, k Ix - zl is 
negligible compared with 1. We therefore consider the 
expression 

I lV(z)G(z,y)1 d 3z. (AS) 
Ix-zIIXo-zl 

We split the integral (AS) into two pieces, an integral over n" 
and an integral over its complement. In the former, we note 
that V and G are bounded; this gives us 

L lV(z)G(z,y)1 d 3 --- i d
3
z 

Z ... C <00. 
o. Ix - zl IXo - zl Oy Ix - zl IXo - zl 

In the integral over the complement of n", we note that 
Ix - zl and IXo - zl are both bounded away from zero (be
cause x and Xo are in n,,). We apply the Schwarz inequality, 
obtaining 

i IV (z)G (z,y) I d 3z 

R3_0. Ix - zliXo - zl 

<const 13_0 I V(zW/21 V(zW/2IG(z,y)ld 3z 
• 

<const IlVlIl12I1G 1V11/2112 < 00. Q.E.D. 

Theorem: Let V(x) be a bounded L I function that is 
Holder continuous with exponent a < 1. Assume that (I - K) 
is invertible. Let A" be an open, bounded, and connected set 
with aA" cn". Then G(· ,y) is in e 2(A,,). 

Proof In n", G satisfies Il.G = k 2G - VG. Let t/J" ( • ) 
= G ( . ,y) laAy Then t/J" ( . ) is continuous, and G is a solution 
of the Dirichlet problem 

and 
Il.G= / in A" 

G=t/J" on aA", 

where/ = k 2G - VG. Since/is bounded and Holder contin
uous (with exponent a< 1) in A" this Dirichlet problem has a 
unique solution given by the Newtonian potential of/ (see 
Ref. 23, p. 55). This Newtonian potential is in e 2 (A,,). This 
shows that G is in e 2 (A,,). Q.E.D. 

We have completed our investigation of the smoothness 
of G; we now turn to the representation theorem. This 
theorem concerns behavior of the Green's function G de
fined by (A3) and behavior of the wave function", defined by 
the Lippmann-Schwinger equation 

rfJ(k,e,x) = exp(ike • x) 

+ J Go(k,x,y)V(y)rfJ(k,e,y)d3y. (A9) 
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Theorem: Let V satisfy the hypotheses of the above 
theorem (V positive and Co certainly suffices). Then the 
following equation holds: 

r [G (k,x,y) ~ t/J(k,e,x) 
JsR(O) an 

- t/J(k,e,x) ~ G (k,x,Y)]dSx = - t/J(k,e,y), an 
where S R (0) denotes the sphere of radius R centered at zero, 
n denotes the unit outward normal, and dSx is the surface 
area element on S R (0). 

Proof: We begin with the following equations for t/J and 
G: 

[a + k 2 - V(x))t/J(k,e,x) = 0, 

[a + k 2 
- V(x)]G(k,x,y) = 8(x - y). 

(A 10) 

(All) 

We multiply (A 10) by G and (A 11) by t/J and subtract, obtain
ing 

1 [G (k,x,y)at/J(k,e,x) - tfJ(k,e,x)aG (k,x,y)]d 3X 

,..€.R 

= 1 tfJ(k,e,x)8(x - y)d 3X, (A12) 
y.€.R 

where we have written Oy.E.R = BR(O) - BE(y). (See Fig. 2.) 
The right side of (A12) is zero because y E£ 0Y.E.R' Next 

we apply Green's theorem to the left side. This is legitimate 
for the following reason. Green's theorem requires contin
uity of V • (GVt/J - t/JVG) and GVt/J - t/JVG. We have shown 
that G is in C 2(Oy.E.R ). We need to know that t/J is in C 2(Oy.E.R ) 
also. This, however, follows from the same sort of proof as 
was used to show that G is C 2. 

Equation (A12) then becomes 

r [G (k,x,y) ~ tfJ(k,e,x) - tfJ(k,e,x) ~ G (k,X,Y)]dSx 
JsR(O) an an 

+ r [G (k,x,y) ~ tfJ(k,e,x) 
Js.(y) av 

- tP(k,e,x) ~ G (k,X,Y)]dSx = 0, av (A13) 

where we have used the notation SE (y) for the sphere of radi
us € centered at the point y, and n and v are normals as shown 
in Fig. 2. 

.o.y.«.R 
R 

n 

FIG. 2. The geometry appropriate for deriving the representation theorem 
is shown. The wave field and its derivative are assumed to be known on the 
large sphere. The value of the wave field is found at the point y. 
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We want to compute the second integral of (A13). We 
know that on Oy,E.R 

G (k,x,y) = Go(k,x,y) + I(k,x,y), 

where for fixed k and y, I is in C 2(Oy.E.R)' We can then write 
theSE(y) integral of (A13) as 

r Go(k,x,y) ~ tfJ(k,e,x)dSx 
Js.(y) av 

+ r [/(k,X,Y) ~ tP(k,e,x) 
Js.(y) av 

- tfJ(k,e,x) ~ I (k,x,y)dsx av 
- r tfJ(k,e,x) ~ Go(k,X,Y)]dSx. 

Js.(y) av (A14) 

The integrand ofthe second integral in (A14) is continuous; 
this term will therefore disappear in the € -+ 0 limit. 

In the first term we make the change of variables 
€~ = X - y, with I~I = 1. This first term of (A14) is then 

- r exp[ik€](41r€)-1~tP(k,e,y+€~)~d2~. (AlS) 
Js,(O) av 

Clearly this term also vanishes in the € -+ 0 limit. The last 
term of (A14) is 

_ tfJ(k,e,x) _ _ '_e-:--_-:-i [ 'k iklx-yl 

S.(y) 41rlx - yl 

eiklx-yl ] A X - Y + v· dSx ' 
41rlx - yl2 Ix - yl 

(A16) 

The first term of (A16) disappears in the € -+ 0 limit for the 
same reason that (AlS) does. The second term, however, is 

r t/J(k,e,y + €~) e
ik
: ~ d 2~, 

Js,(O) 41r~-
which approaches tfJ(k,e,y) as € -+ O. 

We have thus computed the second term of(A13) in the 
€ -+ 0 limit. Equation (A13) can therefore be written 

r [G (k,x,y) ~ tP(k,e,x) 
JsR(O) an 

- tP(k,e,x) ~ G (k,X,Y)]dSx = - t/J(k,e,y). an 

2. Classical wave equation 

Q.E.D. 

Next we consider the modifications necessary to carry 
out the above arguments for the variable velocity wave equa
tion (2) . 

We begin with the frequency-domain version ofEq. (10), 
namely 

[a + k 2 + k2V(X))tP(k,x) = O. (A17) 

The existence of the distributional Fourier transform 
needed to relate (A 17) to the wave equation (2) or (10) can be 
inferred from local existence (see below) together with the 
high-frequency estimates of Ref. 25. These estimates are val
id given the hypotheses on the velocity stated in the Intro
duction, together with the additional condition that 
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c-2 + X· Vc-2 be strictly positive. Necessary conditions for 
existence of the Fourier transform are unknown. The Lipp
mann-Schwinger equation corresponding to (AI7) is 

.I'±(k A) ('kA ) + I f exp( ± ik Ix - yi) If' ,e,x =expz e'x -
41r Ix - yl 

Xk 2 V (y)f/! ± (k,e,y)d3y. (AIS) 

We multiply (AIS) by I V(X)11/2, obtaining 

5 ±(k,e,x) = sO(k,e,x) + f K ±(k,x,y)s ±(k,e,y)d3y, 

(AI9) 

where 

5 ± (k,e,x) = I V(X)11/2f/!± (k,e,x), 

SO(k,e,x) = I V(X)11/2 exp(ike· x), 

K ±(k x ) = ~ I V(xWI2exp( ± ik Ix - yi) V( ). 
"y 417 Ix - yl iV(yW l2 y 

Agmon's proof6 shows that the operator J - K (k ) is inverti
ble for all real nonzero k. (Potentials that depend on k are not 
mentioned in Ref. 26, but the relevant arguments are exactly 
the same for k 2 V as for V.) Moreover, since K(O) = 0, 
J - K (k ) is invertible for all real k. 

The derivation of the representation theorem for (A 17) 
is exactly the same as for (A I); V is merely replaced by k 2 V. 

APPENDIX B: ASYMPTOTICS 

In this appendix, we compute the large-x asymptotic 
forms off/!, (a fa Ixi)f/!,G,and(a fa IxIlG. We do this explicitly 
for the Schrodinger equation (which is the Fourier transform 
of the plasma wave equation). For an alternative treatment 
see Ref. 27. The arguments are exactly the same for the 
Fourier-transformed wave equation, except that V is re
placed by k 2 V. 

We shall use the following large-Ixl expansions, which 
are valid for Ixl > IYI: 

Ix - yl = Ixl- X' y + O(lxl- I), (BI) 

Ix - yl-I = Ixl- l (1 +x· ylxl- I + O(lxl-2)), (B2) 
eiklx-yl elkUxl-.i·y) 
Ix _ yl = Ixl + O(lxl-

2
), (B3) 

a eiklx-yl eikUxl-.i·y) 

a Ixl Ix _ yl = ik Ixl + O(lxl-
2
). (B4) 

Equation (B I) can be obtained as follows. We write 

Ix - yl = Ixl(1 - 2sx' y + .rlyI2)1I2, 

where s = lxi-I. The radical can be expanded in a Taylor 
series abouts = O. The remainder, when written in Lagrange 
form, is easily seen to be 0 (lxl-2) provided Ixl > Iyl. Equa
tion (B2) is obtained in a similar manner. Equations (B3) and 
(B4) can be deduced from (BI) and (B2). 

Proposition: Let V (x) be a bounded function of compact 
support. Then 

f/!{k,e,x) = exp(ike· x) + A (k,x,e)lxl- 1 exp(ik Ixi) 

+ O(ixl-2). (BS) 

Proof: We use the Lippmann-Schwinger equation to
gether with (B3). 
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Proposition: Let V (x) be a bounded function of compact 
support. Then 

~ f/!{k,e,x) = ike' x exp{ike • x) 
alxl 

+ ikA (k,x,e)lxl- 1 exp(ik Ixi) + 0 (lxl-2). 
(B6) 

Proof: We differentiate the Lippmann-Schwinger equa
tion and use (B4). 

Proposition: Let V be a bounded function of compact 
support. Then for Iyl > lxi, 

G -(x,y) = - (41rlyi)-le-ikIYIf/!-(k,y,x) + O(lyl-2). 

Proof: In the equation 

G -(x,y) = Go (x,y) + f G -(x,z)V(z)G o-(Z,y)d3z, (B7) 

we use expansion (B3) with the variables switched, obtaining 
-ik(lyl-y·x) 

G -(x,y) = - e 41rlyl + 0 (iyl-2) 

_ - G -(x,z)V(z) e d 3Z 
I f -ik(iYI-y,z) 

41r Iyl 

_ _ G -(x,z)V(z) _e __ I f [ -ikly-zi 

41r Iy - zl 

_ e d 3z. 
-ik(IYI-Y.Z)] 

Iyl 
(BS) 

Next we recall the following representation of the wave func
tion f/!-: 

f/!-(k,y,x) = eikY ." + f G-(x,Z)V(Z)elkY,zd3z. 

This can be obtained from combining (B7) with the Lipp
mann-Schwinger equation. Equation (BS) is therefore 

e-iklYI 

G -(x,y) = - 41rlyl f/!-(k,y,x) + 0 (lyl-2) 

_ _ G -(x,z)V(z) e __ _ I f [ -ikly-zi 

41r Iy - zl 

_ d 3z. 
e-ik(lyl-Y·z) ] 

Iyl 
(B9) 

We apply the Schwarz inequality to the last term of (B9), 
considering the integrand to be the product 
G I V 11/21 V 11/2[ ... J. TheexpressioninbracketsisO (lyl-2)for 
y outside the support of V. This last term of (B9) is therefore 
o (lyl-2). Q.E.D. 

Proposition: Let V be a bounded function of compact 
support. Then for Iyl > Ixl 

a ike-iklYI 
- G -(x,y) = f/!-(k,y,x) + 0 (iyl-2). 
a Iyl 417lyl 

(BlO) 

Proof: We differentiate Eq. (B7) and use (B4); the reason
ing is similar to the proof of the previous proposition. 
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accuracy for proving covariance of commutation relations under finite 
transformations 
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As dynamical quantization of Einstein's gravitational theory meets unsolved problems, it is worth 
considering the alternative method of quantization suggested by Fermi's quantization of special
relativistic electrodynamics, which for that theory has been the starting point of most modern 

. applications of quantum electrodynamics. This method avoids first-class constraints by an 
alteration of the Lagrangian. In physical formulas, this introduces unwanted terms, that are at the 
end equated weakly to zero by auxiliary conditions. By absence of first-class constraints, this 
theory could be quantized canonically, ifit would not contain fermion fields. As shown by Dirac, 
in the presence offermion fields the canonical commutation relations of the altered theory have to 
be replaced by modified commutation relations. The ultimate purpose of this and following 
papers is to prove the covariance of Dirac's modified commutation relations, first under 
infinitesimal transformations, and thence under finite transformations. As usual, this requires the 
proof of existence of a conserved and invariant generator for the transformations admitted, here 
coordinate transformations and local Lorentz transfo~ations of the tetrad field. For 
infinitesimal transformations, the conventional method of deriving from the Lagrangian density 
..2" a generator TI linear in the infinitesimal parameters that determine the transformations is 
used. However, for guaranteeing integrability of the procedure for generating transformations of 
the field variables, from infinitesimal transformations to finite transformations, it is necessary to 
show the existence of a more accurate generator T, no longer linear in the parameters, which will 
by elTFe - iT - F generate the transformations ~F of the field variables F with second-order 
accuracy. While it is left to a following paper to discuss the exact form of Dirac's modified 
commutation relations and to prove the conservation and covariance of the generator T and to 
prove that the conventional first-order generator TI will, this time by Dirac's modified 
commutation relations, generate the first-order substantial variations ~IFofthe field variables, in 
the present paper formulas are derived for expressing the second-order-infinitesimal terms in the 
transformation formulas by means of the first-order terms, and a method is derived for obtaining 
from TI the more accurate generator T. Finally, it is verified that the transformations F (xJ-F '(x') 
= F(x) + ~F generated by the generators T do satisfy the transformation group property with 
second-order accuracy. 

I. INTRODUCTION [F(P);G(Q)] = iC(P}t53(Xp - xQ ), for 0_ 0 
Xp -xQ' (2) 

A. Covariance of quantization 

Proofs of covariance of canonical quantization in quan
tum field theory date back to the papers of Heisenberg and 
Pauli. I.2 Since their second paper,2 most proofs introduce 
generators T, depending upon the parameters ( S I' ,E1(aKP») of 
the coordinate transformations (x'l' = x I' + S I'(x)) and local 
Lorentz transformations of tetrads that may be allowed. 
These T are shown to generate the transformations 
F (P J-F '(P') of the canonical field variables F at points P, 
according to 

and Pin (1) is to lie on that same hypersurface. However, Tis 
then shown to be conserved for all values of X O and to be 
invariant under the transformations allowed. Then, it fol
lows automatically from (2) by (1) that also, after the trans
formation, 

F'(P') = eiT(MF(p)e-iT(M, for x~. =Xp • (1) 

Here, T is expressed entirely in terms of the canonical field 
variables on a hypersurface X O = const, on which the com
mutation relations are given in a form 

0) Present address: P. O. Box 901. Gresham. Oregon 97030. 

[F'(P');G'(Q')] = iC'(P'}t53(x~ - xQ), for ,0 ,0 
Xp' =xQ , • 

(2') 

Originally, this method was applied just to Lorentz 
transformations in flat space-time, with the tetrad transfor
mations coupled to the coordinate transformations by h (:) 
= {j:: in all Lorentz frames. In the presence offermion fields, 

the [F;G] should be "graded" commutators,3.4 i.e., anticom
mutators between fermion fields and fermion fields. Then, 
also distinction has to be made between dift'erentiations from 
the left and from the right.4 The method of Heisenberg and 
Pauli also was generalized to the case when there are derived 
variables,4 as there are, for instance, in theories using a first
order Lagrangian for boson fields. 

2814 J. Math. Phys. 26 (11). November 1985 0022-2488/85/112814-13$02.50 @) 1985 American Institute of Physics 2814 



                                                                                                                                    

B. Altered theory 

As canonical quantization is self-contradictory in the 
presence of first-class constraints, and the latter are unavoid
able in theories suffering from general gauge invariance or 
general coordinate invariance,5,6 Fermf "altered" quantum 
electrodynamics by adding terms quadratic in S=V I-'A I-' to 
the Lagrangian, This breaks the general gauge invariance of 
Maxwell's theory, and restricts gauge invariance by the Lor
entz condition S = O. As, however, S in the altered theory is 
related to the canonical conjugate to Ao, the "auxiliary con
dition" S = 0 then had to be a "weak" equation, rather than 
a "strong" (q-number) relation. Various interpretations of 
such weak equations have been proposed in the literature, 
like (1) S \{ItS\ll = 0, (2) S\II = 0,8,9 (3) S( +)qJ = 0,10 or (4) 
(aiF Ib ) = f s= 0 qJ!F'II b.

ll Interpretation (3) requires split
ting up fields F into their creation parts F( - I and annihila
tion parts F( + I, which can be done Lorentz covariantly only 
in an interaction picture, 12 in which, however, S or S (+) is no 
longer zero.13 Moreover, for being able to define a "bare 
vacuum" state at least Lorentz covariantly, one must assume 
an indefinite metric in the (generalization of a) Hilbert space 
of quantum states allowed by the commutation relations of 
the altered theory.lO If space-time is curved, fields in an in
teraction picture are often regarded as fields in a flat space
time, upon which (part of) curved space-time is mapped. 14,15 

These complications are avoided by interpretation (4). 
In general-relativistic gravitational theory, the altera

tion of the theory includes addition of terms quadratic and 

bilinear in the S 1-'=( gl-''V ~ - g ),'V' and the De Donder condi
tions16 S I-' = 0 are therefore among the auxiliary condi
tions. 17 In the presence offermion fields, one will want to use 
the tetrad field rather than the metric field as the Lagrangian 
field varaibles, and the existence of tetrad constraints then 
requires further alteration of the Lagrangian, and additional 
auxiliary conditions. 17 Presently, we will not discuss all 
these details, or the interpretation of the auxiliary conditions 
for the altered theory. 

c. Why no dynamical quantization? 

It would, of course, be beautiful, if we could quantize the 
fields dynamically. Dynamical quantization means canoni
cal quantization of only the dynamical variables of the the
ory (the variables initially specifiable as Cauchy data), with 
all other field variables treated as nonlocally derived varia
bles. Such treatment requires assumption of appropriate 
strong (q-number) supplementary conditions, like div A = 0 
is assumed in Maxwell's theory as a strong equation in addi
tion to the strong equations pAt. = 0 and the time derivatives 
div A,o = 0 and div E = 41rp, if we want to quantize flat
space quantum electrodynamics dynamically, by quantizing 
only the transverse fields, and solving for Ao as the instantan
eous Coulomb potential from p. The development of a the
ory of dynamical quantization of Einstein's gravitational 
theory was much boosted by the work of Dirac18 and of 
Amowitt, Deser, and Misner, 19 but bogged down by ourlack 
of knowledge of general solutions of nonlinear differential 
equations for what should be the nonlocally derived varia-
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bles. Therefore, we will here not discuss dynamical quantiza
tion, either. 

Sticking to the quantization of the altered theory may 
have one advantage. In dynamical quantization, the strong 
supplementary conditions are sometimes interpreted as q
number "coordinate conditions," and this might endanger 
the c-number character of the coordinates used as param
eters labeling points in space-time. As the auxiliary condi
tions of the altered theory are weak equations, this danger 
there does not exist. In the interpretations (2) and (3), auxil
iary conditions merely tell us, in the oversized "Hilbert" 
space of the altered theory, what kinds of "unphysical" gra
vitons would be absent or would occur virtually only in what 
combinations. Thus, these conditions would then determine 
in this oversized "Hilbert" space a physical subspace, in 
whatever c-number coordinate system we have chosen to do 
our work. Interpretation (4) removes the objection of non
normalizability ofqJ, which interpretation (2) may produce.9 

D. Second-class constraints and canonization of 
fermion fields 

Canonical quantization of field theory is hampered not 
only by first-class constraints. When fermion fields occur in 
a general-relativistic theory, there also occur second-class 
constraints of a type that cannot be treated by Belinfante's 
method of derived variables.4 These second-class constraints 
contradict the commutation relations of direct canonical 
quantization. Dirac resolved this problem by replacing cus
tomary canonical quantization (which equates the commu
tator of two field variables to ifzX their Poisson bracket), by 
a similar procedure, in which the Poisson brackets are re
placed by Dirac's modified Poisson brackets.20 The physical 
meaning of this change in quantization procedure was ex
plained by DeWitt and DeWitt.21 For interpreting canoni
cally quantized fermion fields, like in the old theory of "sec
ond quantization, "22,23 in terms of creation and annihilation 
of particles satisfying Fermi statistics,24 it is necessary to use 
fermion fields ;p and ;pt such that ifz;pt is the canonical conju
gate to;P. However, impt in the general-relativistic theory of 
fermions is not the canonical conjugate of t/J. Therefore, the 
De Witts proposed a transformation ;p = et/J from the t/J field 
occurring in the Lagrangian, with its simple transformation 
properties as an undor,25 to the canonized17 ;p field, with its 
simple interpretation in terms of annihilation and antiparti
cle-creation operators.21 The complicated explicit form of 
the transformation e was later given by Belinfante et al. 17 

After canonically quantizing the canonized fields, one then 
may transform back to the Lagrangian fields, and one finds 
Dirac's modified commutation relations. Explicit formulas 
will be given in a following paper.26 

E. Proof of covariance 

Since the transformation properties of;P are awful, it is 
easier to establish the covariance of Dirac's quantization 
procedure in terms of the t/J field. The generalization of the 
method of Eq. (1) to the case of Dirac's modified quantiza
tion has not been published before. This generalization is the 
main purpose o/this sequence o/papers. For finding out how 
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far this generalization may go, we start by admitting general 
coordinate transformations, and will place restrictions upon 
them only later, when we must. As general coordinate trans
formations do not form a Lie group, we will here avoid use of 
the theory of Lie groupS.27 Later we will want the Lagran
gian to be invariant under our coordinate transformations. 
In an altered theory, this will place restrictions upon the 
allowable coordinate group, which then will become a Lie 
group. Yet, this need not necessarily preclude general covar
iance of our quantization procedure,26 even when, contrary 
to Fock, we would admit nonaffine coordinate transforma
tions.28 

We need auxiliary conditions for the physical interpre
tation of our altered theory. In this sequence of papers, we 
will not further specify these, or discuss their various possi
ble interpretations. 

F.lnflnlteslmal generator 

Later in the present paper, we will show how Eq. (1) may 
be derived from its first-order-infinitesimal form, 

~F==F'(P')-F(P)=~IF= [iTds,E);F(P)], (3) 
2 

where sand E are infinitesimal, and = means that here nth-
n 

order infinitesimal terms are neglected. Here, TI is linear in 
the parameters S 1-', E l(a)lP) , and S ;:, that describe the transfor
mation from coordinate system and tetrad field l; to l;', and 
xp. = Xp. For T I, we will use the conventional expression in 
terms of the Lagrangian density !f, even though in the com
mutator in (3) we will use the less usual commutation rela
tions of Dirac. Below, we will discuss how Tis obtained from 
T I • For the proof of (3) we refer to the following paper. 26 

G. Integrability to finite transformations 

Inclusion of fermion fields and use of Dirac's modified 
commutation relations are not the only way in which this 
sequence of papers goes beyond publications of the past. 
Many authors seem to believe that it is clear without proof 
that from (3) it will follow that there exists a Tsuch that (1) 
will follow automatically. However, for integrability of(3) to 
( 1) it is necessary that T for a finite transformation from l; to 
l;', as constructed by applying (3) infinitely many times for 
infinitesimal intermediate steps of transformation, will by 
the right-hand member of (3) yield the same result (indepen
dent of the path of transformation between l; and l;'), like 
the left-hand member will automatically on account of the 
fact that the transformations of F form a representation of 
the transformation group. However, if we subdivide the 
transformation path from l; to l;' into N (- 00) infinitesimal 
steps, and when we change one step at a time by an infinitesi
mal amount ( 0:: 1/ N) until we reach a final path of transfor
mation finitely different from an original one, the number of 
intermediate paths of transformation will be of the order of 
N 2, with each intermediate path differing from the preceding 
one by an infinitesimal change of path of a transformation to 
which (3) would be applicable. If, however, in each transfor
mation the right-hand member of (3) is allowed to make a 
second-order-infinitesimal error, after N 2 infinitesimal 
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changes of the path the result of the overall transformation 
from l; to l;' may have changed by a finite amount, and there 
is no guarantee that a finite change of path of a finite trans
formation would result in the same result given by the same 
T in the right-hand member of (1). Therefore, there is no 
trivial guarantee of integrability of (3). 

For ensuring integrability of an infinitesimal verifica
tion of (1), we have to replace (3) by an infinitesimal applica
tion of (1) verified with second-order accuracy, that is, we 
should first verify 

~F = ~12 F = eiT,.{ s,E)Fe - iT .. ( S,E) - F. 
3 3 

(4) 

Here, TI2 and ~12 Fwill contain terms of both first and sec
ond order in the parameters S and E of the transformation, 

and, for infinitesimal transformations, TI2 = T. In this pa-
3 

per, we will derive an expression for T12 which satisfies (4), 
expressing it in terms of T I • 

H. Products of transformations 

As the transformations of the field variables should 
form a representation of the transformation group, the result 
of two successive transformations of F should be the same as 
the result of one single transformation of Funder the coordi
nate and tetrad transformation that is the resultant of the 
original two consecutive transformations. When we label 
these transformations by ( S,E) or by (7], v), we mean by that a 
coordinate transformation S or 7], preceded by a Lorentz 
transformation E or v of the tetrad field. The result of succes
sive infinitesimal transformations 

(1/. v) (S,E) 

l; - l;" - l;"" 

(compare Fig. 1) will at a point P be 

= x; + pl-'(Xp), 
3 

withpl-' = S I-' + 7]1-' + s:l 7{, while the cumulative tetrad 
transformation v will be given by v = E + V + E,A. 7{. The 
integrability of (3) will now be guaranteed by 

FIG. 1. Transformations ~l:' [x'''=x''+ s"(x)l, l: ..... l:". [x"" 
= x' " + s "(x' )], and so on, each preceded by a tetrad rotation ( S by E, '1J 

by v,p by v, tby 0). Thedi1ference between l:" and l:"' shows that transfor
mations are not commutative. The transformation t preceded by 0 is the 
commutator of transformations s with E and '1J with v. 
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initial path 

FIG. 2. Each change of one infinitesimal pair of steps in an intermediate 
path of transformation from:l:o to :l:f' using two applications of(5) for calcu
lating its effect upon a field variable F, will move the intermediate path of 
transformation in :l: space across an t!! 2 area (a: N -2, infinitesimal of sec
ond order). A finite change of a finite path of transformation requires a 
move across a finite area in:l: space. This may be achieved by of the order of 
N 2 infinitesimal changes of path. If the transformation result calculated by 
an infinitesimal generator is to be independent of the path of transforma
tion, there should be no second-order infinitesimal errors in the calculation 
of each infinitesimal step. 

F" " (x" It) = eiTuI s''-)eiTuI'1,V)F(x)e - iTuI'1,v)e - iTuI S,.-) 
3 

= eiTulp,v)F(x)e - iTulp,v) , (5) 
3 

because, in the limit N--+ 00, the third-order-infinitesimal un
certainties in a finite transfonnation l:O--+l:f' caused by 
changing each pair of infinitesimal steps l:--+ l: " --+ r" in it, 
by means of (5) via l:--+ l: ,," into a different infinitesimal path 
l:--+l:"'"--+l:" " (see Fig. 2), will accumulate after N 2 of such 
infinitesimal alterations of the path of transfonnation from 
l:o to l:f' to a resultant change of the effect of this path of 
integrations upon fields F, by an amount of the order of 
N 2 X & 3 = & I a: N - I = first-order infinitesimal = vanish
ing. For the TI2 derived below, the validity of (5) may be 
verified directly. 

I. Summary of sections 

We will now briefly summarize the contents of the fol
lowing sections. 

1. General tensor transformations 

After an explanation of our terminology in Secs. II-V, 
we will in Secs. VI-X discuss the local transfonnation 
of (P) = F '(P) - F (P) for field variables F = ~i that are 
"tensors" in a generalized sense (which includes tensor den
sities). As in this part of the paper we do not use the metric, 
results here obtained would also be valid, if space-time were 
not Riemannian. In particular, we derive relations between 
infinitesimal transfonnations and their commutators, and 
we express the second-order tenns in infinitesimal tensor 
transfonnations in tenns of the first-order tenns. These re
sults may be derived from the fact that tensor transfonna
tions fonn a representation of the coordinate group, but 
these results may also be verified individually, and then by 
inversion of the reasoning they may be used for proving that 
tensor transfonnations fonn a representation (Sec. X). 
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2. Lorentz transformations of tetrad fields and undor 
transformations 

As our work was prompted by Dirac's modification of 
the commutation relations, which was required by the pres
ence of fermion fields, some of the fields will be undors2s 

(four-component "Dirac spinors"), which, like ordinary 
(two-component) spinors,29 are defined relative to local Lor
entz frames given in curved space-time by local tetrads. Un
dors therefore transfonn under local rotations and Lorentz 
transfonnations of the tetrads. (These tetrad transfonna
tions could, but need not, be coupled to coordinate transfor
mations.) Therefore, in Secs. XI-XIV we generalize the re
sults of Secs. VI-X to include local tetrad transfonnations, 
and we give explicit fonnulas for infinitesimal undor trans
fonnations including second-order infinitesimals. As any 
tetrad field detennines a metric field, here space-time is as
sumed to be Riemannian. 

3. Obtaining the second-order generator T'2 for the second
order substantial variations 0,2 F of the field variables, from 
the first-order generator T, 

After discussion of the field momenta in Sec. XV, we 
introduce a simplified notation for dealing with transfonna
tions of fields F that may be either the original field varia
bles30 ~i or their canonical conjugatesjli. We then derive in 
Sec. XVI second-order fonnulas also for the substantial var
iations ~F, and show how ~12 F can be calculated starting 
from the fonnula for the first-order ~I F. 

In Sec. XVII we mention (but do not yet use) the special 
fonn of the first-order-infinitesimal generator Tl> of which 
in the next paper6 we will prove the conservation and invar
iance and the property Eq. (3). In the present paper we ex
plain how from TI we obtain Tw and why this satisfies (1), if 
we neglect third-order infinitesimals. In Sec. XVIII we ver
ify Eq. (5) directly. In Sec. XIX we warn against using (1) or 
(3) outside their limited domain of validity, and in Sec. XX 
we briefly summarize our results. 

II. THE COORDINATE PATCH 

In the following we will consider an N-dimensional co
ordinate patch, in which a metric may be given or not given. 
We admit here "general" coordinate transfonnations inside 
this patch, x'Jl- = jJl-(x), where (x) stands for (xl,x 2, ... ~), 
and where thej Jl- are continuous functions that have a suffi
cient number of partial derivatives, while the XV should be 
detennined uniquely by the x' Jl-. 

Points in the coordinate patch may be labeled by their 
coordinates in any of the coordinate systems obtainable from 
each other by the coordinate transfonnations. So, two points 
P' in a coordinate system (frame) l:' and P " in a frame l:" are 
called identical, if in some arbitrary frame l: or l:m we have 
x P' = X p' or x;:. = x'J,' • . We then interpret coordinate trans
fonnations as equations valid at any fixed point P, that is, as 
xjf = jJl-(xp). 

III. THE GROUP OF COORDINATE TRANSFORMATIONS 

We define the product h of two coordinate transfonna
tions j and g by 
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h I'(x) = gl'(f(x)) , (6) 

which results bYinsertingx;'A = fA(Xp) inx;1' = gl'(x;'), and 
identifying h I'(x p) with x;1' as a function of the x p. The coor
dinate transformations then automatically form a group. We 
callf and g here the first and the second step in the product 
transformation h. As generally g(f(x)) # f(g(x)), the coordi
nate transformation group is not Abelian. 

IV. SCALAR FIELDS 

We call SIx) a scalar field, if after a transformationf 
from l: to l:' we have S'(P) = SIP) so that S'(x;') = S(xp) 
when xr = f I'(x p). The local variation of a field F is defined 
by 

8F(P)=:F'(P) -F(P); (7a) 

for a scalar field it vanishes (8S = 0), while the substantial 
variation 

8F(x)=: F'(x;'.) - F(xp), with x;'. = Xp = x (7b) 

in general does not vanish for a scalar field. 

V. TENSOR FIELDS 

Our definition here of a tensor field will be more general 
(will include more quantities) than the usual definition. 
What we here will call a tensor field, will be a set of ff fields 
(say, qj with i = 1,2, ... ,.A1, which, under any coordinate 
transformation with descriptors 51'(X), transform among 
each other homogeneous-linearly according to 

(8) 

where we assume automatic summation over indices that 
occur both up and down in one term, and where the coeffi
cients Sj j are functions of the derivatives 5 :., of the descrip
tors of the coordinate transformation. With the descriptors 
given by 

(9) 

tensors are (at any fixed point P) invariant under a shift of 
origin given by constant descriptors. In 5 :.,=:a5 I'laxv, the 
derivatives are taken with respect to the coordinates before 
the transformation. 

Not only scalars and tensors in the usual sense are ten
sors in the sense of this paper. We also include here tensor 
densities, obtained from an ordinary tensor by multiplying 
all of its components by some positive or negative power of 
the determinant of some (other) tensor of the second rank. 
For tensor densities, the Sj j may no longer be polynomials in 
the 5:", but, for small 5:", we still may expand the Sj j as a 
series in products of powers of the various 5 :.,. 

Furthermore, the qj may include components of several 
tensors. For instance, for an electromagnetic field, the qj 
might be the 4 + 6 + 1 + 6 = 17 components of AI" Fl'v, 
@) = av (gI'VAI'.r=i), and ijl'v=: gJ.UZgVPFa/J~ - g. 

Not all fields are tensor fields. Fermions are described 
by four-component undor fields2S "'A and :;p, which are built 
up out of various kinds of two-component spinor fields.29 

Their physical meaning is defined relative to local Lorentz 
frames described by tetrad fields h (~,. The latter then de-
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scribe the gravitational field, as the metric can be expressed 
in terms of the tetrad field. Instead of the tetrad field, one 
may well prefer to use its inverse, the field h tr'. The tetrads 
and their inverse do not merely (through the indexJl) trans
form as tensors, but also [through the index (a)] undergo 
Lorentz transformations, as do the undors. When these Lor
entz transformations are infinitesimal, they may be de
scribed by antisymmetric descriptors E(aXPI = - E(Pxal' 

They depend, however, directly upon these descriptors and 
not upon the derivatives of these descriptors. Through Sec. 
X, we will not discuss these Lorentz transformations of te
trads and of undors, and therefore do not deal with fermion 
fields. 

VI. EXPANSION OF THE TENSOR TRANSFORMATIONS 

The Sj j in (8), through the 5:", depend upon the old as 
well as the new coordinates. Unless otherwise specified, we 
treat them as functions of the old coordinates. 

When we expand the Sj j in terms of the 5 .~, the coeffi
cients are constants. For instance, a mixed tensor density tl'v 
= tl' v~ - g transforms according to 

t . K = ax'K axO' det { ax
a 

} t A, 
P ax A ax'p ax' P 0' 

(10) 

with 

ax'K -15K + f:'K 
ax A - A ~.A.' 

axO' _ 80' /;'0' + /;'0' /;'E + 
ax'p - P - ~.P ~ .E~.p (lla) 

so that 

det{::p}=1-5::'+ !(5::'5.'1+ 5~p5.~)+ .... 
(lIb) 

Therefore, when in general we write 

Sj j=8/ + 8Sj j, 8Sj j = 81Sj j + 82Sj j + "', (12a) 
Ii S j- j v/;' I' 
Ut i ==Sj J.' ~ ,v, 

8-zSj j==Sj jl'v a P 5 :"5 ~p , 

we would for tp K find, from (lla) and (lIb), 
s. j v==s".,O' v = 15K 8v 80' _ 15K 80' 8v _ 15K 80' 8v 
11' PAl' I'Ap AI'P ApI" 

S. j v P==s".,O' v P 
1 I' a pAl' a 

(12b) 

(10') 

+ 818;8;8: + ! 818;8;8/1 + ! 818;8Z8!1 , 

(10") 

(13) 

The coefficients Sj j ...... in the expansions (12b), therefore, are 
independent of the coordinates and of the coordinate system 
used. Below, we will derive a few important relations 
between these coefficients Sj jl'v and Sj jl'va P for arbitrary 
"tensors. " 
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VII. TENSOR REPRESENTATIONS OF THE 
COORDINATE TRANSFORMATION GROUP 

Let a tensor field with components qi be given originally 
in some fixed coordinate system 1:, of which we may also use 
the coordinates x as the labels of points P while we discuss 
transformations between various coordinate systems 1:, 1:', 
l:" , etc. Let qi, q;', ... be the components of the transformed 
tensor in the coordinate systems 1:',1:", .... We may treat 
them all as functions of the points P in space, writing qi(P), 
qj'(P), etc. (This could be regarded as considering them func
tions of the coordinates Xp in 1:, even when we take the com
ponents of qi, q;', ... along the coordinate axes of 1:', 1:", .... ) 
As an alternative, we may consider them functions qi(x'), 
q;'(x"), ... ofthe coordinates in the frames in which we take 
the components of the tensor. 

In the former case, we call q;'(P) - qi(P) the local vari
ation at P, of the tensor components, under the (infinitesi
mal) transformation from 1:' to 1:". In the latter case, we call 
q;'(P") - qi(P') with xp. = x~. the substantial variation of 
the tensor at given values of the coordinates, under this same 
transformation. For local variations we use the symbol ~, 
and for substantial variations the symbol 6. So, if 
/u==Xp- - Xp " and J1q;':=q;'(P") - qj'(P'), then 6qi 
= ~qi (P') + J1q;' for this transformation. Or, also, 6qi 
= ~q;(P ") + J1q;. 

Irrespective of whether the result of the transformation 
is given as q;'(P) at given Xp , or as qi'(P") at given xp" the 
result for q;' will be uniquely determined by the choice of the 
coordinate system (here 1:"), of the tensor component (here 
labeled by i), and of the location (value of coordinates x or 
x"), and will not depend on whether we obtain it by transfor
mation directly from the qi (P) field originally given in 1:, or 
indirectly by several steps of transformation (like 
1:-1:'-1:"). We call this the representation property of ten
sor transformations. We will use it below for deriving rela
tions between the constant coefficients Si il'v, etc. 

The use of the word "representation" here is justified by 
the fact that, for each given type of tensor field with given 
constant coefficients Si il'v, etc., for any given coordinate 
transformation x'!' = /I'(x), the transformation matrix Si i 

is given uniquely by (12a) with (12b) with 5::' = a/l'laxV 

- ~t:, while the matrix for the tensor transformation that 
belongs to the product (6) of two coordinate transformations 
/ and g is the matrix product of the tensor transformation 
matrices for the individual coordinate transformations/and 
g. So, for the product (6) of coordinate transformations, the 
matrices SUli i, S(gli i, and S(h l

i i in qi(P) = SUli iqi(P) and 
in q;'(P) = S(gli iq;(P) = S(h'; iqi(P) will satisfy the group 
property 

(14) 

For any tensor field originally given in 1:, this guarantees 
that in any different coordinate system 1:" the tensor compo
nents qi' will have the same value irrespective of whether 
they are from 1: obtained directly, or via 1:', or via any other 
detour. This is what we called above the representation prop
erty of tensor transformations. 
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VIII. THE COMMUTATOR OF TRANSFORMATIONS 

From an initial coordinate system 1: we may transform 
to 1:' using a descriptor field 5 I'(x), or to 1:" using a descrip
tor field 1J1'(x). From 1:', let us transform to 1:'" using the 
descriptor field 1J I'(x'), and transform from 1:" to 1:"" using 
5 I'(X"). (See Fig. 1.) Then, in general, 1:'" and l:"" will differ, 
because, for infinitesimal transformations, at any fixed point 
P, 
x"'l' - xl' = 5 I'(x) + 1J1'(X + ~x) = 5 I' + 1J1' + 1J,~5 v, 

(lSa) 
x"" I' - xl' = 1J1' + 5 I' + 5 ;"1Jv (= pI'; see Fig. 1). 

(ISb) 

We may now transform from 1:'" to 1:"", by using a descrip
tor field 

tl'(x"')=x""I'-x"'l'= 5':v1Jv-1J,~5v, (16a) 

As this is tl2 already, neglecting third-order infinitesimals 
we may write 

t I'(x) = t I'(x"') . (16b) 
We may call this transformation the commutator of the 
transformations with descriptors 5 I' and 1J 1'. 

Because of the representation property of tensor trans
formations, qi"'(P) in l:"" will be the same, irrespective of 
whether we obtain it from qi (P) in 1: by two steps, 
1:_1:"_1:"", or by three steps, 1:_1:'_1:"'_1:"". There
fore, up to second order, we find for qi"'(P) - qi (P), 

1J,~(X)si kl' vqk + 1J;"1J,pSi kl' va Pqk 

+ 5 ;"(x + 1J)si il' V{ qi + 1J~pSi k a Pqk } 

+ 5 ;"5~pSikl' Va Pqk 
= {same with 5 and 1J interchanged} + t ;"Si kl' vqk . 

(17) 
By 5 ;"(x + 1J) = 5;" + 5 ;.,'" if, this gives 
{;-l'a(ivkP iPkV\~ 
~ ,v1J,p Si I' Si a -Si a Si I' I'1k 

+ (5;.,,,,if-1J;",,,5"'-t;")sikl'vqk =0, (lSa) 

or, by (16a), 
{;-1'1Ja {so i vS.k P -So i PS.k v 
~ ,v ,p I I' J a I a J I' 

+ ~:Si ka v - ~~Si kl' P }qk = 0 . (lSb) 

As this is to be valid for all qk and for any fields 5 I' and 1J1', it 
follows that 

IX. SECOND-ORDER COEFFICIENTS IN TERMS OF 
FIRST-ORDER COEFFICIENTS 

(19) 

Consider again the transformation 1:_1:"_1:"", the 
first step with descriptor 1J 1', the second step with descriptor 
5 I' + 5 ~ if, so that the total transformation has descriptor 
x"" I' - X I' = 5 I' + 1J I' + 5 I' ,.<.1J"'. Therefore, for the trans
formation of qi in one step from 1: to 1:"" we find, to second 
order, 

~qi = {(5;" + 1J;" + 5 ,~v if + 5 ~~)sikl' v 

+(5;" +1J,~)(5~p +1J~P)sikl'vaP}qk' (20) 

For this transformation in two steps, the left-hand member 
of (IS) gave 
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8qj = US:V + 1J:v + S:VA if)sj\ v + S :v1J~p Sj jJl. vS/ a P 

+(S:VS~p +1J:V1J~P)sjkJl.vaPJqk' (21) 

By the representation property of tensor transformations, 
the two expressions (20) and (21) must be equal. Therefore, 

s:V1J~p8~SjkJl.Pqk + s:V1J~p(SjkJl.vaP +SjkaPJl.v)qk' 

(22) 

8 V Sk P + s. k v P + S. k P v = s. j Vs. k P (23) 
alp, Ip,a la p 11' Ja • 

The part of this antisymmetric under an interchange of I' v 

with a P confirms our previous result, Eq. (19). The part sym

metric under I' v +± a P yields the new relation 

s. k v P + S. k P v = 1 {so j Vs. k P + s. j ps. k v 
Ipa lQ p 2 II-' Ja la Jp. 

- 8~Sj kJl.P - 8tSj \ V} • (24) 

This equation shows us that the second-order terms 82qj in 
8qj are not independent of the first-order terms 8 lqj' and that 
their coefficients Sj jJl. va P = Sj ja PI' v can be expressed by (24) 
in terms of the first-order coefficients Sj jJl. v. Thus, (S) with 
(12a) with (12b) becomes 

8qj = 8 1qj + 8 2qj + "', 8 1qj = S :VSj jJl. Vqj , 

8 2qj = ! S:VS;,A jJl. vS/ p uqk - ! S :,tS~Sj jJl. Vqj • 

X. EXAMPLES OF THE RELATIONS (19) AND (24) 

(25) 

We will verify here the validity ofEqs. (19) and (24) for 

the case of a mixed tensor density field qj =i; ==t; ~ - g 

considered already in Eqs. (10), (10'), and (10"). We will write 
t! for qj' and t; for qk' Calculating each side of Eq. (19) 
individually, we find that both sides are in this case equal to 

8 v (8K 8 P8'1" _ 8'1" 8 P8 K ) _ 8 P(8K 8 V 8'1" _ 8'1" 8 V 8 K ) (19') 
ap"'p pp'" p.a11'p ap1T' 

so that (19) is satisfied. 
Similarly, Eq. (24) is for this case verified, as both sides 

now are found to be equal to 

8 P8 K (8V 8'1" + 8 v 8'1") + 8 v 8 K (8 P8'1" + 8 P8'1") p1TaJl. I' a p1TJl.a a I' 

+ 8 K8 T(8 P8 V +8P8V)_8K8V(8P8T +8P8 T) trpaJl. I' a J1.trpa ap 

- 8~8~(8;8; + 8;8;) . (24') 

In this way, the relations (19) and (24) could be shown to hold 
for any other chosen type of tensor field. Therefore, the rea
soning of Secs. VIII and IX could be reversed, deriving the 
representation property of tensor transformations from the 
validity of the relations (19) and (24). instead of deriving 
these relations from the representation property. 

XI. SECOND-ORDER LOCAL LORENTZ 
TRANSFORMATIONS OF TETRADS AND OF LOCAL 
TENSORS 

In Eq. (20), the distinction between first-order and sec
ond-order-infinitesimal terms was well determined, with 
vanishing second-order uncertainty in the first-order term 
8 lqj, because, even for finite transformations, there is no un
certainty in S P, as we defined it rigorously as x' I' - xl', so 
that 8 1x Jl. = S I' = 8xJl. with 8-rJl. = O. 

For achieving a similar result for the transformations of 
local tensors31 by infinitesimal local rotations or Lorentz 
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transformations of the tetrad field with respect to which the 
local tensor components are taken. we must have tJ 2 preci
sion also in the definition of the descriptors for the latter 
infinitesimal transformations. 

We therefore start here by defining descriptors Ej~) 
which for local tensor transformations shall have exactly the 
same meaning as the S ~p would have for the corresponding 
world tensor transformations.31 That is, in absence of coor
dinate transformations, the inverse tetrads are under their 
local rotations and Lorentz transformations to transform 
riaorouslu according to h ,(a) = h (a) + e!a) h (P) or omit-
0'.., I' I' (P) 1" , 

ting the (here irrelevant) index,u, we define e!a)(p) by postu
lating that a contravariant local31 four-vector h (a) shall ri
gorously transform according to 

h '(a) = h (a) + e!a)(p)h (P) , (26a) 

even for finite transformations. [Compare Eq. (26a) with the 
transformation h ,~ = (8p + S~p)h P of a world31 four-vec
tor h a (like dxa

), and see how S ~p here, is replaced in (26a) by 
e!a)(pd The (possibly finite) E(a)(P) g(a)(p)e!Y)IP) is now no 
longer antisymmetric. [See Eq. (2Sa) below.] 

In general, for local tensors, in first-order approxima
tion, we may write infinitesimal transformations in the form 

81qj = e!)a)(p)(7j j(a)IP)qj , (26b) 

where e!)a)(p) is the tJ 1 part of e!a)(PI' and will rigorously be 
defined below. Equation (26b) may be compared with 8)qj 

= S ,~Sj j I' v qj for world tensors, except that by definition we 
had S tv = S:V and S tv = 0, while below we will have 
e!2

a
)(P) #0. For contravariant local four-vectors qj = h (1'), 

comparison of (26b) with the tJ 1 part of (26a) gives 

(7 
j (P)_....JJI.) (P) _ dJl.)dP) 

j (a) =U' (v)(a) - D(a)D(v) • (26c) 

For a covariant local four-vector qj = h( 1')' we would have 
CT: j (P)-(7 (v) (P) - 8(v) 8(P) 

j (a) = iJI.) (a) - - (a) (1') • (26d) 

When local (tetrad) and world (coordinate) transformations 
are applied simultaneously, the components h (~) of a tetrad 
field would transform according to 

h 'J1.-(£J1.+f:J1.){£(P) ~P) +~P) ~yj (a) - Uv ~ ,v Uta) -~' (a) ~'(y)E' (a) 

~P) ~6) ~y) + }h v 
-~' (6)~' (y)~' (a) '" (P)· (26e) 

We will now define E)(a)(p) = g(a)(y)~r(p) rigorously (also for 
finite local tensor transformations) as the antisymmetric 
part of E(a)(P): 

E)(a)(p) = !(E(a)(P) - E(P)(a))' 

and define E2(a)(P) as its symmetric part: 

E2(a)(P)== !(E(a)IP) + E1P)(a))' 

so that 

(27a) 

(27b) 

E(a)(p) = E)(a)(p) + E2Ia)(P) • (27c) 

The invariance of the inverse Minkowski metric ita )( P) under 
local Lorentz transformations now requires 

(2Sa) 

that is, 

(2Sb) 
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It follows that ~t)(P) is small of second order, so that we may 
rigorously identify the tJ 1 part of ~a)(PI with its antisymme
tric part~t)(P) ~a)(Y)EI(y)(p), Inserting now (27c) on the right 
in (28b), we can solve in successive approximations for ~2a)(PI 
in terms of ~t)(PI' As shown in the Appendix, this yields 

~t\P) = !(EI
2)(a)(PI - A(EI4)(a)(p) + ... (28c) 

= ntl (~(E/n)(a)(p) , (28d) 

where (EIN)(a)(PI is the chain matrix product 
..Jal ..Jy) ..Jb) ..JK) ..J") e) (y)e) (b)e) (E) ••• e) ("Ie) (P) 

ofN factors ~1'11((JI' Therefore, 

~a)( P) = ~t)( P) + ! ~Ia)(y) ~r( P) + &4 . (28e) 

This shows that we do not need all 16 components of ~a)(p) 
as descriptors: As expected, six descriptors suffice for de
scribing all Lorentz transformations, and we see from (28d) 
that we can use for these descriptors the antisymmetric 

EI(a)(P)' 

XII. COMPARISON OF LORENTZ TRANSFORMATIONS 
OF WORLD TENSORS AND OF LOCAL TENSORS 

As, up to tJ 2' 

..Ja) _ ..Ja) 1 .Ja) ..Jy) 
e) (P) - e' (P) - '2 e' (y)e' (P) , (29a) 

the descriptors ~t)(P) for local Lorentz transformations are 
equivalent to the combinations 

S;" - !s~ s~v (29b) 

of descriptors for coordinate transformations. When we in
sert (12) with (24) in Eq. (8), this combination (29b) becomes 
the coefficient ofsj j", Vqj . Because in (26b) we placed the en
tire combination (29a) in 6 lqj' we find in 62qj no term that 
would for local transformations correspond to the term with 
- ! S ~ S:;, in 62qj' because that term is already part of the 

term with ~t')(P) in 6,Qj' 

XIII. COMBINATION OF WORLD TENSOR AND LOCAL 
TENSOR TRANSFORMATIONS 

We shall now generalize the discussions ofSecs. VIII-X 
to fields qj that have local tensor indices (a), (P), ... as well as 
world tensor indices p, v, ... , like, for instance, tetrads. Like 
in (12), we first write 6'1i = 61'1i + 62'1i + tJ 3 with 

(30a) 

62'1i = ( S ::S;A k", vp 0' + S ::~t')(P)Sj k", via/PI 

+ ~la)(p)~r(b)Ujk(a)(P)(yJ'b)}~ , (30b) 

and then follow the reasoning of Secs. VIII and IX. By 
l:--l: 'we this time understand a coordinate transformation 
with simultaneous32 independent local rotations or Lorentz 
transformations of the tetrads. For l:--l: ' (and l: " __ l: "") 
and for l: __ l:" (and l:' __ l: "'I we used in Sec. VIII transfor
mations with descriptors S '" and 7] "'. This time we use S '" 
together with ~t')(P)' and 7]'" together with v~a)(p). In the 
transformation ofa local four-vector h (a) from l: 'to l: "', we 
now use, according to (26a) and (28e), 

h "'(a) = h '(a) + vi(a)(p) h '(P) + !Vi(a)(E)vi(E\p) h '(P) , (3Ia) 

2821 J. Math. Phys., Vol. 26, No. 11, November 1985 

with 
,(a) _ (a) + (a) {;-" 

VI (P) - VI (P) VI(P),A. ~ • (3Ib) 

We then find 
h ",,(a) h .. (a) - .<l(a) h (P) 

- - V I (P) , (32a) 

with 
.<l (a) _ ...a) (E) (a) ..JE) 
V I (P) - C::I (E) VI (P) - VI (E)e) (P) 

+ ~t')(PI.A 7]" - vla)(p).AS" , (32b) 

which, together with (16a), shows that l:"'--l:" " is given by 
descriptors t '" and {} \al( P) • 

We now compare the transformation l: __ £" __ l: II II of 'Ii 
again first with l:--l:' __ l:"' __ l:"" as in Sec. VIII, and then 
with l: __ l:"" as in Sec. IX. The result (orqj-+qj'" should be 
always the same. The first comparison gives not only Eq. 
(19), but additionally gives the relations 

s. j V[u. k(a)(p) _ 0'. k(P)(a)] = [u)(a)(P) _ q)(PI(a) ]s. k v 
I '" J J I I J '" 

(33) 

and 

~Ia)(p) V(r(b) [O'j jlal (P)O'/IY) (b) - O'j \y) (blqj k(a) (P)] 

_ ..Ja) (y) [ k (6)~P) k IP)~(6)] (34) - e) (P) VI (6) O'j (a) 0iY) - O'j (y) Uta) • 

The second comparison requires knowledge of the descrip
tor vlt)(P) = vla)(p) - !vla)(E)vlE)(p) for the tetrad transforma
tion directly from l: to l:"". Since, by (32a), (32b), (3Ia), 
(3Ib), and (26a), 

h ""(a) _ h (a) = (~a)(p) + v(a\p) + ~a)(E) V(E\p) 

+ ~a) -"}h (P) - via) h (P) 
(P).,,'I - (P) , 

(35) 

we find, by (28e), 

vlt)(P) = ~t)(P) + v~a)(p) +! ~la)(E)V~")(P) 

-! V't'\E)~t'<P) + ~t')(PI.A 7]" , (36) 
and q;'" - qj is given by the sum of (30a) and (30b) with S '" 
replaced by S '" + 7]'" + S ~7]", and with ~t)(P) replaced by 
.la) 
VI (P)· 

The second comparison now gives not only Eq. (24), but 
also 

Sk "ia)(p) _Sk "iPXa) =s.j v[u.k(a)(P) _u.k(P)(a)] 

I '" I '" I '" J J 
(37) 

and 
..Ja) (y) ( k (P) b + k (b) (P) j (P) k (b) 
C:) (P) VI (b) O'j (a) (y) O'j (y) (a) - O'j (a) OJ (y) 

+ !(O'j k(a) (6)61:') - O'j k(y) (P) 61~)} = 0 . (38) 

By (34), this gives 
..Ja) (y) k (P) (6) e) (P) VI (b)O'j (a) (y) 

= ! ~Ia)(p) V7)(6) [O'j j(a) (P)O'j k(y) (6) + O'j j(y) (b)Oj k(a) (P)] • 

(39) 

Now using Eqs. (24), (37) with (33), and (39) with v~~)(P) 
= ~t)(P)' we find from (30b) 

62'1i = !(6ISj i)(6,Sj k)~ - ! S ~S~A k", v~ , (30b') 

with 6 1Sj j from (30a). Thence, 

6qj = [(S:: -!S~S~v).s/",v+~t')(P)O'jk(a)(P) 

+ !(6ISj j)(6ISjk)]~ + tJ 3' (30b") 
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Examples: As a first example, we may apply (30b") to <Ii 
=h (I') with 0'. j (P) aiven by (26c) and Wl'th s· j v = 0 so 
-, 1 (a) 0" 1 JIo ' 
thatlilSi

k = liSIJIo)(v) = €t'tv)' By (28e), then, Eq. (30b") gives 
(26a). ~ As a second example, for <Ii = h (~)' with lilSi k 
-liSJIo(P)- ~JIoli(P)-liI'tf,P) and Sk u_s#(P)u 
- I (a)" - ~.v (a) v I (a) i p - (a)"P 
= li:li~li!:'), Eq. (30b") gives (26e) up to (and including) the 
tt2 terms. 

XIV. UNDOR TRANSFORMATIONS 

In Sees. V-X, we wrote qi for "tensor" fields (in a gener
alized sense). In Sees. XI and XII, we wrote £Ii for boson 
fields, and we wrote qi for local tensors (which transform 
under changes of the tetrad field). In Sec. XIII, we consid
ered both coordinate and tetrad field transformations, so 
that the field variables here could be world tensors as well as 
local tensors, or combinations of both, like tetrads, or also 
fermion fields. Therefore, we changed our notation in See. 
XIII from £Ii to <Ii • 

The <Ii therefore may also include undors3 t/! and fi,. As is 
well known, Dirac wave functions offermions transform lo
cally under Lorentz transformations of the local tetrad, in
finitesimally to first order, according to 

lil t/! = 1 €al(p)(r(a)YP) - yP)r(a))t/! =! €1(aXp)ya)yPlt/!, 

(40) 

where the ya) are the Dirac matrices of flat-space theory, 
related among each other and with the rJlo of the curved
space Dirac equation by 

ya)yP) + yp)ya) = 2g<a)(p) , 

r Jlo - h JIo .,(a) 
- (aIr, 

rJlorv + rVr# = 2gJloV , 

and related to the p in fi, = t/!tp by 

ya)tp = _ pya) , 

rJlotp = - f3r Jlo . 

Rewriting (40) as lilt/! = Ot/!, we obtain 

(41a) 

(41b) 

(41c) 

(41d) 

(41e) 

- t - t - .,(a).,(p) -
lilt/! = (lilt/!) P = t/!pO f3 = !t/!€I(a)(P)f r = - t/!O . 

(40') 

Comparison of (40) and (40') with (26b) shows that, for <Ii 
= t/! A with 'Ii = t/!B' 

O'i j(a)(P) = O'AB(a)(P) = Hr(a)YP) - yP)r(a)]A B, (42a) 

while, for 'Ii = fi,A with 'Ii = fi,B, 
O'i j(a)(P) = ~Bja) (P) = - Hr(a)YP) - YP)r(a']B A . 

(42b) 

Note that, by the antisymmetry of the O'i j(a)(p) between their 
last two indices, the middle member ofEq. (40) contains only 
the antisymmetric part €1(al(P) of the €(a)(p), in agreement 
with what we postulated in Eq. (26b). 

We may now obtain li2t/! and li2fi, from (40) and (40') 
either by Eq. (30b') or by noting that # is scalar, so that 

0= li2(#) = (li2fi,)t{I + (lilfi,)(lilt/!) + fi,(li2t/!) 

gives 

(43) 
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Either method gives 

li2t/! = ~OOt/! = ~lil«51 t/! 

= ~ €~~)€~~)r(a)rP)r(r)y6)t/!, 

li2fi, = ~ fi,pototp 

= ~€~~)€~~) fi,Y6)r(r) y Plr (a) 

= ~fi,OO. 

(40") 

(40"') 

By Eqs. (40), (40'), and (2Se) it then follows with the help of 
(41a)-(41e) that, to second order, 

«5 (fi,YJIo)t/!) = €JIo)(V) (fi,YVlt/!) , (44) 

in agreement with (26a). 
As seen from the above, Eqs. (30a), (30b), (30b'), and 

(30b") are now valid for any q, be it a world tensor, a local 
tensor, or an undor. 

XV. TRANSFORMATIONS OF FIELD MOMENTA 

If we want to prove the covariance of the commutation 
relations assumed to be valid in coordinate system and tetrad 
field l:, under transformation from l: to l: " we first must 
know how the field momenta pi will transform. This is one of 
the reasons why we must make an assumption about the 
transformation properties of the Lagrangian function 

L = .!f / ~ - g, and for simplicity we will assume it to be 
scalar under the transformations considered. This is not as 
much of a restriction as it may seem at first sight, as the 
space-time integral of.!f cannot be (but for boundary terms) 
invariant under general coordinate transformations any
how, if the alteration of.!f is to have removed all first-class 
constraints. The altered L usually proposed are scalar under 
affine coordinate transformations and under local or some
times only global Lorentz transformations; whatever its in
variance properties are will then restrict the transformations 
which we may consider in the following. 

With .!f now a scalar density, and with ~Ip. 

==.a.!f /a£Ii.JIo' the sum (over i) ~ij.&£ji is a four-vector density. 
This determines the ~ij.&, and therefore the lil==~iO Ie. In 
particular, splitting up all local variations into parts tt I and 
tt 2 in the descriptors t JIo and €1(aXP) and using the notation 
«5 ISi j of Eq. (30a), we obtain 

«51~kJIo = t ~~kA - ~kJIo t.'1 - ~ij.&«5ISik, (4Sa) 

«5~kJIo=l(~a ~P + ~a ~p)mkJlo_~p ~JIomU 
2 2~.a~'p ~.p~.a't' ~.P~.A't' 

+ (t ~~ij.& - t ~~U)c5ISik + ~ ~ij.&( t~t~pSika P) 

+ !~ij.&(<<5ISi j)(liIS/) , (4Sb) 

so that 

li pk = ~O mk"/C _~" pk _ pili S.k 1 ~ ,n -.,., ~ ,n 1 1 , (400) 

lipk=(~Of;-" + If;-m~" +If;-mf;-'')pk_~pf;-Omk''/C 
2 !),n~,O 2:',n~,m 2~,,"~,n ~,/J~,n"" 

+ (t::. pi - t?" ~i"le)liISi k + ~ pit ~t~.BSi k a P 

+ ! pi(lilSi j)(lil'SJ k). (46b) 

If «5 denotes the transformation offield variables like pk, ~k", 
or <Ii, but not any transformation of t .~ or «5 1S; j, we see from 
(46a) with (4Sa) that 
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!8181pk =! S?n81$kn/C -! S~n8pk - !8pi815? 
= (!S~S~ - S:'S?n)$kn/C 

+!( S~S~n + S:'oS?n)pk 

+ ( S ~n pi - S?n $in 1c)818i k + !pi(818i j)(815] k) , 
(47) 

so that 

82pk = !8181 pk - !8 r pk, (48a) 

where 8rpk is obtained from the terms in 81pk that contain 
S ;", by replacing this S;" by S,~ S ~. Note that, similarly, 
(30b') may be written as 

82CL = !8181CL - ~8rCL , (48b) 

so that, if Fis any CL or pk, in general we may write 

(48c) 

Like 81CL, also 81pk, and in general 81 F is linear in the 
coefficients S;" and/or E1(a)(p)' We will in the following un
derstand 81 A F as a differentiation of these coefficients in 
81 Fwith r~pect to x\ while in 81 F,;. or 81( SAF,;.) the 81 
again describes the transformation of F only, so that, for 
instance, 81(CL,;.) means (818i j)qj';' with 818i j unchanged 
from Eq. (30a). 

XVI. SUBSTANTIAL VARIATION OF FIELDS UP TO 
SECOND ORDER 

For discussing Eq. (3) and its integrability to (1) for finite 
transformations, we also need expressions with second-or
der accuracy for the substantial variation ~F (P) fromF (P) to 
F '(P '), where x' "(P') = x"(P). Using the notation !U" 
==x "(P') - x "(P), we find from 

xJf. = [xJ;' + !u"] + S "(P') 

=xJ;' +!u" + S,. + S ;,,!uv=xJ;' 

that, up to (and including) tJ 2' 

!u" = - S,. + S ;lSA . (49) 

With F again any CL or pk, and with the notation M(P) 
=F(P') -F(P), we then have 

~F(P) = F'(P') - F(P) = 8F(P') + M(P) 

= 8 1( F +F,;.!u A) + (81,A F)fuA + 82F+ F,,.!u" 

+ !F".v!u"!uv. (50) 

Inserting (44) in (45), we find 

~F=~1 F+~2F, 

~IF=81F-S"F". , 
- A A~ 82F=82F-s 81F,;. -S uI,;.F 

+ SAS ;IF,,. +!S "SvF".v . 

(51a) 

(51b) 

(51c) 

Now, let 8 12 stand for 81 with S,. and E 1(a)(P) replaced by33 

qJ "= S,. -! S ;lSA (52a) 

and 

liJl(a)(p)==E1(a)(p) - !E1(a)(p)';'SA, 

so that S ;" is replaced by 
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(52b) 

qJ ;" = S;" - ! S ;ls~ - ! S ;"ASA . 

Then, 

8 12 F=81 F- !SA81,;. F- !8r F. 

Therefore, Eqs. (5IaH51c) with (48c) give 

~F = 812 F -qJ "F". + !8181 F - ! SA81,;. F 

-SA8I F,;. + !SAS,~F,,. +!S"SvF,,.v 

(52c) 

(53) 

= ~12 F + !(81 - SA aA )(81 - S,. a,.) F, (54a) 

where ~12 Fis obtained from ~1 Fby the same substitutions 
(52aH52c) as by which 8 12 Fwas obtained from 81 F. Equa
tion (5Ib) allows us to introduce the abbreviation 

~I = 81 - S,. a,. , 
so that 

~F = ~12 F + ! ~1~1 F, 

(54b) 

(54c) 

neglecting third-order infinitesimals. This tells us how ~F 
may be obtained from ~1 F and ~I(~I F). 

XVII. THE TRANSFORMATION GENERATOR UP TO 
SECOND ORDER 

For proving the covariance of the assumed commuta
tion relations (which will be Dirac's modified commutation 
relations 17,20,26) we will have to show the existence of a con
served and invariant generator Twith the property (I). For 
this purpose, we start by defining on a hypersurface 
Xo = const in l: the familiar first-order generator,4 

T1(S,E) = Ii-I l=const d 3x{pi[ 81CL - SnCL,n] - sOKlcj , 

(55a) 

where K = cpiQ;,o - .5t' is here used as Hamiltonian den
sity. Equation (55a) is in terms of canonical variables, what in 
covariant notation would be 

T I =(Iic)-I!dUv{a.5t' ~ICL +.5t'sv}. (55b) 
° aCL,v 

This first-order-infinitesimal expression (linear in the de
scriptors S and E of the transformations) is identical with the 
generator used in papers by others who are discussing differ
ent quantization procedures. 34 

From (55a) we will now construct, by the substitutions 
(52aH52c), the new generator 

T== Tn! S,E) = TI(qJ,liJ) 

= Ii-I l=const d3X{pi~12qi -qJ°K/cj . (56) 

In our next paper6 we will then first prove that (but for 
irrelevant boundary terms that commute with all field varia
bles Fat finite positions) the q number (56) is conserved and is 
invariant, provided that under the transformations l:-l:' 
the descriptors transform as their indices suggest, and that 
we confine transformations to those, under which .5t' trans
forms like a scalar density. Next, by the assumed (modified) 
commutation relations,26 we will there26 calculate the com
mutators of T I ( S,E) with the CL and the pk, and with second
order precision36 we will find26 
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(57a) 

that is Eq. (3). As here both sides are linear in the descriptors 
t I' and E l(a)( p" it follows at once that the substitutions (52a)
(52c) give 

[iT; F] = [iTd t,E); F] = [iT!( qJ,w); F] = 6 12 F. 
(57b) 

Thence, always neglecting & 3' 

eiTFe- iT = F+ [iT;F] + HiT;(IT;F)] 

=F+612 F+HiT;6F]. (58) 

By6F= F'(P') -F(P)andT' = T,weobtainwith&2accu
racy 

[iT;6F] = [iT';F'(P')] - [iT; F] 

= 61 rIP') - 61 F(P) = 6161 F, (59) 

and therefore 

eiTFe- iT =F + 612 F + !616! F= F(P) + 6F= F'(P'), 
(60) 

according to (54c). This shows that, once we will have proved 
that T!( t,E) is with second-order precision36 the first-order 
generator of Eq. (3), the T defined by (56) as T!(qJ,w) will 
automatically, up to second order, be the generator TofEq. 
(1) for the infinitesimal substantial variation of field varia
bles, and, as explained before, will by successive application 
in infinitesimal steps be integrable to a similar generation of 
finite transformations. We see that for infinitesimal transfor
mations the second-order generator is given by the first-or
der generator calculated with second-order precision at the 
point halfway between P and P'. 33 

XVIII. VERIFICATION OF INTEGRABILITY 

We will now directly verify the integrability condition 
(5), that the result F""(P It") of two successive infinitesimal 
transformations l:-l:" [with v 1(a)(p) arid with x "1' = xl' 

+ 7]P(x),seeFig.l]andl:"-l:"" [withE1(a)(P) (x ")andwith 
x"" I' = x" I' + t P(x ")], obtained by 

F" "(P"") = eiT'2( s.E)eiT,2('1,v)F(P)e - iTd'l,v)e - iTd S.E) , (61a) 

is the same as the result that is obtained by a direct transfor
mation 

(6Ib) 

wherepP and v 1(a)(P) are given by Eqs. (I5b) and (36). 
For expressing the various T12 here in terms of the TIo 

we use the abbreviations (52a) and (52b) and 

xl' = 7]1' - ! 7];;'7]). , 

tt\P) = v\a)(p) - ~ v'f\P),). 7]). , 

ljIP = pI' _ !P;;' p)., 

o\a)(p) = vlr)(p) - ~ vlr)(p),), p)., 

so that, by (I5b) with (16a) and by (36) with (32b), 

ljIP = qJ I' + Xl' + H' I' , 

o\a\p) = w'f)(P) + tt\P) +! 3\a)(p) . 

(62a) 

(62b) 

(62c) 

(62d) 

(63a) 

(63b) 

Expanding all exponentials and neglecting & 3' we find 

eiOeib = exp{ ita + b) + ![ia;ib ]} . (64) 
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Therefore, by the linearity of T1, 

eiTd s.E)eiT.,('1,v)==eiT,( 'I'·Co.l)eiT,( x,y) 

= exp{iT1( qJ + X, w + r) 
+ HiT1( qJ,w);iT!(x,r)] J (65a) 

are the left-hand factors in (6Ia) for the two-step transforma
tion, while the left-hand factor in (61 b) for the one-step trans
formation is, according to (63a) and (63b), 
eiTd p,v)==eiT,( 1/1,8) 

= exp{iTJ! qJ + X, w + r) + !iT1( ;,3)J . (65b) 

Equality of(6Ia) and (6Ib) then requires that in eiTFe- iT it 
should make no difference whether iT contains the term 
HiT! ( qJ,w );iT! ( X, r)] of (65a), or whether it contains the 
term ~ iT!( ;,3) of (65b). Yet, these terms need not be equal. 
It suffices that they have equal commutators with the field 
variablesF to which Eqs. (1), (6Ia), and (6Ib) are applied; i.e., 

[[iT!( qJ,w);iT1( x,r)];F] 

should equal [iT1( ;,3); F] . (66) 

We calculate these two expressions by using several times 
Eq. (~7~) with Eq. (60). As in (66) we neglect &3' the term 
with ~!~! Fin (60) will not contribute. Thus, the first one of 
the two expressions (66) is equal to 
[iT1( qJ,w);[iT1( x,r); F]] - [iT!( x,r);[iT1( qJ,w); F]] 

= [iT1(qJ,w);6('1.v) F] - [iT1( x,r);6( S.E) F] 

= {6(M(P"(P") - F(P))J 

- {6('1.v)(F'(P') - F(P))J 

(see Fig. 1) 

= {(F"" -F") - (P' -F)J 

- {(F'" - F') - (F" - F)J 

=F""(P"") -F"'(P"') (neglecting &3)' (67a) 
On the second and third lines from the bottom of(67a), we 
wroteFforF(P),F'forF'(P'),andso on.Similarly,as;and3 
are & 2' the second expression (66) differs only by & 3 terms 
from 

[iTd;,3); F] = [iTd ;,3); F"'] 

= 6(~.,,) F'" = F""(P"") -F"'(P"'). 
(67b) 

Comparison with (67a) then shows that, in second order, 
(6Ia) and (6Ib) are equal. 

XIX. WARNING AGAINST AN OBJECTION 

The reader should be warned that the result (57a) (of 
which the proof was postponed to our next paper6), and 
therefore also our conclusion (57b), is valid only if Fis one of 
the field variables. It is not generally valid for a product of a 
q-number Fwith a c-number field/, because there is no guar
antee thatf(x) would satisfy 6f(x) = 0, while a c-numberf(x) 
would commute with iT. 

As an example, consider again the formula x" I' 
= X I' + 7] I' for the transformation l:-l: ". As 7] I' and 
a('1)x p (PP") = - 7]1' + &2 both are four-vectors, it is seen 
that, under a transformation with descriptor t I' (from l: to 
l: ' and from l: " to l: ""), we have37 
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8(S) 1] I' = t I' , 
8(&) ax I' = - t I' • 

(68a) 

(68b) 

Yet, both 1]1' and axl' are c-numbers, and therefore com
mute with iT1• Therefore, withfa c-number field and neg
lecting ~ 2' we should expect 

[iT1;}F] = f[iT1; F] = f8 1 F # 81(jF) . (69) 

In particular, in the first expression (66), we therefore should 
not make the error of equating [iT1( cp,liJ);iT1(X,Y)] to 15 11 <p,<>J) 

X iT1(X,Y), because also T 1(X,y) contains c-number fields 
Xl' and Y1Ia)IP)' 

XX. SUMMARY 

After an introduction explaining the purpose of this pa
per and a paper to follow,26 we showed in the present paper 
that, for infinitesimal coordinate transformations possibly 
preceded32 by infinitesimal Lorentz transformations of the 
tetrad field, the second-order-infinitesimal contributions to 
local and to substantial transformations of tensors and un
dors2s can be expressed in terms of the first-order-infinitesi
mal transformations. [See Eqs. (48aH48c) and (54aH54c).] 
When the Lagrangian is altered so as to allow canonical 
quantization, for fermions it is not allowed to quantize the 
undor fields t/I and t/lt themselves canonically, nor the tetrad 
field with its ordinary canonical conjugates. These fields will 
satisfy Dirac's modified commutation relations, as we can
onically quantize the canonized fermion fields i'p and i'pt, and 
the tetrad field with its canonized canonical conjugates de
rived from the canonized Lagrangian. 17,20,21 In the next pa
per,26 we will give explicit formulas for all of this, and we will 
prove that the expression T1 [(55a) or (55b)] is by this modi
fied quantization the first-order generator of infinitesimal 
coordinate and tetrad transformations, provided these trans
formations leave the Lagrangian function invariant. We also 
prove there the conservation and invariance of T12, obtained 
from T1 by the substitutions (52aH52c) for the descriptors of 
the transformations. In the present paper, we show that this 
T12 then with second-order-infinitesimal accuracy generates 
by Eq. (1) the substantial infinitesimal transformations of the 
field variables, and we explain why this guarantees the exis
tence of a generator T also for finite transformations. This, in 
tum, guarantees the covariance of Dirac's modified commu
tation relations under the transformations here allowed. Be
cause of the alteration of the Lagrangian, these are affine 
transformations only. Yet, it may be argued26 that this does 
not necessarily preclude general coordinate covariance of 
this (modified) canonical quantization procedure. 

APPENDIX: SOLVING EQ. (28b) FOR 4a
)(p) IN TERMS OF 

E\a)(p) 

For simplicity we write in this Appendix a, /3, ... , for (a), 
( /3), ... , so that by gaP we will mean the Minkowski metric. 

For a Lorentz transformation between Lorentz frames, 
let E" P = ax ,a/ax p -l5p. This transformation leaves ~P 
unchanged, so 

gaP = (15~ + E" y)(I5! + EP6) gy6 

= gaP + ~ + Ef3a + E"6E P6 • 
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Let €tP = !(~ - E
f3a

) and ~ = M~ + EPa), SO that ~ 
= - !E"6E P

6 = - ~ E"6(E[16 + Ef6), and therefore 

(AI) 

We assume the E 1 to be "small of first order." Then we see 
from (AI) that the matrix E2 is small of second order. 

We expand the matrix E2 as a sum of chain products of 
matrices E l' by iterating the substitution of (A 1) into its own 
right-hand member. In each substitution, the leading term in 
E2 is ~E1E1' which does not require further substitution. A 
term obtained after n substitutions will be a polynomial at 
least of order (n + 2), so that, for obtaining an expansion up 
to the Nth orderinE1, we need no more than (N - 2) substi
tutions for obtaining any of the terms. Up to Nth order, the 
resulting terms then are products of factors E 1 only. There
fore, in the resulting terms up to this order, the order of 
sequence of the factors does no longer matter, and the contri
butions from the terms - ~E1E2 and + !E2E1 in (AI) will 
cancel out. Therefore, we obtain the same expansion up to 
Nth order, if we replace (AI) by 

E2 = !E1E1 - !E2E2 • (A2) 
[For instance, after zero substitutions, up to second order in 
E 1, we obtain just the first term in (AI), and the omission of 
the third-order terms is irrelevant in the expansion up to 
second order here considered.] 

Compare (A2) with the equation y = !(x 2 - r), which 
is solved fory by y = (1 + x 2)1/2 - 1 = l:: = d~ )x2n. Similar
ly, (A2) may be verified to have the solution already men
tioned in Eq. (28d). 
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For fermions in curved space-time, where ifn/It is no longer the canonical conjugate of t/I, 
canonical quantization according to Dirac requires use of "modified" graded commutation 
relations, in which the canonical conjugates to the tetrad field components are no longer 
commutative with each other or with the fermion field. As shown earlier by the DeWitts, these 
modified commutation relations may be understood as a canonical quantization of new field 
variables that can conventionally be interpreted in terms of creation and annihilation operators. 
Because of the horrible transformation properties of these new variables, covariance of this 
quantization of fermion fields and of the gravitational field with which the fermions interact is 
best proved in terms of the old variables. Like canonical quantization, also this modified 
quantization requires alteration of the theory destroying general invariance of the Lagrangian. As 
discussed in a preceding paper, covariance of this modified quantization under a group of finite 
transformations will follow, under the conditions that (I) it can be proved for a generator TI , linear 
in infinitesimal descriptors of the transformations, that by these modified commutation relations 
it will generate the substantial variations ofthe canonical field variables, while (2) the second
order generator T12, constructed from TI as previously discussed, will be conserved and invariant. 
It is here proved that these two conditions are satisfied, provided that the transformations leave 
the Lagrangian function L invariant. This restriction limits the proof of covariance of 
quantization to affine transformations only. It is discussed why this yet leaves the possibility of 
general covariance of the "physical part" of this quantization procedure. 

I. INTRODUCTION III. MODIFIED COMMUTATION RELATIONS 

In its simplest form, canonical quantization uses the 
"graded" commutation relations I 

[<b(x);~(y)] = [pi(X);pj(y)] = O,} ti ° _ ° (1) 
" or x -y. 

[<b(x);pJ(y)] = iMi83(x - y), 

The above field identities are examples of what Dirac4 

has called "second-class constraints." Another type of sec
ond-class constraints occurs in fermion theory in curved 
space, where in the Lagrangian density .!f the special-rela
tivistic term Hie t/ltt/l,o is replaced bys,6 

Here, Cpi = a.!f la<b,o' The [ ; ] denote "graded" commuta
tors. By graded we here mean that between two fermion field 
components they are anticommutators.2 

Canonical quantization, however, seldom is as simple as 
( 1). We will here first discuss some deviations from (1). 

II. DERIVED VARIABLES 

There often exist "field identities" (field equations not 
containing any time derivatives), which allow us to express 
certain field variables Qd (called derived variables) as func
tions of other field variables and their spatial derivatives, 
while the Q ~o ==aoQ d do not occur in the Lagrangian density 
.!f. In particular, these Q d arise when a boson theory is 
derived from a first-order Lagrangian (linear in the q 1'). Ex
amples are B ( = curl A) in quantum electrodynamics, and, 
in neutral vector meson theory, cI> ( = K- 2 [gt/ltt/l - div E]). 
In such cases, Eqs. (1) do not apply directly to the Qd, but 
apply only to the canonical field coordinates qc (of which the 
time derivatives occur in .!f) and their canonically conjugat
ed field momenta pC. The commutation relations for the Q d 

then follow by the field identities from those for the qc and 
pC. The covariance of this method of quantization under 
Poincare transformations has been proved. 3 

-I Present address: P. O. Box 901, Gresham, Oregon 97030. 

- !k,ih ra) {~a)t/I,o - ~,o ra)t/I}, (2) 

where the h fa) are tetrad components and ~'->l - g = the 
determinant ofthe h ,!), while the notation of the Dirac ma
trices is as in Sec, XIV of a preceding paper. 7 Then, the ca
nonical conjugate to t/I is no longer ifn/Jt . Instead, both t/I and 
~ according to (2) would be canonical field coordinates qc (as 
their time derivatives appear in .!f), and the corresponding 
pc==a R .!f Ie a~,o then are functions of the qc' 8 In particu
lar, now8 

plfr= -!IVW, 
- aR.!f aL.!f 

plfr=: -_- = - -_- = -! 'vtt/l . 
cat/l,o cat/l,o 

(3) 

To this case, Belinfante's method of quantizing derived var
iables3 is not applicable, but one can use here Dirac's method 
of quantization,4 equating the graded commutators of field 
variables to iii X the graded "modified Poisson brackets" in
troduced by Dirac. The resulting commutation relations 
then are no longer all of the form (1). For instance, Dirac's 
modified commutation relations provide the anticommuta
tion relations 

[ t/I A (x);~( y)] = - (UIA(yO)A B83(x - y), 

[t/lA;t/lB] = [~;~] =0; all for xO=yO, 
(4) 
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where 

A=l!goo, SO, (yO)-1 = AyO. (S) 
By (3), this gives [1f(x);p¢(y)] atxO = yO only half of the con
ventional value (1). A more spectacular difference from (1) is 
that the field momenta canonically conjugate to the tetrad 
components now no longer commute with each other or with 
the 1/! or ~ fields. (See below.) 

IV. CANONIZATION OF FIELD VARIABLES 

Dirac's modified commutation relations may also be de
rived by the method of "canonization."s It amounts to per
forming a transformation proposed by DeWitt and De Witt,9 

~ = t/J0, e = et, ~t = '¢I/3e, (6) 

(7) 

The beauty of the transformation (6) is that it gives (2) the 
form 

(9) 

In the Lagrangian A = f.!l' d 4xle we now perform an inte
gration by parts with respect to time, as we change .!l' into 
~ by adding the amount 

~ - .!l'=!ilic(1/!te21/!).o = !ilic(~t~),o' (10) 

which combines with (9) to 

!ilic{ ~t~,o + !1/!t(®,o® - ®e,o)1/!} 

=!ilicl~t~,o +!~t(e-Ie,o -e,oe-I)~}. (11) 

After this change of fermion field variables and of Lagran
gian density, the canonical conjugate to ~ is now iflipt, and 
therefore ~ can be interpreted in terms of electron annihila
tion and positon creation operators in the way 1/! was inter
preted in flat-space theory, provided we quantize ~ in the 
conventional way by (1). However, since e by (8) depends 
upon the tetrad field components ~i both directly and 
through the metric, the new canonical field momenta fti 
= (ali' Ie a~i,O)II- now differ from the old ,hi 
= (a.!l' Ie a~i,O)¢ by 

fti _,hi = a R.!l' (a1/!,o) + (a1/!1) a L.!l' , 
e a1/!,o a~i,O II- a~i,O II-t c a1/!1 

(12) 

so, by (9), 

fti_,hi=!ili{1/!te2 a(e-I) ~_~t a(e-I) ®21/!} 
a~i a~i 

= !iflipt {®-I ae _ ae e-I}~ 
a~i a~i 

(13) 
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Note that from (10) there is no contribution 
{a (li' - .!l')la~i,O} II- to (12). 

If we start from Dirac's modified quantization, it is 
found9 that, after the canonization, the conventional graded 
commutation relations (1) will be valid for ~ with canonical 
conjugate iflipt, and for ~i withfti. It is simpler to invert the 
reasoning, and say that ordinary canonical quantization (1) 
is allowed after canonization of the fields. From this, we then 
can derive Dirac's modified graded commutation relations 
for the original 1/!, "ii, ~i' and,hi. We thus first find 

Ii ae- I ae 
[,hi.®-I] = ---83 =ili0- l -e-183, (14) 

, i a~i a~i 

where we omitted the arguments x and y (with XO = yO), and 
where 83 is short for 83(x - y). Thence, in similar notation, 

[,hi(X);1f(y)] = [fti;e-I~] + [e-I~(fti _,hi)] 

= ili{e- I ae 1/! 
a~i 

+ !®-I[e-I ae _ ae ®-I]e1/!}83 
a~i a~i 

= !ili{e-2 a (e
2
)}1/!83 

a~i 

= !ili AyO a elyO) 1/!8
3
(x _ y), for XO = yO, 

,/ a~i 

on account of (7). Similarly, for XO = yO, 

[,hi(X);¢( y)] = !ilt¢ a (iyO) A~ 83(x _ y) 
a~i r 

(ISa) 

= !ilif/lt a (e
2
) e-2/383(x _ y) (ISb) 

a~i 
and 

[,hi(X);,h j( y)] 

= 1~1/!t[a(e2) e-2 a (e
2
) - (i+%j)]f/!83(X _ y) 

a~i a~j 

= !iffii[ a (r'yO) A~ a VyO) _ (i+%j)] f/!83(X _ y). 
a~i r a~j 

Also (4) follows similarly by (7) from 

(16) 

[1f(x);¢(y)] = e-2/383(x - y), for XO = yO. (17) 

For boson fields ~i' including tetrad fields, we find, un
changed 

[ ~;(x);,h j( y)] = [ ~;(x);ft j( y)] = ili8 {83(x - y), 

for X O = yO. (18) 

As gravitational field components ~i we may use in the 
above the tetrad field h fa" or its inverse matrix h t"'. The 
forms taken by Eqs. (ISa), (ISb), and (16) for the former 
choice have been published before. S For the latter choice, 
(16) becomes 

ffi fa, (x);.h(P'(Y)] = - 2i~r'Ah ?,.,h ?p,Jii~ pf)vf/!83(X - y), 

(19) 
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where we introduced the abbreviation 

I.a~P =i(r ar ~r P - r Pr ~r a). (20) 

The proof of covariance of these commutation relations will 
start in Sec. VII. For this proof, it is simpler to use the origi
nal field variables "', 'ii, ~i' withfii and the above, more com
plicated, modified commutation relations, than to use the 
canonized field variables :;p, :;Pt, and ~i with fii and the 
simpler commutation relations (1), because under coordinate 
transformations the canonized field variables transform in a 
horrible nonlinear way. See Eqs. (6) and (13) with (8a) and 
(8b). 

V. THE ALTERED THEORY OF FIELDS 

The first-class4 constraints, which the general coordi
nate invariance of the Lagrangian causes l

0-
12 in Einstein's 

gravitational theory, give rise to well-known complications 
with the quantization, comparable to (but worse than) com
plications met in the quantization of Maxwell's theory be
cause of its general gauge invariance. In the latter case, the 
theory can be quantized "dynamically,,7 in the transverse 
gauge,13 but attempts at dynamical quantization of the the
ory of gravityl4 interacting with matter including fermion 
fields meets with unsolved problems. Therefore, we consider 
here, as previously,7 only "Fermi-type" quantization of the 
so-called "altered" theory of fields. 

This alternative method of quantization was first ap
plied in 1929-1930 by Fermils to flat-space quantum elec
trodynamics. Though originally expressed in terms of Four
ier components of the fields, it can also be expressed in terms 
of the fields as functions of space-time coordinates. 16 This 
method removes the cause of first-class constraints by alter
ing the Lagrangian, by adding terms to it that have only 
restricted gauge invariance. In quantum electrodynamics, 
the altered Lagrangian is invariant only under those gauge 
transformations that keep S ==div A + iM> Ie at invariant. 
The Lagrangian of the altered theory of gravitation is invar
iant under affine coordinate transformations only, so as to 
make 

(21a) 

transform as a four-vector. The altered or "muddified,,17 
Lagrangian functions L and densities .!L' then differ from the 
original ones by "mud" terms quadratic or bilinear in the 
quantities Sand/or S'" or the like. This would change ex
pressions for physical quantities by terms at least linear in S 
and the like, and thus we obtain a theory which describes 
nature only in those states, in which the quantities Sand S '" 
and the like have the value zero, even though as q numbers 
they cannot vanish, on account of the commutation relations 
which we assume. 

The altered field equations, which follow from the al
tered Lagrangian, now allow us to solve for all field velocities 
'1;,0 in terms of the (altered) field momenta pj. As first-class 
constraints now are absent, we can now quantize canonically 
by (1), provided that in the presence of fermion fields we first 
canonize, which is equivalent to using Dirac's modified com
mutation relations (15H18) for the fields originally occur
ring in the altered Lagrangian. 
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The resulting theory then allows for more different 
quantum states than can .occur in nature, so it gives us too 
large a "Hilbert space." (The quotation marks here refer to 
the lack of positive definiteness of the metric of this function 
space, as discussed by GUpta. 18) This oversized space con
tains states that describe the presence of free "unphysical" 
photons and gravitons, created and annihilated by "nondyn
amical" field components.7 In the "physical part" of this 
oversized Hilbert space, only photons created by transverse 
fields can occur as free particles, and the nonphysical pho
tons can occur only virtually in certain combinations that 
describe the effects of the Coulomb interaction between 
charged particles. Similarly for gravitons, where combina
tions of virtual nonphysical gravitons should be responsible 
for gravity as Newton knew it. The physical part of Hilbert 
space is selected from the oversized space by the auxiliary 
conditions 

S = 0, S'" = 0, (21b) 

that is, by the quantized version of the Lorentz condition and 
of the De Donder condition. 19 This Hilbert subspace (21b) 
should be equivalent to the Hilbert space that would be de
fined by successful dynamical quantization. 

VI. TETRADS OR METRIC? 

The Dirac matrices r'" in the general-relativistic theory 
of fermions are expressible in terms of the constant numeri
cal Dirac matrices tal of the Lorentz-covariant flat-space 
theory and the tetrad field h fa) by 

r"'(x) = ta)h fa) (x). (22a) 

The inverse tetrad field h '!), given by h fa)h~) = ~~, is relat
ed to the metric g",v by 

_ 0 h(a)h(P) 
g",v - g(a)( P) '" v' (22b) 

Quantization of the gravitational field now may be accom
plished by quantization of the h fa) or of the h t'). Most of the 
following will be written in a form independent of this 
choice. 

The main reason for describing the gravitational field by 
the tetrads instead of by the metric is that, for invariance of 
fermion theory under local rotations or Lorentz transforma
tions of the tetrads, Fock20 found it necessary to include, in 
the expression for the covariant derivative V", '" ofthe Dirac 
wave function, terms containing derivatives of the tetrad 
field, but not expressible in terms of derivatives of the metric 
field. 21 So, we need both the tetrad field and the metric field, 
but they are interdependent, and it is easier to express the 
metric field as a function of the tetrad field than to express 
the tetrad field in terms of the metric field. 

It is true that Pauli has proposed expressing a particular 
tetrad field in terms of a given metric field by an infinite 
expansion.22 Here, we will not use such a complicated way of 
expressing a particular choice for one variable in terms of 
other variables. 

The tetrad field has 16 components, while the metric 
field has only ten. The additional six components of the tet
rad field correspond to the arbitrary choice of the orientation 
of the tetrad in each point of space-time. The invariance of 
fermion theory under changes of this choice, postulated by 
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Fock, introduces six additional first-class constraints. For 
dealing with this, the altered th~ry would require addi
tional terms in the Lagrangian, bilinear or quadratic in the 
six components of an antisymmetric S (aX (J) that is not com
pletely independent of the orientation of the tetrads, and in 
addition to (21b) there would be the auxiliary condition 

s(a)({J) = O. (2tb') 

An alternative treatment, by Pellegrini and Ple
banski,23.24 assumes that the tetrad field may be arbitrarily 
chosen at one time only, and from there on will satisfy field 
equations of motion of its own, derived from a different addi
tion to the Lagrangian. This ascribes a physical meaning to 
the tetrad field. As there is now no longer a requirement of 
invariance under changes of the tetrad field, the Fock terms 

!fJc[(Vp~ - ~.I.)rP'" - ~P(Vp'" - "'.p)]~ - g (23) 

then may be omitted from .Y, and the matter Lagrangian 
then would feature ordinary instead of covariant derivatives 
not only for boson fields, but also for fermion fields. 

Here, we will not specify which one of these two treat
ments of the tetrad field is used. 

VII. COVARIANCE OF COMMUTATION RELATIONS 

Under a coordinate transformation x-x', let field com
ponents Pi (x) (which may be q's or p's or their spatial deriva
tives) be transformed into primed field components F [. (x'). 
To each point P with coordinates x p in the unprimed frame 
l:, let there belong a point P' in l:' with coordinates x~. satis
fyingx~. = xp.lfwe now can prove that, for all field varia
bles Pi at points P on a given spacelike hypersurface 0' 

(t = const in l:), 

Fj.(x~.) = UPi(xp)U-t, 

for x~. = Xp with t~. = tp = to', (24) 

with the same U for all fields and for all points P on 0', then, 
for P and Q on 0', and with.ljk (x) a polynomial in the q's and 
p's and their spatial derivatives at x, it will follow by (24) 
from the assumed validity of the commutation (or anticom
mutation) relations 

[F;(xp);FdxQ)] =ifjk(XP)<53(Xp -xQ) (25) 

on 0', that for the corresponding points P' and Q' on 0" 

(t' = to' in l:') the commutation relations 

(25') 

will be valid.7 

Therefore, proof of (24) suffices for proving the covar
iance (or, more precisely, the form invariance) of the commu
tation relations under the transformations for which (24) is 
proved. 

If this transformation can be of the form x' = x with 
t' = t + (to' - to')' the fields F j. (x~. ) will be simply the fields 
Fi (x p' ) at points P' shifted from P in the time direction, from 
0' to 0', without change of spatial coordinates. Therefore, we 
will then have proved not only the covariance of the commu
tation relations, but also that they remain valid at times dif
ferent from the time at the hypersurface 0', on which they 
were originally assumed. 
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For infinitesimal transformations, U will be close to the 
unit operator, and it is customary to write 

U ±I =e±iT = 1 ±iT-!T2+ .... (26) 

Again, T may be expanded as T = TI + T2 + ... in terms of 
first order and higher orders in the infinitesimal descriptor 
fields S P = x' P - x P that describe the infinitesimal coordi
nate transformation. 

In the preceding 7 paper (I), we discussed whether the 
conclusion (24), when proved for infinitesimal transforma
tions, will be integrable to finite transformations. If a finite 
transformation is split up into a succession of N infinitesimal 
steps, with correspondingly U split up into factors 
UN UN _ I ••• U3 U2 UI , the question is whether the product U 
will be independent of the way in which the finite transfor
mation was split up into infinitesimal steps. In our preceding 
paper (I), we explained how this uniqueness of U is guaran
teed by the known fact that the transformations 
F; (x)_F j. (x') form a representation of the group of coordi
nate transformations x-x' that we allow,2s provided that 
for each infinitesimal step in the transformation we can 
prove (24) with second-order precision.7 [See Fig. 2 of (I).] 
We then showed that for this it suffices to find a first-order 
generator TI with the property 

blF = [iTI ; F], (27) 

where blF was the part of bF linear in the infinitesimal de
scriptors S P and €1(a)({J)' Here, the latter were given with tJ 2 
accuracy as €1(a)({J) = €(a)({J) - !€(a)(r)~r)({J)' Thence T 12, de
fined as TI with S P and € I(a)( (J) replaced by the fP P and 
liJI(a)({J) of 26 Eqs. (I: 52a) and (I: 52b), could with tJ 2 accuracy 
serve as the generator T, for which U = eiT would satisfy Eq. 
(24) above. This then would ensure covariance of the com
mutation relations used for calculating the right-hand 
members of Eqs. (27), provided that TI2 would also be con
served and invariant under the transformations described by 
the descriptors used in TI • In Sec. IX, we will prove the latter 
property of T12, and in Sec. XII we will prove Eq. (27) for all 
canonical field variables F. 

VIII. CHOICE OF THE GENERATOR 

By (I: 51 b) with (I: 30a), the first-order substantial varia
tions of the field coordinates q are 

blq = /)Iq - S Pqi.p =(/) lSi i)% - sPq.P' (28) 

with 

~ "'s i-I: P i v + ...Ia) i ({J) (29) 
UI i =~ ,vSi P ~i ({J)O'i (a) • 

Here, we use the first-order descriptors S P and ~Ia)( (J)' which 
in (I) were defined with second-order precision for making 
the second-order terms unambiguous. 7 

As (28) according to (I: 3) should be obtainable by 

(30) 

and this should also be true in the absence offermions, when 
the modified commutation relations simply are the conven
tional ones, our first guess at an appropriate TI would be 

TI = Ii-J d 3x{pi[ /)Iq - qi."S"] - sO~l (31) 
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where 

71' = cpi<li.O - ..? (32) 

is the Hamiltonian density. In (31), the pi for <Ii = t/I or If are 
given by (3), and we interpret in (31) P~811f as6 

- (811f)P~ = !1i(811f),iyOt/I, (33) 

with 8 11f from (I: 40'), while in (32) we interpret cpT,f.o as6 

- Cif.o p~ = !1iCif.o ,'yOt/I. (34) 

Below we will verify that the choice (31) for Tl will provide 
validity of (30) also when the initial commutation relations 
are Dirac's modified ones. Moreover we will verify that (27) 
now also holds for F = pi. But, first we will prove that T12 is 
conserved and invariant. 

In the following we will write T for T12, and we will 
write 8T for 812, that is, for the first-order-infinitesimal var
iations 81 of various quantities, with the S I' and E1(a)(P) in 81 

replaced according to (I: 52a) and (I: 52b) by 

rpl'=sl'_!s':A.s;", 

ll)1(a)(P) = E1(a)(P) - !E1(a)(P)')"S;'" 

IX. CONSERVATION OF THE GENERATOR 

(35) 

(36) 

For proving the conservation of T, it is preferable to 
write Tin more covariant notation as a function of the <Ii and 
<Ii.I" rather than as a function of the <Ii, the <Ii.n' and the pi. 
So, we write 

(37) 

where the integral is over the spacelike hypersurface 0' 

(XO = const), sothatdO'v = ~ d 3x. In (37),again, for <Ii = If, 
we interpret (a R ..? lalf)f(lf) for ..? = ¢ig(t/I) +... as 
- f(If)(a R ..? lalf) = + f(If)g(t/I),3 or rather the Wick-or-

dered product offandg.6 

The proof of conservation of T is similar to the usual 
proof of conservation of energy and momentum in field the
ory: We prove the validity of a continuity equation. For (37), 
we will prove 

(38) 

and, using Gauss's theorem, we conclude that the difference 
between T (37) calculated on two different spacelike hyper
surfaces 0'1 and 0'2 is an integral of the form of (37), over a 
world tube at r~rxJ between 0'1 and 0'2: 

T(0'2) - T(O'I) = - (1ic)-1 ~ #r sin OdOd; 

(39) 

where { } is the same as in the integrand of (37). 
Since we use T only for calculating its commutators 

with fields F (P) at finite points P on 0', and the points over 
which we integrate in (39) lie at a spacelike distance from 
these P, the integral (39) commutes withF(P). We therefore 
may as well neglect terms like (39) in T, and treat T as if it 
were conserved from 0'1 to 0'2' 
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For proving (38), we first use the field equations 

a (a..?) = a..? (40) 
v a<li.v a<li' 

so that the first term on the left in (38) becomes 

a..? - a..? - -
-8T <Ii + -8T (<Ii.v) = 8T ..? (41) 
a<li a<li.v 

on account of8(<Ii.v) = (8<1i).v' In (41), 8T ..? stands for the 
terms linear in rp I' and ll)~i~) in the substantial variation of 
..? when the descriptors are rp I' and ll)~i~) rather than S I' and 
..Ja) 
~1 (P)· 

We also assume that .!l" is a scalar density under the 
transformations allowed. This gives, with & 2 precision27 for 
the &1 terms of the local variation of ..? with our changed 
descriptors, 

8T<'~ = -..? rp ':1' (42) 

and 

8T ..?=8T ..?-..?,l'rpl'= -(..?rpl')'I" (43) 

Therefore, the first term (41) on the left in (38) cancels the 
second term on the left in (38). This completes the proof of 
the validity of(38), and therefore proves the conservation of 
T, but for the irrelevant boundary term (39). 

We now do a comparison with the case of Lorentz trans
formations in flat space-time. The proof of covariance of the 
commutation relations which we are giving here shows great 
similarity to the proof of this covariance under Lorentz 
transformations given in flat space. 1

,3 The generator used 
there is equivalent for that special case to our present expres
sion (31), but, with the transformation coefficients there con
stants, we have there the special conditions s;.,;.. = 0 and 
~la\p),),. = 0, which make T there expressible in terms of the 
total energy, momentum, and angular momentum, thus 
guaranteeing in that case the conservation of T. For proving 
the conservation of our present T, however, we did not expli
citly need conditions of constancy of S;., and of ~la)(p). 

Nevertheless, these conditions are implicitly imposed by 

our postulate of invariance of L = ..? I ~ - g, as we use the 
altered Lagrangian. 

X. THE LAGRANGIAN AND HAMILTONIAN DENSITIES 

Using the commutation relations (15H19), we next 
should calculate the commutators [iT; F(P)]. For this, we 
need 71' (contained in T). For calculating this, we write..? in 
the general form 

..? = !,@il'jV~i'l'~j,v - au + IicHIf'l'cl't/I - !lfcl't/I,I' 

- m# + If_il't/I~i,1' + If/VJ}. (44) 

Here, the ~i are the components of the boson fields, includ
ing the tetrad fields. Our Lagrangian density ..? is second 
order in the derivatives of these ~i' with coefficients ,@il'jv 
= ,@ jvil' that are functions ofthe ~ only. Also the _il' and 

the c I' and./ - m are functions of the ~ (in particular of the 
tetrads), and contain also the constant flat-space Dirac ma
trices. In particular, 

(45) 

Frederik J. Belinfante 2831 



                                                                                                                                    

The term with m is the fermion mass term; !'stands for the 
interaction between fermion and boson fields; the terms with 
tu il' are the Fock terms, 

¢ituil''I/I'ji.1' = ,/iiiI.(alAl''I/Ih (alA. I' = ,/iiiI. pJ. (a)'I/Ih(alA.I" 
with 

(46) 

(47) 

according to (20), unless these terms (46) are omitted, as in 
the theory of Pellegrini and Plebanski.23

•
24 The nonlinearity 

of the theory resides in the dependence of the £i2 il'jv, etc., 
upon the 'jk' The canonical conjugates p i to the 'ji are now 
given by 

Cpi = £i2 iOjv'jj.v + ftc¢itui0'l/l. (48) 

In the altered theory, we can solve from (48) for all of the 
boson field velocities by 

a·o =K .. 1r
j 

Tl, lJ 

with 

1r j~p j - £i2 jOk" 'jk,,, -ltCiiitu jO'I/I, 

where the Kij satisfy 
171 hOiO ~ h 171 hOjO ~ . 
~ 'Kij =Uj' Kih~ =u1, Kij =Kji , 

and like the £l) i I'jv are functions of the '1' 

We now define 

(49a) 

(49b) 

(SO) 

where the last term in (S4b) arises from the commutator 
[ '1/1; lief - !(¢i e"'1/1)."S d 3X ], which arises when we write 
- !¢i." e"'1/1 as - !(¢i e"'I/I)." + !¢i(e"'1/1).". A bit more compli

cated is the derivation of 

[cpi; f Ks d
3X] 

= iftc{Cp:os - 5." [ £i2 jvi"'jj.v + Iie¢ituin'l/l 

+ llich ¢i(r "'f aeo - aeo 'fr ")'I/I]}, (54d) 
a'ji a'ji 

where we must use Eqs. (ISa), (15b), and (16). Here, cP:o on 
the right is the time derivative of pi given by Eq. (48). Equa
lity ofthe two sides ofEq. (54d) follows from the field equa
tions obtained by varying the 'jj (x) in this Lagrangian. For 
functions Y('j), frequent use is also made, in the derivation, 
of Y.I' = (ay / a'j;)'ji.1' , ae 1'/ a'ji = raja C,dl fa))I a'ji' 
h'f'f = 1, and the anticommutation relations of the Dirac 
matrices, like ra)'f + 'fra) = 2h (a)O. 

For 5 = const, Eqs. (S4aH54d) become the Heisenberg 
equations of motion. 

XII. COMMUTATORS WITH T1 

Using Eqs. (3), (I: 40), (I: 40'), and (20), we write out Eq. 
K = Cpi'ji.O + !Iie(¢i.oe°'l/l - ¢i e°'l/l.o) -.?, (51) (31) as 

and eliminate from this the 'ji.O by (49) and the '1/1.0 and ¢i.o by 
the Dirac equations, which here take the form 

m'l/l + e 1''1/1.1' +!e ':1' '1/1 - tuil''I/I'ji.1' -!''I/I = 0, 

- ¢im + ¢i'l'e I' +!¢i e ':1' + ¢ituiI''ji.I' + ¢i!,= O. 

This gives 

K lY .. rt1r j _l£l)imj"a. a. + ~ + lic{m:;M/. ,-a.y 2 Tl,m 7rJ,n 'Y'f/ 

XI. GENERALIZED HEISENBERG EQUATIONS OF 
MOTION 

(S2a) 

(S2b) 

In the following, let 5 be any c-number function of the 
coordinates. Using our modified (anti)commutation rela
tions (ISHI9), we now calculate the commutators 
[F; fKs d 3x] for F= 'ji,pi, 'I/IAt or"ifA. Derivatives of swill 
appear in the results, by integration by parts of spatial de
rivatives of Dirac delta functions. Because we did not pay 
proper attention to the ordering of factors in .?, we cannot 
do so either in K or in its commutators.6 As some factors 
may have commutators containing factors ~3(0) = 00, we 
simply must hope for the best that there exists an ordering 
for which such infinite terms do not occur in the results. 
With this understanding, we find, by (49a) and (49b) 

['ji; f Ks d 3X] = iftc'ji.OS, (S4a) 

and, by (Sla) and (Sib), 

['1/1; f Ks d3X] = ilic{ '1/1.05 - !k'fr"'I/Is.,,}, (S4b) 

["'if, f Ks d 3X ] = iftc{¢i.os - !k"iiir"'fs." }, (S4c) 
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TI = f d 3X { /i- ~i(~I'ji - 'ji,,,S ") + E1(a)(P) ,/iiiI.(a'P..P)'I/I 

+ !A¢ir>'I/I,,, - ¢i ... 'f'l/l)s " - (Iie)-IKSO}· (55) 

Using the modified cOnlmutation relations and the above 
results (S4aHS4d), we find by rather straightforward calcu
lation 

(56) 

for F = 'ji ,pi, '1/1, or ¢i. The calculations for Y = pi are again 
the most complicated ones, with many terms that ultimately 
cancel each other. 

Using (56), we can now calculate [iTI; 'ji.O] byexpress
ing 'ji ° first by (49a) with (49b) in terms of the q's and the p's. 
It is then found to be equal to (81'1;).0' 

It is easier to use the factthat TI (like T) is conserved but 
for irrelevant boundary terms at spatial infinity, as seen from 
Sec. X with tp I' replaced by 51' and with 8T replaced by 81, 

Therefore, 

81(<1;.1') = (8)<1;).1' = [iT1;q;].1' = [iT1;<I;.I']' (57) 

also for p, =0. From (S7) together with (56) for F = q, then, 

8) F(q,q.l') = [iTI; F(q,q.I')]' (S8) 

Therefore, we may avoid the lengthy direct verification of 
(S6) for F = pi, as it will follow much more easily from (S8) by 
(48). 

We thus have verified Eq. (27) for all canonical field 
variables F, which completes the parts of the proof of covar
iance of Dirac's modified commutation relations, also for 
finite coordinate transformations and tetrad rotations, that 
in the preceding paper (I) were delegated to the present pa
per. 
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XIII. LIMITATIONS OF COVARIANCE OF OUR 
QUANTIZATION PROCEDURE 

So far, we have proved covariance of our quantization 
procedure only under those transformations that leave our 
altered Lagrangian function L invariant. In practice, this 
means limitation to affine transformations. 

It has often been suggested to confine coordinate sys
tems to those that at space-like infinity asymptotically are 
Lorentz frames. With this restriction, we have shown above 
merely covariance of the modified commutation relations 
for the altered theory under Poincare transformations only. 

Fock has suggested that Poincare transformations any
how would be the only coordinate transformations allowed 
in a theory that impose the De Donder condition and that 
allows asymptotically only Lorentz frames, provided that 
one assumes absence of incoming radiation.28 His justifica
tion of this claim is more a plausibility argument than a rig
orous proof. In a following paper,29 we will further discuss 
whether Fock can be right. The answer to this question, 
however, may well be irrelevant, if it would be true, as sug
gested in Sec. XV below, that the physical part of the above 
quantization procedure would be covariant under rather 
general coordinate transformations. 

XIV. ANOTHER PROOF THAT THE COMMUTATION 
RELATIONS ARE INVARIANT UNDER AFFINE 
TRANSFORMATIONS ONLY 

Consider again the definition (37) of T, for the special 
case that (()~a)(t1) = 0 and tp '" = const, so that 8<b = O. Then, 
T takes the form 

(59a) 

with 

[ F-cfll ]dx'" = iftcF dx '" , '" .", 

= iftc[ F(Q) - F(P)] + t72• (62) 

Under our assumption of validity ofthe commutation rela
tions in 1: as well as in 1:', therefore, (62) should be valid in 
both 1: and 1:'. 

In particular, let us take for 1:_1:' a transformation that 
does not change the coordinates at all at spatial infinity, 
though it does change the coordinates and dx '" at P and Q. 
According to Einstein,31 then, this transformation does not 
change the fll ",' If, for simplicity, we take F to be a scalar 
field, this transformation would change nothing in the right
hand member of (62), while in the left-hand member of (62) it 
would merely change the dx "'. This would create a contra
diction, so that our original assumption must have been 
wrong, that we could perform a transformation 1:-1:' that 
was not affine, and yet the commutation relations would 
hold in both 1: and 1:'. We conclude that only under affine 
transformations the commutation relations remain valid. 

We may formulate this argument slightly dift'erently as 
follows. Ifboth members of(62) are to transform in the same 
way (for avoiding contradictions of the kind we found 
above), then fll '" dx '" in the left-hand member of (62) should 
be a scalar q number. Therefore, the transformation of dx '" 
should be contragredient to the transformation of fll ",' As 
the latter according to Einstein transforms as a covariant 
four-vector at infinity, it follows that our dx'" (which was 
defined at P) should transform as a contravariant four-vector 
at infinity. That is, the transformation of a contravariant 
four-vector should be the same at P as at infinity. This is so 
only if the coordinate transformation is affine. So, if the com
mutation relations hold in both 1: and 1:', the transformation 
from 1: to 1:' must be affine. 

xv. POSSIBLE GENERAL COVARIANCE OF THE 

cfll '" = - it"," du", 

where 

(59b) PHYSICAL PART OF THE QUANTIZED ALTERED 
THEORY 

t ,,_ U' ~ " a R .y 
'" =.Z- V'" - --<b.",. 

a<b." 
(59c) 

Also in (38) now tp '" can be factorized out, and we find from 
the arbitrariness of the tp '" the four continuity equations30 

a"t", "= O. (60) 

Using Gauss's theorem, Einstein31 has shown that, on ac
count of (60), fll '" defined by (59b) transforms as a covariant 
"free four-vector," that is, as a covariant four-vector at spa
tial infinity, under transformations that at spatial infinity are 
affine, but that are not affine at finite spatial distances. 

In coordinate systems 1: or 1:', in which we assume our 
modified commutation relations to be valid, we still can de
rive by direct calculation the validity of the relations (56), 
which in our present case simplify to 

-ili- 1
[ fll",s"';F] = -s"'F,,,,, (61) 

where the S '" are c numbers independent of x. In particular, 
let us take F at some point P, and for s'" let us choose the 
infinitesimal four-vector dx '" pointing from P to Q. Thus we 
obtain 

2833 J. Math. Phys .• Vol. 26. No. 11. November 1985 

In dynamic quantization of the original unaltered the
ory,14 in linearized approximation,32 not all ten polarization 
modes of the metrical field are quantized. The three longitu
dinal modes33 g~1I = Ii -1{ glm.11I + glll.lm -Ii -lg !l.!lmlll are 
assumed to be zer034; the transverse trace component gT 
= gil - Ii -lg!l.!I becomes the nonlocally derived variable 
- 2K1l. -1~; the four timelike components gpO become the 

nonlocally derived variables gnO = 2K1i -1 {ynO 
- ~Il. -1 ~I.jll I and32 goo = - 1 - Kli -1 ( y ,.,. 
- Il. -1 ,::rJ.!lI. Thus, only the two traceless transverse 

modes of polarization of g",,, are quantized. Since in the al
tered theory we quantize all ten components of g",,,, or even 
all 16 components of h fa) or h t); in the absence of auxiliary 
conditions this theory allows far more quantum states than 
are physically possible. That is, "altered Hilbert space" has 
far too many dimensions; physically possible quantum states 
form only a small subspace of it. 

Now consider the set 0 1 of coordinate systems obtaina
ble from a given frame of reference 1:1 by affine transforma
tions. Such a set is called an orbit under the affine group in 
the space of coordinate systems, or, briefly, an affine orbit. 
Every coordinate system belongs to one affine orbit. Coordi-
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nate transformations inside one orbit are affine; nonaffine 
coordinate transformations lead from one orbit to a different 
one. Similarly, "Poincare orbits" would be sets of coordinate 
systems obtainable from each other by Poincare transforma
tions. 

Now, the Lagrangian function of an altered theory is 
invariant only in the affine orbit in which it was defined. 
When we use a Lagrangian· of the same form in a different 
orbit 02' it determines a theory which does not follow by 
coordinate transformation from the altered theory in the 
original orbit 01' Instead, it is a different theory. Each affine 
orbit has its own altered theory. 

Therefore, we should not expect to obtain the commuta
tion relations of the altered theory in the second orbit, by 
mere coordinate transformation, from the commutation re
lations of the different altered theory in the first orbit. 

As there are infinitely many affine orbits, there are infi
nitely many altered theories. Whichever affine orbit we se
lect as our starting point, our theory will be covariantly 
quantized inside that orbit. Each of these theories, by its 
quantization alone, determines an oversized space of quan
tum states, of which some are physical states and some are 
unphysical states. The physical states are then selected by 
the auxiliary conditions applied in the orbit in which the 
theory was defined. These auxiliary conditions reduce the 
altered field equations and observables, in the Hilbert sub
space determined by these conditions, to the physically cor
rect equations and quantities of the generally covariant the
ory, provided that our method of quantization is correct. If 
also dynamical quantization would be possible and would be 
a correct method of quantization, the auxiliary conditions 
should reduce each altered Hilbert space to the Hilbert space 
defined by dynamical quantization. If dynamical quantiza
tion would be a correct procedure, the commutation rela
tions obtained by it should also be covariant under general 
coordinate transformations, though this would be equally 
difficult to prove explicitly, 35 as the covariance of the "phys
ical part" of the altered commutation relations. 

The equivalence of the physical part of the quantized 
altered theory to the dynamically quantized original covar
iant theory is suggested by two facts: (1) in the altered theory, 
the auxiliary conditions reduce the altered Lagrangian, and 
therefore also the altered field equations, to the Lagrangian 
and the field equations for the field variables of the covariant 
unaltered theory, to which we apply dynamical quantiza
tion; and (2) in dynamical quantization we assume for the 
dynamical field variables (like the transverse fields in Max
well's theory) the same commutation relations as which 
would apply to these variables in the altered theory. 

Dynamical quantization of the general-relativistic the
ory and modified canonical quantization of the altered the
ory of gravity are both generalizations of what is done in 
quantizing special-relativistic field theory. Ifwe would know 
for sure that these generalizations are correct methods of 
quantization, there would be no problem. Compare the birth 
of special relativity theory. The "microscopic" electromag
netic field equations and equations of motion for charged 
particles were guessed by Lorentz on the basis of experimen
tal results combined with a number of hypotheses (like the 
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Lorentz contraction of electrons, etc.). Taking these equa
tions for granted, one can prove explicitly their covariance 
under Lorentz transformations. This proof was given by 
Lorentz,36 with some corrections made by Poincare.37 Then, 
Einstein38 much simplified matters by postulating covar
iance of electromagnetic theory, and thence deriving the 
equations for moving charges. Similarly, if we knew for sure 
that our quantization procedures were correct, we could 
postulate their general covariance as an application of the 
general relativity principle, and from this postulate we could 
possibly derive some relations between the different quan
tized altered theories, or between different dynamical quan
tizations of the covariant theory, in different affine orbits, or 
in different Poincare orbits, if we assume space to be asymp
totically flat and if we confine ourselves to coordinate sys
tems that asymptotically are Lorentz frames. 

However, quantum field theory is an unfinished theory, 
as shown by the need for swindles in renormalization theory, 
such as treating logarithmically divergent integrals as small 
quantities. This decreases a person's confidence in extrapo
lations of the methods of special-relativistic field theory to 
the general-relativistic case, and one would wish to have an 
explicit mathematical proof of general covariance of the 
quantized theory left after use of the auxiliary conditions, so 
as to give us more confidence that we are on the right track 
with our attempts at quantization. 

So far, however, no explicit proof is available, so that all 
we can presently do is trust that the covariance is there, by 
lack of evidence to the contrary, and by a combination of 
hope for the correctness of our quantization procedure 
(within the limits of correctness of present-day quantum the
ory), with our belief in the general relativity principle. 
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The De Donder coordinate condition for an unquantized metrical field is discussed first. While 
the coordinate transformations allowed by this condition do not form a group in the ordinary 
sense, it is possible in an infinite number of ways to make these transformations elements of a 
group of metric-dependent coordinate transformations. In the unquantized theory, the question 
what coordinate transformations the De Donder condition will allow remains not generally 
answered, but it is not of primary importance, because the imposition of the De Donder condition 
in the unquantized theory is at best a question of convenience. The question is more important in 
the quantized "altered theory" of gravity, in which the De Donder condition serves for selecting 
the physical part of a theory that without this condition would also describe unphysical states. 
There are as many "altered" quantum theories of gravity, as there are affine orbits in the space of 
coordinate systems. Each orbit has its own altered theory, and in each separate altered theory with 
its own De Donder condition the only coordinate transformations that make sense are the affine 
ones, or, with proper boundary conditions imposed, Poincare transformations. The coordinate 
transformation between two frames in which the De Donder condition is valid, either weakly or 
strongly, must be an affine (or Poincare) transformation, ifthe coordinates are required to be c 
numbers. 

I. INTRODUCTION 

In his book The Theory of Space Time and Gravitation, 
Fock1 had claimed that harmonic coordinate transforma
tions would automatically be Poincare transformations. His 
"proof' of this claim is not rigorous, and therefore we should 
call it a conjecture. The validity of his claim has been at
tacked by Bergmann, who has claimed that Fock's harmonic 
coordinate transformations would not even form a group. 2 

Before we discuss these contradictory claims, first we pro
vide some definitions. 

II. DE DONDER TRANSFORMATIONS 

A De Donder frame is a coordinate system, in which the 
metric satisfies the De Donder condition3 

If"." = O. (1) 

A coordinate transformation 1:---+1:' applied to an unprimed 
De Donder frame is called a De Donder transformation, if 
the result 1:' is again a De Donder frame. It is easily verified 
that such a De Donder transformation xt· = p.' (x) must sa
tisfy the four equations 

a2fA' 
gP" ax#' ax" = o. (2) 

Therefore, if the same transformation fA' is applied to a 
different De Donder frame 1: " , and the result is 
xt~ =fA'(x"), by gP.", =l=gP" we cannot expect 
gP''''(x"ja 2 fA '(x")/ax#" ax'" to vanish, and therefore a 
transformation which is a De Donder transformation when 
applied to one De Donder frame is not a De Donder trans
formation when applied to a different De Donder frame. 
Therefore, De Donder transformations do not form a group, 

a) Present address: P. O. Box 901. Gresham. Oregon 97030. 

as, without knowledge ofthe frame of reference upon which 
a transformation is applied, we cannot even tell whether or 
not a transformationfA

' would be a De Donder transforma
tion. 

Instead of agroup, what the De Donder transformations 
do form might be called a network, of connections between 
all pairs of De Donder frames. Therefore, the De Donder 
network does not form a group of coordinate transforma
tions if we regard coordinate transformations simply as giv
en one-to-one mappings between old and new coordinates, 
independent of the metric. As the answer to the question 
what is a De Donder transformation depends not merely 
upon the coordinates, but also upon the metrical field, the 
group property is lost for transformations that do not depend 
upon the metrical field. 

If, by hook or by crook, we still want to consider De 
Donder transformations as forming a group, this can be 
done, in infinitely many ways, provided that we interpret a 
coordinate transformation as a mapping that depends upon 
the metrical field originally present. For an example, see the 
Appendix. 

The question whether or not the De Donder network 
may be regarded as a group, however, is of rather limited 
interest. 

III. BOUNDARY CONDITIONS AND HARMONIC 
TRANSFORMATIONS 

In a space-time that at spatial infinity is asymptotically 
fiat, we may want to confine coordinate systems to those that 
at spatial infinity asymptotically become Lorentz frames. 
With this boundary condition, affine transformations auto
matically become Poincare transformations, while arbitrary 
coordinate transformations by this boundary condition be
come merely asymptotically Poincare transformations. 
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In such a space-time, harmonic frames according to 
Fock l are De Donder frames that satisfy not only this 
boundary condition, but that also satisfy an additional 
boundary condition, which Fock calls "absence of incoming 
radiation." Harmonic coordinate transformations now are 
defined as coordinate transformations between harmonic 
frames, like De Donder transformations were between De 
Donder frames. By the boundary condition, therefore, har
monic transformations are asymptotically Poincare trans
formations. According to Fock, by Eq. (2) and the additional 
condition of absence of incoming radiation, they would be 
Poincare transformations rigorously throughout space
time. 

It should here be emphasized that Fock makes this 
claim for classical (unquantized) gravitational theory. We 
will find the use of the De Donder condition (1) more inter
esting in quantized gravitational theory than in the classical 
theory. We will discuss the two cases separately. We first will 
finish the discussion of the classical case, and will start the 
discussion of the quantized case in Sec. VI. 

IV. CLASSICAL ADVANTAGES OF AUXILIARY 
CONDITIONS 

The De Donder condition in gravitational theory may 
be compared to the Lorentz condition in electrodynamics. 
We know that in Lorentz-covariant electrodynamics in flat 
space-time, irrespective of the choice of gauge, we may de
fine advanced and retarded field strengths E and B. We also 
may derive field strengths from electrodynamic potentials A 
and <1>. Ifwe postulate the Lorentz condition a"A "= 0, the 
electrodynamic potentials become components of a four
vector, and the advanced and retarded field strengths then 
will be derived from advanced and retarded potentials. 
These are advantages of the Lorentz gauge. (If we would use 
the transverse gauge, the electrostatic potential would be
come the instantaneous Coulomb potential, and the vector 
potential would be the transverse part of the advanced or 
retarded potential.) 

The advantages of auxiliary conditions are partially lost 
in the nonlinear general-relativistic theory. The De Donder 
condition keeps some advantages, as discussed by Papape
trou4 and by Gupta.s It simplifies the classical gravitational 
Lagrangian. However, nonlinearity of the theory remains, 
and severely restricts the advantages of this condition. 

Also in static problems, the advantage of the De Donder 
condition is limited. The De Donder coordinates or harmon
ic coordinates which describe the Schwarzschild field are 
Cartesian coordinates that are obtainable from spherical co
ordinates r, 0, t/>, where r is related to the Schwarzschild ra
dial coordinate I'- by r = I'- - nl (with nl = GM /c2).6 The 
harmonic spherically symmetric static coordinates and their 
uniqueness have been investigated for more general cases, in 
the presence of electric charge or of spherically symmetric 
extended mass or energy density distributions. 7 

If use of these coordinate systems that satisfy the De. 
Donder condition for any particular purpose may have any 
advantage, glory be, but in that case what is the purpose of 
transforming to a different and probably less advantageous 
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coordinate system that would also satisfy the De Donder 
condition? 

In short, the study of the network of De Donder trans
formations or of harmonic coordinate transformations in the 
classical theory of gravity does not seem to be of very great 
importance. 

V. THE QUESTION OF UNIQUENESS, MODULO 
POINCARE TRANSFORMATIONS, OF HARMONIC 
FRAMES 

The question whether Fock's conjecture was right or 
wrong is not solved by Bergmann's claim that harmonic 
transformations (regarded merely as coordinate substitu
tions independent of the metric8

) would not form a groUp.2 
In fact, if Fock were right, Bergmann's claim obviously 
would be wrong (as in that case harmonic coordinate trans
formations would form the Poincare groUp).9 Bergmann's 
claim, on the other hand, would be justified, if Fock's claim 
were wrong. Therefore, all that can be said so far is that 
either Fock or Bergmann is right, and then the other one is 
wrong. This does not establish who is right. Though investi
gations of special static spherically symmetric cases seem to 
support Fock's point of view/ there is no convincing evi
dence either way in the general case. But, as remarked al
ready above, in the unquantized theory the answer to this 
mathematical question is for the physicist merely a matter of 
curiosity, and not of earthshaking importance. 

VI. THE DE DONDER CONDITION IN THE QUANTUM 
THEORY OF GRAVITY 

Contrary to the above, the assumption of the De Donder 
condition becomes more than a matter of convenience in the 
altered quantum theory of gravity, discussed in our preced
ing paper. 10 There, we had to impose this condition upon the 
states physically realizable, for separating valid predictions 
of the theory from invalid ones. In this quantum theory, 
however, the question what transformations are allowable 
has a very definite answer. 

In the altered theory, terms quadratic and bilinear in 
sl"=a"gl"" are added to the Lagrangian. This creates a the
ory that is covariant under affine coordinate transforma
tions only. We have seenlO that then also the canonical com
mutation relations (in their "modified" form, as appropriate 
for a theory describing in curved space-time fermions as well 
as bosons) will be covariant under affine transformations 
only. These affine transformations become Poincare trans
formations, when we impose the boundary conditions men
tioned above in Sec. III. 

Therefore, a first reason for confining oneself to affine 
transformations (or to Poincare transformations), in a theory 
which requires the vanishing of S" for obtaining physical 
results, is that under other coordinate transformations the 
theory would not be covariant. By different transformations 
one would end up in a different affine orbit or Poincare orbit, 
in which a different altered theory should be used with its 
own auxiliary conditions, not following by coordinate trans
formation from the auxiliary conditions in the original al
tered theory. As discussed in our preceding paper, 10 the exis
tence of an altered theory for every affine orbit might guar-
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antee general covariance of the physical part of all these 
altered theories taken together. 

The conclusion that the imposing of the De Donder con
dition in a given field theory must be confined to one affine 
orbit, may also be obtained by centering our attention upon 
the auxiliary conditions sP' = 0 themselves. Suppose l: and 
l:' are two different coordinate systems, in which we impose 
the De Donder condition as a "weak" condition that places 
limitations upon the quantum-mechanical states that should 
be regarded as physically possible. II Then, also Eq. (2) 
should be valid as a weak equation. Equation (2), however, 
differs from the De Donder condition (I) in that it contains 
the entire metric f!!", and not merely its derivatives. If the 
metric is decomposed into its dynamical parts, its derived 
parts, and its nonphysical parts,12 like the electrodynamic 
potentials in the Lorentz gauge can be decomposed into their 
transverse dynamic parts, their derived parts (the instantan
eous Coulomb potential), and their nonphysical parts (the 
longitudinal vector potential), Eq. (2) will contain also the 
dynamical part of the metric, and therefore, as an auxiliary 
condition, Eq. (2) would impose limitations upon the dyna
mical part of the field as well as upon its other parts. 13 This is 
not acceptable, and therefore the dynamical parts of the met
ric should appear in (2) with zero coefficients. This means 
that we must have 

(3) 
if the auxiliary conditions are to be valid in l:' as well as in l:. 
The only transformations l:~l:' that satisfy (3) are the affine 
transformations 

(4) 

(~' and b A' constant), which, by the boundary conditions of 
Sec. III, become Poincare transformations. This again 
shows why we should confine the validity of the De Donder 
condition as a weak auxiliary condition upon the physical 
states in a given altered theory, to the one affine orbit in the 
space of coordinate systems, in which this altered theory was 
formulated, 10 or, with the above boundary conditions, to one 
Poincare orbit. 

Note that we never said here anything about lack of 
incoming radiation. We do not need here that restriction. 

VII. USE OF c-NUMBER COORDINATES 

In the conclusion (3) from (2) with quantized metric, a 
tacit assumption was made. We assumed here that the only q 
numbers entering (2) were thef!!" appearing as a factor multi
plying the second derivatives of the new coordinates, so that 
the latter, as coefficients of th~se q numbers, had to vanish, 
for avoiding an unacceptable auxiliary condition involving 
the dynamical gravitational field. 

In other words, we assumed that the new coordinates 
had to be c numbers, if the old coordinates were already c 
numbers. This condition is automatically fulfilled, if we pos
tulate that, as coordinates, we will use c numbers only. 

In quantum theory, postulating that coordinates should 
be c numbers excludes coordinates that in the usual termin
ology of quantum theory are called "observables" (quantities 
described by Hermitian operators that do not commute with 
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all other q numbers). For instance, the definition "z = dis
tance from the floor" (an observable) does not provide a rig
orous definition of z, because quantum mechanically there is 
for the position of the top molecules of the floor at best some 
probability distribution, but no mathematical certainty. 
Therefore, for labeling points rigorously, we need c 
numbers. That is, we want coordinates of points to have un
ambiguous values, so that they can be introduced only by 
postulate, in contrast to distances between points, which are 
observables that depend through the metric upon the pres
ence of nearby matter, for which there are only probability 
distributions. Therefore, the metric components must be q 
numbers. 

If we made distances q numbers by making coordinates 
q numbers, while the components of the metric then might 
be c numbers, the metric field and other fields would be func
tions of q numbers instead of functions of c numbers. Also 
integrals over space and over space-time would be integrals 
over q numbers. This would be unwieldy, and would much 
complicate an understanding of these fields and integrals. 
This is an additional reason for wanting to avoid q number 
coordinates. It is one of the advantages of the Fermi-typel4 
quantization of the altered theory of gravitation that it al
lows us to avoid q number coordinates by interpreting auxil
iary conditions like the De Donder condition as a method of 
selecting physical Hilbert space inside an oversized space of 
quantum states, rather than as a coordinate condition that 
would make the coordinates depend upon the metrical field. 

APPENDIX: EXAMPLE OF HOW A DE DONDER 
NETWORK MAY BE REGARDED AS A GROUP OF 
METRIC-DEPENDENT TRANSFORMATIONS 

Because gOO =1= 0, it is possible to solve from Eqs. (2) for 
the ao aofA' as functions of the metrical field and the 
an (aofA') and am anfA'. Therefore, ifin l: on the hypersur
face u(xo = const) we know the initial values of the eight 
fields fA' and aofA' as functions of the spatial coordinates 
xn , we could in a given (unquantized) metric field (and in the 
absence of singularities) solve by integration for the fields 
fA '(x) and aofA'(x) at different values ofxo. 

It is preferable to use here SA =fA'(X) - ~ instead of 
fA' itself, so that the identity transformation is given by 
SA = 0 and act A = 0 on u. A De Donder transformation 
starting from a De Donder frame l: therefore is determined 
by the choice of SA and act A atxO = O,asfunctionsofthexn

• 

Though the explicit form of fA '(x) = ~ + SA(X) for XO =1= 0 
will depend upon the metric field present, we will in the 
following call different fields S A (x) in different metric fields 
"the same coordinate transformation," as long as their ini
tial S A and act A on u are the same. 

We may easily generalize this. We pick any arbitrary 
De Donder frame as a preferred unprimed coordinate sys
tem l:. When the actual coordinate system is a De Donder 
frame l:', we still will write;xl-' and u for the coordinates in 
the preferred frame l: and the hypersurface XO = 0 in it. A 
De Donder transformation l:'~l:" will satisfy 
f!!'V(x')ap' avS A = 0 now with SA = X"A - X,A. For a given 
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metric field, this transformation will still be given unambi
guously, if on u we know the eight components of sA. and 
as A. / axo as functions of the preferred spatial coordinates xn 
on u. (Note that we used here ao and not ao") 

Therefore, we will regard the eight fields S A. and aot A. on 
u as the parameters determining a De Donder transforma
tion l:' ...... l:" throughout space-time in whatever metric field 
happens to be present. For the unit element in the De 
Donder group, these eight parameters will be zero. For the 
inverse transformation, they will have the opposite sign. For 
successive De Donder transformations, these parameters on 
the one preferred hypersurface u in l: will be additive. With 
the De Donder transformations labeled by these eight pa
rameters given as functions of the spatial coordinates in l:, 
all four group properties are satisfied, and the De Donder 
transformations form a group. If we had chosen a different 
preferred frame l: and thus a different hypersurface u, we 
would have obtained a different group. There are, therefore, 
as many De Donder groups of this kind, as there are choices 
of preferred De Donder frames l:. 
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In this paper the equivalence between a perfect fluid with electromagnetic field and a viscous fluid 
with heat flux is considered. Heat flux, shear tensor, and other fluid parameters are readily 
calculated out of the magnetohydrodynamic fluid parameters. 

I. INTRODUCTION 

In an illuminating paper Tupper l has discussed in depth 
the equivalence of a viscous fluid and an electromagnetic 
field under general relativity. First he has shown the electro
vac case to be equivalent to a viscous fluid provided that 
some restriction on geometry is assumed (viz., the eigenval
ues of the shear tensor are indistinct-see also Raychaud
huri and Saha2

). Next he introduces a heat conduction term 
along with the viscous fluid and has shown that such a heat 
conduction term is not admissible unless the electromagnet
ic field is null. Again he introduces a perfect fluid along with 
an electromagnetic field and obtains some equivalent condi
tions with a viscous fluid, and in such cases also some restric
tions on geometry need be assumed. 1,3 Thus one should have 
no other alternative but to introduce a heat flux along with 
the viscous fluid to make it equivalent to an electromagnetic 
fluid in general. In the present paper it is shown that such an 
introduction of a heat flux is indeed possible. The heat flux 
and shear tensor terms are readily obtainable in terms of 
electromagnetic field components and no further restriction 
on geometry need be assumed. 

II. RAINICH CONDITIONS AND EQUIVALENCE OF TWO 
FLUIDS 

We consider a situation where the electromagnetic field 
is associated with a perfect fluid. Thus Einstein's equation is 

(2.1a) 

with the energy momentum tensor Kpv given as 

Kpv = (p + ,o)vpvv - pgpv + Epv' (2.1b) 

where vI' is the magnetohydrodynamic fluid flow vector (i.e., 
VaVa = 1) and p, ,0 are the pressure and density of the fluid. 
HereEpv is the electromagnetic energy momentum field ten
sor such that (cf. Lichnerowicz4

) 

Epv = !!gpv - vI' vv)(EaE a + BaBa ) - (EpEv + BpBv) 

- (Spvv + Svvp)' (2.1c) 

where E a, B a, and S a are the electric field, the magnetic 
field, and the Poynting vector, respectively. Retaining the 
space-time to be the same (i.e., with the same gaP) one can 
replace (2.1) by a viscous fluid with a heat flux given as 

Gpv = - Hpv' (2.2a) 

where the energy momentum tensor of the fluid is 

Hpv = (p + p)upuv - pgpv + 21]upv + qpuv + qvup. 
(2.2b) 

Here u I' is the fluid flow vector such that uaua = 1 and p, p 
are the pressure and density of the fluid, 1] is the coefficient of 
viscosity of the fluid, 0' afJ is the shear tensor derived from uP, 
and qp is the heat flux vector such that qaua = 0 and 
q2 = _ qaqa . 

The equivalence of(2.1) and (2.2) demands 

Epv = (p + p)upuv - (p + ,o)vpvv - (p - p)gpv + 21]upv 

+ qpuv + qvup' (2.3) 

As is evident from (2.1 c), E a a = 0, one should have from 
(2.3) 

(p -,0) = 3(p -p) 

to be satisfied. Now writing 

M=p+p and N=p+,o, 

Eq. (2.3) can be rewritten as 

Epv = Mupuv - Nvpvv - !(M - N)gpv + 21]upv 

(2.4) 

(2.5) 

+ qpuv + qvuw (2.6) 

Now we introduce a unit spacelike vector na
, orthogonal to 

ua such that 

va = f-tUa + Ana, . 

with 

f-t2 - A 2 = 1 

(2.7a) 

(2.7b) 

and nana = - 1, uana = 0, vaua = f-t, and vana = - A. 
Also we define 

tPap = 21]uafJ -A 2Nnanp, 

tP=~a =A 2N, 

qa = qa _ f-tANna, 

q2 = _ qaqa = q2 _ 2p,pqN + f-t2A 2N 2, 

where qava = Aqana = - pq. Here tPafJuP = 0 
qaua = O. With the help of(2.8) one can write (2.6) as 

Eap = (M - Nf-t2)UaUp - !1M - N)gap 

+ tPa; + qaup + qpua· 

(2.8a) 

(2.8b) 

(2.8c) 

(2.8d) 

and 

(2.9) 

As is evident from the property of the electromagnetic field, 
one can expect that (2.9) should also satisfy the Rainich con
dition 

E E p{J = 8 P IE E pv (2.10) ap a4 pv . 

Using Eq. (2.9) 
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Ea{JEa{J = (M - Np,2f - !(M - N)(M - Np,2) 

+ l(M - N)2 - !(M - N),p + ,paptfJaP - '}j/, 
(2.11) 

and (2.10) can be calculated from (2.9) as 

[(M - Np,2)2 -!1M - N)(M - Np,2) - tZZ]uaup 

+ [!(M + N) - Np'2](qaup + qpua) 

-ls'a{J [(M - Np,2)2 - !(M - N)(M - Np,2) 

- 2q2 _ !(M - N),p + ,pllv,pIlV] 

- !(M - N),pap + ,pall,pll P + ,pallqllup 

+ ,pPllqllua + qaqp = O. 

Contracting by uau p we have 

,p a{J,paP - !(M - N),p 

= 3(M - Np,2)[!(M + N) - Np,2] - W. 
Substituting in (2.12) we have 

- ha{J{(M _Np,2)[!(M +N) - Np,2] _q2} 

+ H(M + N) - Np'2](qa up + qpua) 

- !(M - N),pa{J + ,pall,pll P + ,pallqllup 
+ ,pPllqllua + qaqp = O. 

Contracting further by uP we have 

[!(M + N) - Np,2]qa + ,papqP = O. 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

Thus qa is an eigenvector of ,pap. Substituting (2.15) in (2.14) 
we have 

- hap{(M _Np,2)[!(M +N) _Np,2] _q2} 

- !(M - N),pa{J + ,pall,pll P + qaqp = O. (2.16) 

Now contracting (2.9) by uP and qP separately we have 

Eapu P = mUa + qa' 

Ea{JqP = - mqa - q2ua, 

where 

m = 1(3M + N) - Np,2. 

(2.17a) 

(2.17b) 

(2.17c) 

Thus neither ua nor qa is an eigenvector of Eap , but there are 
two eigenvectors lying in the plane containing ua and qa. By 
considering eigenvectors of the form u Il + aq Il one can show 
that [from (2.17)] 

a = m ± (m2 _ q2)1/2, 

and the corresponding eigenvalues are 
m _ q2[m ± (m2 _ q2)1/2]. 

Now from (2.11) and (2.13) 

Ea{JE a{J = 4(m2 _ q2). 

(2.18) 

(2.19) 

(2.20) 

One can easily see from the Rainich condition (2.10) and 
(2.20) that the eigenvalues of Eap for a non-null field are 
degenerate and are given by 

± (lEa{JEa{J)1/2 = ± (m2 _ q2)1/2. (2.21) 

Eigenvalues (2.19) and (2.21) are consistent when 

q=O, (2.22) 

i.e., qa = O. Further, (2.9) should satisfy the reality condi
tions 
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Ea{Juau P = m;;;'O, (2.23a) 

Ea{Jvav P = Mp,2 - l(M + 3N) 

- 2p,fJq + 21]O'apVaVP;;;'0. (2.23b) 

Thus equivalence of two types of fields is possible under the 
conditions (2.4), (2.13), (2.15), (2.16), (2.22), and (2.23) for 
non-null fields (2.1). 

III. NON-NULL FIELD (q = 0) 

Since qa is a spacelike vector q = 0 implies qa = O. 
Hence from (2.8c) 

qa =p,ANna =P,N(va -p,ua), (3.1a) 

(3.1b) 

Thus from a magnetohydrodynamic fluid, one can construct 
the equivalent viscous fluid with heat flux in the following 
way. First, resolve va into two mutually perpendicular com
ponents; the timelike direction is along the fluid flow line (of 
the viscous fluid with heat flux), the spacelike direction is the 
heat flux direction, and the magnitude of heat flux is given by 
(3.1b). The heat flux is zero when N = 0, as is shown by 
Tupper in a different manner. Now Eq. (2.9) is written as 

Eap = (M - Np,2)UaUp -!(M - N)ga{J + ,pap. (3.2) 

Equations (2.13) and (2.16) are also modified as 

tfJaP,pap - !,p(M - N) = 3(M - Np,2)[!(M + N) - Np,2] , 
(3.3a) 

hap(M - Np,2)[!(M + N) - Np,2] 

+ !(M - N),p a{J - ,pall ,pll p = o. (3.3b) 

Also from (2. 17a) one can see ua to be an eigenvector of Ea{J 
with eigenvalue m. Contracting (3.2) and (2.1c) by vP and 
equating we have 

Sa = -p,(M - Np,2)Ua - [!IP - l(M - N)]va - ,pa{Jv P, 
(3.4) 

IV. CHOICE OF TETRAD 

We choose a suitable tetrad to study the problem in 
depth. Since ua , na are two orthogonal vectors, we choose 
another spacelike unit vector S a orthogonal to both ua and 
na (i.e., SaSa = - 1, Saua = Sana = 0) such that 

Ea =XIUa +ylna +ZISa' 
and consider another spacelike unit vector I a orthogonal to 
ua , na , and S a. Then 

Ba = x2ua + Y2na + zzSa + r21a' 
Now Eava = Bava = 0, so that YI = p,xIIA, Y2 = /LX21 
A. Therefore, 

Ea =xlua + (/LXiIA)na +ZISa' (4.1a) 

Ba =X2Ua + (/LX2/A Ina +zzSa + r2ia, (4.1b) 

and similarly 

Sa = x 3ua + (p,I A }x3na + Z3Sa + ria. (4.1c) 

Further, SaEa =SaBa = O. So from (4.1) we have 
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XlX:V'A. 2 + ZlZ3 = 0, 

X~3/ A. 2 + Z~3 + r2r3 = 0, 

and the electromagnetic field energy density is 

(4.2a) 

(4.2b) 

'P = ((X/ +x/)lA. 2 +Z12 +Z/ + r/). (4.3) 

Now one can compare the components of Ea.{Ju P from (3.2) 
and (2.1c) and can have the following four equations: 

(! - p,2)q; _ 2p,X3 - (X12 + X22) = 1(3M + N) - Np,2 = m, 
(4.4a) 

ZIXl + Z~2 + P,Z3 = 0, 

r~2 + P,r3 = o. 

(4.4b) 

(4.4c) 

(4.4d) 

In the same way, if we compute components of Ea{J nP, 
Ea.{JS P, and Ea{J1 P from the above two equations and com
pare, we have further the following six independent equa
tions: 

tPa.{Jnan P = - l(M - N) -!(1 + U 2)'P 

- (p,2/A. 2)(X12 + X22) - 2P,X3' 

tPaPSaS p = -l(M - N) -!'P - (z/ + z/), 

tPaplal p = - l(M - N) - !'P - r/, 

tP a{JS an P = - (p,/ A. )(x lZ I + X~2) - A.Z3, 

tPapl an p = - (p,/ A. )x2r2 - A.r3, 

tPa{JSal P = - r~2. 

(4.4e) 

(4.4t) 

(4.4g) 

(4.4h) 

(4.4i) 

(4.4j) 

Now from (4.4a) and (4.4b) and from (4.4b) and (4.3), 

m = -!'P - x 3/p" (4.5a) 

(p,2 + A. 2)x3 = (Z12 + z/ + r/)A. 2p,. (4.5b) 

Also from (4.4b) and (4.4e), (4.4c) and (4.4h), and (4.4d) and 
(4.4g), 

tPa.{Jnan P = - l(M - N) +!'P + P,x:V'A. 2, (4.6a) 

tPa.{JSan P =Z3/A., (4.6b) 

tPa{Jlan P = r:V'A.. (4.6c) 

Hence the tensor tPa{J may be computed using (4.4e)-(4.4j) 
and (4.6) as 

tPap = - l(M - N)(nanp + SaSp + lalp) 

+!'P (nanp - SaSp -Ialp) 

+ i2x3nanp + ~naSP + npSa) 

+ ~nalp + npla) - r~2(Salp + Spla) 
A. 

- (z/ + z/lSaSP - r/lalp. (4.7) 

Here the metric tensor is written in forms of the tetrad as 

ga.{J = uaup - nanp - SaSp -Ialp, (4.8a) 

and the expansion is written with respect to ua as (in terms of 
the tetrad) 

(J = ua;a = (Ji l + (J/ + (J/, (4.8b) 

where (J(ab) = ua;JJ e"((a) eP(b)). The tetrad components of the 
shear tensor are 
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O'ab = O(ab) - !01Jab· 

Here a,b are tetrad indices. 
Further, the Poynting vector is defined as 

(4.8c) 

Sa = TJa(J).p,VPEAB", (4.9) 

and consequently the various components can be computed 
by using (4.1a) and (4.1 b) as 

X3 = A.Zl r2, 

Z3 = - (XI/A. )r2' 

r3 = (X IZ2 - X~I)/A.· 

Substituting these in (4.2) we have 

(4. lOa) 

(4. lOb) 

(4.lOc) 

z Ix l r2 = 0, (4. 11 a) 

z~lr2 = o. (4.11b) 

Thus three situations may arise (i) ZI = Z2 = 0, (ii) Xl = 0, 
and (iii) r2 = o. 

A. Case 1:Z1 =Z2 = 0 

In this case E a is lying in the ua_na plane. From (4.10) 
X3 = r3 = O. Also from (4.5b) one can see that r2 = 0 and 
hence from (4.lOb) Z3 = 0 also. Thus the Poynting vector 
cannot exist in this case. Hence from (4.9) either the electric 
field or magnetic field is zero, or they are parallel. In any 
case, diagonal components of tPa{J will exist and can be writ
ten from (4.7) as 

tPap = -!(M - N)(nanp + SaSp + lalp) 

(4.12) 

Here tP a.{J or the shear tensor is diagonal and two eigenvalues 
are the same, corresponding to eigenvectors S a and I a. Here 
S a and I a are to some extent arbitrary, only they are orthog
onal to ua and na and orthogonal to each other. Thus M can 
be taken from (4.5a) and (2. 17c) as 

M = - ~'P + t( p,2 - l)N. (4.13a) 

In this case tetrad components of the expansion 
0/ = 0/. The value of TJ can be determined from (4.8c), 
(4.12), and (4.13a) as 

2TJ = - (W - yt 2N)/(OII - !O). (4.13b) 

Thus ua is such that OII>!O for - W > yt 2 N or Oil <!O 
for - ~'P < yt 2 N. 

B. Case 2:X1 = 0 

Here the electric field is along Sa and from (4.lOb), 
Z3 = 0, X3 is given by (4. lOa), and r3 is, from (4.lOc), 

r3 = -X~I/A.· (4.14) 

Again from (4.4c) and (4.4d) 

Z~2 = 0, (4. 15a) 

x2(A.r2 - fJZil = O. (4. 15b) 

Thus, either (i)x2 = 0 or (ii)z2 = 0 and r2 =fJZI/A.. 

1. Case (2a): X2 = 0 

From (4.14), r3 = 0 also. Thus sa is in the ua_na plane 
and B a is in the sa-Ia plane. From (4.3) and (4.4b) 

S. R. Maiti and S. N. Das 2842 



                                                                                                                                    

rp = - (Z12 +Z/ + r/) 

= [(Jl2 +A. 2)1JlA. ]z l r2. 

Then the tensor "'aP can be written from (4.7) as 

"'aP = - l(M - N)(nanp + SaSp + lalp) 

+!rp (nanp - SaSp -Ialp) 

(4. 16a) 

(4. 16b) 

- [Jl2rp/(Jl2+A. 2)]nanp -(ZI2 +Z/)SaSp 

- r/lalp - rzZ2(laSp + IpSa)' (4.17) 

and M is calculated from (4.5a) and (4. 16b) as 

M = tN(Jl2 - 1) - j[rpl(Jl2 +A. 2)]. (4. 18a) 

The coefficient of viscosity can be determined from (4.8c) 
and (4.17) as 

21] = ~(M - N )/(jO - Oil). 

Now M>N, so ua is such that !0>011. 

2. Case (2b): Z2 = 0 and f2 = ;at/A. 

Here r3 is given by (4.14) and from (4. lOa), X3 is 

X3 = Jlz/, 

and from (4.4b) or (4.3), rp is 

rp= - [x/IA. 2+z/(1 +p2/A. 2)]. 

(4.18b) 

(4.19) 

(4.20) 

The tensor "'aP andM are calculated from (4.7) and (4.5a) as 

"'aP = -!1M - N)(nanp + SaSp + lalp) 

+!rp (nanp - SaSp -Ialp) 

+ (p2/A. 2)z12(nanp -Ialp) 

- (X2z l l A. 2)(nalp + npla) - z/SaSp, (4.21) 

M = tN(p2 -!) - jrp - tz/. (4.22a) 

The value of 1] in this case is obtained from (4.8c) and (4.21) 

21] = [!(M - N) - x/IA. 2]1(jO - Oil). (4.22b) 

Thus ua is such that 1] > O. 

C. Case 3: fa = 0 

In this case one can see from (4.10) that X3 = Z3 = 0 and 
r3 is given by (4.lOc). Again from (4.5b) we have 

ZI2+Z/=0, (4.23) 

i.e., ZI =Z2 = O. Hence from (4.lOc), r3 = 0 also, and the 
Poynting vector vanishes. So the case is the same as case 1. 

Thus in all three cases one can construct a viscous fluid 
with a heat flux which is equivalent to a magnetohydrodyna
mic fluid. 

v. NULL FIELD 

For null electromagnetic fields Ea(3E ap = O. So from 
(2.20) and (2.8d) 

m2 = q2 = q2 _ 2p,N/3q + Jl2A. 2N 2, 

and (2.13) and (2.16) can be written as 

"'aP~P - !(M - N)", = m2 - fi,(M - Nf, 
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(5.1) 

(5.2) 

Equations (4.1)-(4.3) and (4.9)-(4.11) are equally valid here. 
Further, for the null field EaBa = 0 and EaEa 
= BaBa = !rp, hence from (4.1) 

x lx2/A. 2 + ZIZ2 = 0, 

X1 2/A. 2 +Z12 = x/I A. 2 +Z/ + r/ = _ !rp. 

Now we write qa in component form, 

qa = Ij3ql A. )na + Z4Sa + r4la· 

(5.4) 

(5.5) 

(5.6) 

Comparing Ea(3u P, Eapn P, Ea(3S 13, and Eapl 13 from (2.1c) 
and (2.6) in a similar way (as is done in Sec. IV) we can get ten 
independent equations. Out of these the first four are 

x2r2 + p r3 = - r4, 

XIZI + XzZ2 + JlZ3 = - Z4' 
fJ 2+A.2 

/lA.N - --.!L = /lA.m + p x + ~/x 2 + X 2) 
r A. rT A. 3 T'I 2' 

(5.7a) 

(5.7b) 

(5.7c) 

(! _p2)rp _ 2JlX3 - (X12 + X/) = !(3M + N) - Np2 = m, 
(5.7d) 

and from the next six equations one can construct the shear 
tensor as 

21]ua(3 = - l(M - N)(nanp + SaSp + lalp) 

+!rp (nanp - SaSp -Ialp) 

+ [A. 2N - 2PX3 +p2(ZI2 +Z/ + r/)]nanp 

- (Z12 + Z/)SaSp - r/lalp 

- [( piA. )(XIZI + XzZ2) + A.Z3](nasp 

+ npSa) - ((piA. )x2r2 +A.r3)(la np + Ipna) 

- rzZ2(laSp + IpSa)' (5.8) 

As (4.9H4.11) are equally valid, there will arise the same 
three situations. 

A. Case 1:Z1 =Za = 0 

From (5.4) and (5.5) one should have X 2 = 0 and 

_!rp=x I
2/A. 2=r/. (5.9) 

Again from (4.10), X3 = r3 = 0 and Z3 is given by (4. lOb). 
Now from (5.7a), r4 = 0 and from (5.7b) 

Z4 = (piA. )xlr2• 

Also, from (5.7c) and (5.9) 

/3q = pA. 2(N - !rp ). 

Thus qa can be written as [using (5.6) and (5.9H5.11)] 

(5.10) 

(5.11) 

qa = JlA. (N - !rp )na +! prpSa' (5.12) 

where 

q2 =p2A. 2N 2 -Jl2A. 2Nrp + lp4rp2. (5.13) 

Again from (5.1) and (5.11) 

m2 = q2 _p2A. 2N 2 + p 2A. 2rpN. (5.14) 

Thus the heat flux cannot be zero in this case. Substituting q2 
from (5.13) we have 

m2 = !Jl4rp 2. 

Again from (5.7d) 

m = - !Jl2rp, 
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or 

(S.16a) 

Thus Eqs. (S.lS) and (S.16) are consistent. Also, the shear 
tensor is obtained from (S.8) and (S.9) as 

2rWap = - A(M - N)(nanp + 5a5P + lalp) 

+!cp (nanp - 5a5P) + (A. 2N - !p,2cp )nanp 

+ !cpA. (na5p + np5a)' (S.16b) 

The value of 17 can be evaluated from (4.8c) and (S.16b) as 

217 = - !(M -N) - !cp _ - A(M -N) - !cp 
Oil - jO - !O - 0/ 

-!(M-N) 

jO-O/ 

Since M> N, ua is such that 03
3 > W 

B. Case 2: x, = 0 

(S.16c) 

Here from (S.4) and (S.S), Z2 = 0 (sincez i fO, whence cp 
will be zero) and 

_!CP=ZI2=x//A. 2+r/. (S.17) 

Again from (4.10), Z3 = 0, X3 is given by (4.1Oa), and 

217 = !(M - N) +!; + r/ = -!(M - ;'). (S.24b) 
jO- 01 10- O2 

Since M> N, ua is such that 02
2 > iO. 

C. Case 3: '2 = 0 

Here, from (4.10), X3 = Z3 = 0, but r3 is given by (4.1Oc). 
The Poynting vector is directed along F. The conditions 
(S.4) and (S.5) give 

X IX 2/A. 2 + ZIZ2 = 0, 

_! cp =XI
2/A. 2 +Z12 =x//A. 2 +z/. 

From (S.7a)-(S.7c) 

r4 = -Ijt/A.) (XtZ2 - X~I)' 

Z4 = - (XIZI + X~2)' 

/3q = p,A. 2(N + ZI2 + Z22). 

Thus one can have qa to be 

qa =p,A.(N+Z/+z22)na -(XIZI +x~2)5a 

-Ijt/A. )(xtz2 -x~tlla' 

and from (S.7d) 

m= _~cp+A.2(ZI2+Z22), 

or 

(S.2Sa) 

(S.2Sb) 

(S.26a) 

(S.26b) 

(S.27) 

(S.28) 

(S.29a) 

r3 = - ZIX2/A.· (S.18) M =! Nljt2 -!) - i cp +!A. 2(Z12 + z/). (S.29b) 

Thus from (S.7a) and (S.7b) 

r4 = - x2r2 + (p,/A. )zIX2, 

andz4 = O. Also from (S.7c) 

/3q = p,A. 2(N + ZI2 + r/) - (p,2 + A. 2jA.z l r2. 

Hence qa can be written as 

qa = [p,A. (N +z/ + r/) - (p,2 +A. 2)zlr2]na 

+ [(p,/A. )zIX2 - x2r2]la' 

Again substituting (S~20) in (S.l) 

m2 = q2 _ 'lp,2A. 2N(z/ + r/) 

(S.19) 

(S.20) 

(S.21) 

Again from (S.l) and (S.27) 

m2 = q2 _ p,2A. 2N 2 _ 'lp,2A. 2N(z/ + z/). (S.30) 

Thus q2 cannot be zero in this case. If values of q2 and m2 are 
calculated from (S.28) and (S.29) and are substituted, one can 
have, using (S.2S), 

ZI2+Z/= -!cp. 

So from (S.2S) one should have either 

ZI = X2/A. and Z2 = - XI/A. 

or 

ZI = -X2/A. and Z2 = XI/A.· 

(S.31) 

(S.32a) 

(S.32b) 

+ 'lp,A.NZlr2( p,2 + A. 2) _ p,2A. 2N 2. (S.22) In the two cases from (S.28) 

Further, from (S.7d) 

or 

m = - !p,2cp +A. 2r/ - 'lp,A.Zlr2 = (P,ZI -A.r2)2, 
(S.23a) 

(S.23b) 

Substituting m from (S.22) one can calculate q2. Here, q2 so 
calculated is consistent with that obtained from (S.21). The 
shear tensor is also obtained from (S.8) as 

217Ua[3 = - A(M - N)(nanp + 5a5P + lalp) 

+ !cp(nanp -lalp) + [A. 2N - 2p,A.zlr2 

+ p,2(ZI2 + r/)]nanp - r221a1p 

- ((p,/A. )x2r2 -zlx2)(/anp + Ipna)' (S.24a) 

The coefficient of viscosity is calculated from (4.8c) and 
(S.24a) as 
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qa = p,A. (N - !cp )na +! p'cpla' (S.33) 

and from (S.29) 

m = _ !p,2cp, (S.34a) 

or 

M = !N(p,2 _!) _ ~p,2cp. (S.34b) 

The shear tensor is from (S.8) 

217Ua[3 = - A(M - N)(nanp + 5a5P + lalp) 

+!cp (nanp -Ialp) + (A. 2N - !p,2cp )nanp 

+!ACp (/anp + Ipna)' (S.3Sa) 

The coefficient of viscosity is determined as 

-!(M-N) 

10 - 0/ 

So here also ua is such that 02
2 > jO. 

(S.3Sb) 

Thus in all the three cases for a null field qa cannot be 
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zero. From the magnetohydrodynamic field, an equivalent 
viscous fluid with a heat flux is obtainable. 

VI. CASE va = U a 

In this case p. = 1 and A = O. So from (2.6) 

EafJ = (M - N)uaup -l(M - N)gafJ 

+ 2TJuafJ + qaup + qpua· (6.1) 

Thus all the equations in Sec. II are also valid with p. = 1 and 
A = O. Also t/JafJ = 2TJuafJ' t/J = 0, and qa = qa' Proceeding 
in a similar way as in Sec. II, we have for a non-null field, 
instead of (2.22), q = O. That is, a heat flux is not admissible. 
For a null field EafJE afJ = 0 and (2.20) and (2. 17c), we have 

m2 = q2 = -r\(M _ N)2. (6.2) 

Again comparing Eapu P from (6.1) and (2.1c) we have 

qa = - Sa' (6.3a) 

(M-N)= -w. (6.3b) 

Also from (6.2) and (6.3a) 

(6.4) 

and the shear tensor obtained from (6.1) and (2.1c) using (6.3) 
is 

(6.5a) 

Further, for null fieldsEaB a = o and EaEa = BaBa = !lP, 
so from (6.4a) 

8TJ2u 2 =! lP 2. (6.5b) 

Also, the same relation is obtained from (2.13) and (2. 17c). 
Equation (6.4) ensures that the null field must admit heat 
flux. If one chooses unit vectors along E a, B a, and S a, then 
along with the fluid flow vector, they form an orthonormal 
set of tetrad. In this tetrad system one can see from (6.5a) that 
the shear tensor has eigenvalues (0, - (1/12TJJlP, - (1/ 
12TJ}lp, + (1/6TJ}lp)· 

Using the above tetrad system the coefficient of viscosity 
can be calculated as 

2 - - lP /6 _ - lP /6 _ lP /3 
TJ- O I 0-0 2 0-0 3 O' 

I -! 2 -! 3 -! 
(6.6) 

Here Oil = 0/. Also Oil >!O and 0/ <!O for TJ to be posi
tive. 

Thus the equivalent conditions for the two fluids with 
parallel flow lines are that the electromagnetic field must be 
null and condition (6.4) must also be satisfied along with 
011>!O and Oil = 0/. 

VII. CONCLUDING REMARKS 

It has been shown that the equivalence of two types of 
fluids (2.1b) and (2.2b) is possible. If the flow lines of two 
fluids are not parallel, then for non-null electromagnetic 
fields, the equivalence is possible only when va can be re
solved into a timelike component along the flow lines of the 
viscous fluid and a spacelike component in the direction of 
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the heat flux vector; and for null fields, the heat flux must be 
nonzero. If the two fluid flows are parallel, then the heat flux 
is nonzero when the electromagnetic field is null along with 
S 2 = llP 2, and the shear tensor must have degenerate eigen
values. In other words, one can construct a viscous fluid with 
heat flux, which is equivalent to a magnetohydrodynamic 
fluid (2.1b), but ua must be so chosen that TJ>O. The con
struction with a parallel fluid flow vector is not always possi
ble. This is possible only when the electromagnetic field is 
null with S 2 = llP 2 and expansion components along E a and 
B a are equal and are greater than the average expansion. In 
the Appendix a few examples of the construction of a viscous 
fluid (2.2b) are attempted, using the solutions of Dunn and 
Tupper for a magnetohydrodynamic fluid. 
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APPENDIX: SOME EXAMPLES 

To find an equivalent viscous fluid (2.2b), as an example, 
we consider the type I cosmological models with metric 

ds'l = dt 2 
- t 2a dX2 - t 2b (dy2 + dr), (AI) 

which satisfies (2.1) for a non-null electromagnetic field with 
va = (1,0,0,0) provided b>a, a-2b+ 1<0, and b<!. 
From their paper one can calculate 

N = P + p = 2b (1 + a - b)t -2 (A2) 

and the electric and magnetic fields are of the form 

Ea = EI~a I, Ba = BI~a I. (A3) 

Construction of a viscous fluid of the form (2.2b) is possible. 
Consider 

ua==[t a, (1 - t -2a)1/2, 0, 0]. (A4a) 

Thenp. = UO and A 2 = (UO)2 - 1. Hence na is computed from 
(2.7a) 

na=( - A, - UOUI/A, 0, 0). (A4b) 

Now XI = Elu l and X2 = E2u
2

, hence from (A3), (A4), and 
(4.1) one can have Z I = Z2 = r2 = O. So the situation is under 
case 1 in Sec. IV. Again Oil and 0 are readily calculated as 

So 

o = 2(a + b )t a - I. 

(A5a) 

(A5b) 

Oil -!O = - ,(a - 2b )ta-I. (A5c) 

Thus from (4.13) one can show that 

2TJ = (2b - a)-I [(b - a)(l - a)t -(I +a) 

+ 2b (a - b + l)t a- l ] (A6) 

and is positive. Heat flux and shear tensor are easily calculat
ed from (3.1a) and (4.7). 

The same metric (AI) also satisfies (2.1) for a null elec
tromagnetic field but in this case a + b = 1 and ! < a < 1 
with 

va = (v'8Q)-1[(2a + 1), (2a-1)t -a,O,O], (A7) 
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and the electric and magnetic fields are of the form 

Ea = (0, 0, E2, E3), Ba = (0, 0, B2, B3)' (AS) 

Ifwe choose ua to be identical to va, 11 becomes negative and 
such a choice is not possible. 1 Again, if we consider 

ua = [,u(2a + 1)/$0, ,u(2a - l)t -a/$o, At -b, 0] 
(A9) 

(e.g.,,u =.J2 and A = 1),11 is still negative. The viscous fluid 
interpretation is not possible in this case. 

Thus one may conclude that a metric representing two 
different types of magnetohydrodynamic fluid may not al-
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ways have a viscous fluid interpretation in both the cases. 
The same metric can have two different reinterpretations, 
one of which is physically acceptable while the other is not. 
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A family of solutions of the Einstein equations for a spherically symmetric distribution of 
anisotropic matter is presented, which can be matched with the flat (Minkowskian) space-time on 
the boundary of the matter, although the energy density and stresses are nonvanishing within the 
sphere. 

I. THE FIELD EQUATIONS 

Let us consider a nonstatic distribution of matter repre
sented by an anisotropic fluid and which is spherically sym
metric. 

In comoving coordinates the line element may be writ
ten as l 

dsl = eV dt 2 -ll dil - If'd02
, 

with 

(1) 

d02 = dO 2 + sin2 0 dt/J2, xO,I,2,3=t,r,O,t/J, (2) 

where..t, v, and It are functions of rand t. For the energy 
momentum tensor we have the usual expression 

Tt = (p +P1)UI' Uv -P18t + (p r -Pl}X I' Xv, (3) 

with P , P r' and U I' denoting the energy density, the pres
sure in the direction of X I' ' and the four-velocity ofthe fluid, 
respectively, and X I' and P 1 denoting a unit spacelike vector 
(in the radial direction) orthogonal to U I' and the pressure 
on the two-space orthogonal to X I' . Also, since we are in a 
comoving frame, 

(4) 

Next, we shall assume that the space-time admits a one
parameter group of conformal motions, i.e., 

LgafJ =.pgafJ' (5) 
s 

where the left-hand side is the Lie derivative of the metric 
tensor and .p is an arbitrary function of the coordinates. 

We shall further restrict the vector field S a, by demand-
ing 

(6) 

Then it can be shown (for details, see Refs. 2 and 3) that 
the metric functions v, ..t, and It become 

e- v12 = e-p/2 = ef(t)/2[h l (r) + h2(t)] , (7) 

(8) 

·)This work was completed when one of the authors (L.H.) was on leave 
from Universidad Central de Venezuela at the Mathematics Department 
of the University of California, Berkeley. 

b) Postal address: Apartado Postal 80793. Caracas 1080-A. Venezuela. 

where hi' h2' and f are three unknown functions of their 
arguments. 

The function .p will be 

.p = Ah ; (r)e-t 12 , (9) 

where A is a constant and a prime denotes differentiation 
with respect to r. 

Thus, the line element (1) reduces to 

ds2 = R 2(r,t Hdt 2 - ef(t) dil - d02] , (10) 

with 

R (r,t)=e-/(t)l2/[h l (r) + h2(t)] . 

The Einstein field equations corresponding to this line 
element are 

-81TTI = 81TPr = [3h;2(r)-3h~(t)ef(t)] 
+ e - A 12eflt)[2h2(t ) - h2(t V(t)] 

+ e-Aeflt)r](t) - j2(t)/4 - 1] , (11) 

- 81TT~ = 81TPl = [3h ;2(r) - 3h ~(t )eflt)] 

- 2e- A12 [ h ;'(r) - h2(t)eflt )] +! I(t)e-Aef(t), 

81TTg = 817' P = - [3h ;2(r) - 3h ~ (t )eflt)] 

+ 2e- Al2 [ h r(r) + h2(t V(t )eflt)] 

+ e- Aefltlri2/4 + 1] 

(dots denote differentiation with respect to t). 

(12) 

(13) 

II. THE JUNCTION CONDITIONS AND THE EQUATION 
OF THE BOUNDARY SURFACE 

Next, we shall match the line element (10) with the flat 
space-time on the boundary of the matter for any possible 
choiceofthefunctionsh l (r),h2(t),andf(t). We recall thattwo 
regions ofthe space-time are said to match across a separat
ing hypersurface (say S) if the first and second fundamental 
form are continuous across S (Darmois conditions). Now, 
the line element outside the sphere will be given, in coordi
nates T, R, 0, t/J, by 

d~=dT2-dR2_R2d02, (14) 

where the subscript E stands for exterior, and 
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d02 = dfJ 2 + sin2 fJd¢i. 

In these coordinates the equation of the boundary takes the 
form 

(15) 

where b stands for boundary. 
Then the induced metric on the boundary surface (from 

the outside) is 

(dr)b+ = [1- (:R; Y]dT2 -R ~ d02 (16) 

and the corresponding line element on the boundary from 
the inside reads 

(dr)b- = (e-flt)/[hl(ro) + h2(tWl [dt 2 - d02] , (17) 

where we have used (10) and the fact that the equation of the 
boundary in the comoving coordinates (t, r, fJ, ¢) reads 

r = ro = const. 

Then, demanding the first fundamental form to be contin
uous across the boundary, we get at once 

RdT) = e-flt)/2/[hl(ro) + h2(t)] (18) 

and 

[ (
dRb )2] 112 

dT 1 - dT = Rb dt. (19) 

Next, it can be shown that the continuity of the second fun
damental form across the boundary surface is equivalent to 
the continuity of the mass function and the radial pressure 
(across the same boundary surface).4-7 Since we are match
ing the line element (10) with the Minkowskian metric, then 

M (total mass)==m(ro,t) = 0, (20) 

P,(ro,t) = 0, (21) 

where m(r,t ) is the mass function introduced by Misner and 
Sharp4 

2m(r,t)=e"12[ 1 + e-" (ae;/2y _ e-.t (a~:2y] . 
(22) 

Using (7), (11), and (22), Eqs. (20) and (21) become 
.. . 2 ,2 4 2 

2RbRb - R b = 3h I (ro)R b - R b , (23) 

R ~ = - R ~ + h ;2(ro)R: . (24) 

Since the first integral of(23) is given by (24), we only have to 
integrate this last equation. We obtain 

Rb = 1/h ; (ro)cos(t - to) , (25) 

with to = const. 

III. THE MODELS 

For sake of simplicity we shall restrict further our solu
tions with the choice h2(t ) = O. With this condition, and us
ing (18), we obtain, from (1IH13), 

81TP, = 3h ;2(r) - 3(j)2h i (r) , (26) 

81Th = 3h ;2(r) - 2h ,(r)h ;'(r) - (j)2h i(r), (27) 

81T P = - 3h ;2(r) + 2hl(r)h ;'(r) + (j)2h i (r) , (28) 

with 
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(j)2=h ;2(ro)/h i(ro) . 

Next, to display an explicit solution we still have to specify 
the function h,(r) (which is equivalent to the specification of 
the function r/J). In this paper we shall guess the function hi (r) 
from the condition of the positiveness of p . 

A sufficient condition to meet this last requirement is 

- 3h ;2(r) + 2h l(r)h 7(r) = 0, (29) 

from which 

h,(r) = 1/(Cr + B )2, 

With C and B constants. Then Eqs. (26H28) become 

817: _ 12C
2 [(cro + B )2 _ 1] 

p, - (Cr+B)4(Cro+B)2 (Cr+B)2 ' 

-4C 2 

81TP - ---.....:....:......--
1 - (Cro+B)2(Cr+B)4 ' 

4C 2 

For the line element we get 

ds2 = (Cr + B )4 [dt 2 _ (j)2 cos2(t _ to)dr2 _ d02 ] • 

(j)2 cos2(t - to) 

(30) 

(31) 

(32) 

(33) 

(34) 

In order to ensure that the energy density is larger or (at 
least) equal to the radial pressure, we may choose Cro = 1 
and B = 3 + 2V3. Then it is easily seen that 

p>p, , 

where the equality holds for r = O. It should be noted, how
ever, that for the election of the constants C and B above, 
R (r,t) does not satisfy the regularity condition 

R (O,t) = O. 

In fact, we have excluded the center of symmetry R = 0, and 
R varies in the interval [3R b 14, R b] . In order to overcome 
this inconvenience we may choose B = O. Then the regular
ity condition is satisfied and the energy density will be larger 
than or equal to the radial pressure in the region roV31 
2<r<ro (we will call this region I). We can now match our 
solution in region I with any other conformally symmetric 
solution in the region 0<r<roV3/2 (we will call this region 
II). It is important to remark that in matching the two re
gions (I and II) we do not require the mass function to vanish 
at the inner boundary r = roV3/2 (of course it should be con
tinuous across that surface). 

We would like to finish with the following remarks. 
(a) Configurations of the kind we have just discussed 

have been suggested by Zel'dovich and Novikov some years 
ago. 8 Also, a solution with a vanishing gravitational mass 
has been found, in a completely different context, by Gross 
and Perry.9 

(b) It should be understood that the configuration above 
would represent the late stages of a self-similar evolution 
scenario, when the sphere has radiated away all its gravita
tional mass. Since we are considering adiabatic evolution, it 
is obvious that our solutions cannot describe the system dur
ing the radiation process. 

(c) It is not difficult to prove that all the configurations 
above [with h2(t) = 0] do not admit a one-parameter group of 

L. Herrera and J. Ponce de Le6n 2848 



                                                                                                                                    

homothetic motions unless p = Pr = P 1 = O. In other words 
the function t/J is not a constant except for the trivial solution. 
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This paper examines the statistical mechanics of a collection of N identical, classical point masses, 
which interact relativistically via a simple scalar field in a conformally static background 
geometry. The model system considered here should be representative of any system in which the 
particle and field equations are both linear. Attention focuses first upon the formulation of exact 
equations for the evolution of appropriately defined reduced distribution functions and the 
interpretation of these relations. In particular, a projection operator formalism is used to derive 
exact coupled equations for the evolution of the irreducible one-particle and one-oscillator 
distributions, which contain no explicit reference to more complicated particle-oscillator 
correlation functions. Attention focuses also upon the issue of how the analysis would be further 
complicated by allowing for nonlinear effects, e.g., in the particle equations of motion. The 
subtleties that arise in this case serve to indicate the limitations of the kinetic theory of self
gravitating systems developed by Israel and Kandrup, which entails the consideration of particle 
and field equations linearized about some (possibly highly nontrivial!) background solution. 

I. INTRODUCTION 

The first paper in this series,l hereafter referred to as 
Paper I, began an investigation of the statistical mechanics of 
a collection of N identical particles interacting relativistical
ly via a simple scalar field or a linearized gravitational inter
action in a fixed, conformally static, background space-time. 
One principle objective was the formulation of a "complete" 
many-particle and oscillator description, in which the sys
tem is characterized by a distribution function /.L that in
volves the degrees of freedom of both the particles and the 
fields and satisfies an appropriate Liouville, or conservation, 
equation. The other principle objective was to understand 
how, in a simple approximation, this complete description 
implies a simpler mean field theory. Unlike much ofthe ear
lier work in a similar vein,z-7 the analysis in Paper I broke 
manifest covariance by implementing the "natural" 3 + 1 
splitting into space plus time suggested by the conformal 
time translation symmetry. This procedure, albeit displeas
ing aesthetically, is certainly legitimate mathematically, 
and, significantly, eliminates many potential ambiguities 
and questions which might otherwise arise. 8,9 

The objective of this second paper is to investigate in 
greater detail various properties of reduced distribution 
functions derived from /.L, Principally for the sake of compu
tational simplicity, attention here will focus exclusively 
upon the linearized scalar interaction and its nonlinear gen
eralization considered by Hakim2•3 and Kandrup.1,5 Aside 
from issues of gauge, the only additional complications that 
arise in the gravitational case involve the more intricate cou
plings buried in the field equations for a second rank tensor 
field. 

The questions to be addressed include the following. 
(1) In what ways, conceptually and otherwise, will the 

sort of description presented here differ from the more con
ventional description of a Newtonian or special relativistic 
system? 

(2) How might one proceed to formulate useful exact 
equations for the evolution of reduced distributions, and 
how, physically, are these equations to be interpreted? 

(3) How would the situation be further complicated by 
allowing for equations of motion that involve the fundamen
tal fields in a nonlinear way? 

A satisfactory answer to this third question is of particu
lar importance for the understanding of self-gravitating sys
tems. In this case, the "true" particle equations of motion, as 
well as the field equations, are nonlinear, although it may 
well be legitimate in some approximation to linearize about 
some "background" solution.4 This linearization is in fact 
crucial in the simplest attempts to transcend a naive mean 
field description for self-gravitating systems. Moreover, as 
will be evidenced below in Sec. IV, an allowance for nonlin
ear equations already leads to complications at the level of 
the mean field theory (which, however, are customarily ig
nored).10,l1 

The program of this paper is as follows. Section II re
calls and extends the statistical mechanical description for
mulated in Paper I. The "complete" description is used as a 
starting point for the formulation of a relativistic analog of 
the BBGKY hierarchy of equations, and this in tum is used 
to extract the simple mean field description. Section III uses 
a projection operator formalism to demonstrate explicitly 
how one may derive exact coupled equations for the evolu
tion of reduced one-particle and one-oscillator distributions, 
which contain no explicit reference to higher-order correla
tion functions. The general approach smacks of the formal
ism of Balescu, Prigogine, and their co-workers, but differs 
in its allowance for a dynamical, time-dependent back
ground geometry. Section IV focuses upon the physical im
plications of these exact equations, and then indicates how 
the situation would be complicated by allowing for nonlinear 
equations of motion. The discussion there suggests a impor
tant subtlety (and possible inconsistency!) inherent in any 
attempt to describe too carefully the effects of interparticle 
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correlations without allowing correctly for the effects of 
nonlinearities. Section V summarizes the principal results 
and suggests future avenues of research. 

It should be emphasized that much of the formalism 
developed here resembles quite closely more conventional 
techniques from statistical mechanics. Indeed, to the extent 
that the effects of a nontrivial background space-time may be 
ignored, and that one may proceed as if the space-time were 
really flat, it is reasonable to exploit the more powerful, but 
unfortunately less general, formalism of Prigogine and 
Balescu. Given, however, the potential implications in astro
physics and cosmology, it is important to formulate the basic 
issues from the perspective of, and in the language of, general 
relativity. 

Finally, it should be noted that, without exception, the 
notation here parallels that of Paper I. 

II. BASIC EQUATIONS FOR REDUCED DISTRIBUTIONS 

Given that the background space-time is conformally 
static, the line element may be written in the form 

ds2 = gJl.v dx'" dxv = fJ 2(1])(r'7'7 d1]2 + rab dxa dxb), 
(2.1) 

where 1] is the conformal time, and r '7'7 and r ab are functions 
only of the spatial XC. In terms of r J1.V' the linearized equa
tions of motion for the ith particle are 

and 

dxf dr; 1 b· 
-=---ya (i)P~ 
d1] d1] fJ 2m 

dp~ dr; [ - 1 . . ~ .] 
- = - --2 P~ p~ Va YSV(i) - A.1 ~(i)a'J1. 4> (i) • 
d1] d1] 2mfJ 

(2.2) 

In these expressions, A is a coupling constant, m is the parti
cle mass, r; is the proper time of the ith particle, p~ is the 
physical four-momentum, the 1] component of which is to be 
viewed as a function of the spatial components p~ and the 
space-time coordinates xf and 1], and 
.1 ; (i)=8; + p~ p7/(fJ 2m2) is the spatial projection tensor. 

Similarly, if one allows for the possibility of a mass K and 
a coupling with the scalar curvature, the field equations for 
4> (xa,1]) assume the covariant form l 

VJl.VJl.4> + nR[g]4> - ~4> = 41TA plm. (2.3) 

Here 

dr· 
p==mI -' (- g)1/28(3)[xa - xf(1])] 

; d1] 

dr· 
= mfJ 4I -d.' ( - r) I 128(3) [xa - xf(1])] (2.4) 

; 1] 

is the particle density, VI' and R fg] denote, respectively, the 
covariant derivative operator and scalar curvature associat
ed with gJl.v, and n is a numerical constant that characterizes 
the coupling with R. 

If one expresses VI' VI' in terms of fJ 2 and the conformal 
rJl.v, and viewsR fg)as a function offJ (1])andR [r), the scalar 
curvature associated with rJl.v, the field equations may be 
seen to involve the second-order time-independent differen
tial operator 
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.1 =( - r1/1/)-I{( - r)-1/2 aa( - r)1/2yab ab + nR [r]}, 
(2.5) 

a natural generalization of the flat space Laplacian. It is 
therefore convenient to expand 4> in terms of a complete set 
of orthogonal [with respect to the inner product (2.22) of 
Paper I) eigenvectors {"'A} of.1, chosen to satisfy 

(2.6) 

Without loss of generality, these "'A'S may be chosen to sa
tisfy the normalization 

f d 3X( - r)1/2( - r'7'7)"'A (Xa)"'B(Xa) = 41T8AB , (2.7) 

so that an assumption of completeness implies that 

I"'A (Xa)"'A (ya) = 417"( - r'7'7)-I( _ r)- 1/28(3)(xa _ ya). 
A 

(2.8) 

Thus, if one supposes that 

00 

4> (xf,1]) =fJ -lx(xf,1]) =fJ -I I aA(1])"'A(X~), (2.9) 
A=I 

one is led immediately to an infinite set of oscillator equa
tions of the form 

dqA 
--= -PA 
d1] 

and 

dPA [2 ~fJ2 fJ"] --= aJA + -(1+6n)- qA 
d1] (- r'7'7) fJ 

A dr. 
+ fJ ~ d~ "'A (i), (2.10) 

where a prime denotes differentiation with respect to 1]. 
The "complete" distribution function 

Jl(xj ,p!, ... ; ql'PI""; 1]) is to be defined as a probability den
sity for finding the system with coordinates and momenta in 
the neighborhood of the stated values at time 1]. Then, as 
discussed in Paper I, the evolution of Jl will be given by the 
Liouville equation 

aJl + I ~(dxf Jl) + I ~ (dP~ Jl) 
a1] ; ax~ d1] ; ap~ d1] 

~ a (dqA ) a (dPA ) + ~- -Jl + I- -Jl =0, (2.11) 
A aqA d1] A apA d1] 

where, e.g., dxfld1] and dPAld1] are given by Eqs. (2.2) and 
(2.10). 

Given this Jl, one is in a position to define various re
duced distribution functions. Thus, for example, the irredu
cible one-particle and one-oscillator distributions take the 
forms 

f(ll = f IJ dB JJ dj Jl (2.12) 

and 

g(A ) = f II dB II dj Jl, 
B#A J 

(2.13) 

where 
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(2.14) 

denote the appropriate reduced phase space volume ele
ments. Similarly, one may define the particle-oscillator joint 
distribution 

h (i,A ) = f II dB II dj J-L. 
B;6A j;6j 

(2.15) 

More complicated particle, field, and particle-field distribu
tions may be defined in the obvious way. 

It is straightforward to derive equations for the evolu
tion off(i) andg(A ) in terms of h (i,A ). Thus, for example, by 
integrating over the degrees of freedom of all the oscillators 
and N - 1 of the particles, one is led to an equation of the 
form 

af(11 + ~ (dr _1_p'1) 
a-q axa dT] fJ 2m 

a (dr 1 a '''''VI'') 
- aPa dT] 2mfJ 2PJl-Pv aT J 

-~ (A..1 ~ aJl-fJ -II fdA qAf/!Ah (i,A)) = O. (2.16) 
apa A 

And, analogously, one finds that 

ag(A)_PA ag +[liJ!+ ~fJ2 _(1+6n)fJ"] 
aT] aqA ( - yl1l1) fJ 

X qA ag + ~ Ifdi drj f/! A (11 ah (i,A ) = o. (2.17) 
apA fJ j dT] apA 

Similarly, it is easy enough to formulate an equation for the 
evolution of h (i,A ) in terms of! (i,A,B ), the reduced distribu
tion for a single particle and a pair of oscillators, and J (ij,A ), 
the distribution for a pair of particles and a single oscillator. 

Equations (2.16) and (2.17) constitute the first two equa
tions in a relativistic analog of the ordinary BBGKY hierar
chy of coupled equations. The crucial difference between Eq. 
(2.16) and its Newtonian analog should, however, be empha
sized. In a relativistic theory, the particle interactions are 
mediated via fields, and, as such, the evolution off(i) is affect
ed by particle-oscillator correlations buried in h (i,A ). In a 
Newtonian theory, one envisions instead a direct particle
particle interaction, so that h (i,A ) will be replaced by a two
particle H (iJ1-

In any case, given Eqs. (2.16) and (2.17), it is easy to 
obtain a relativistic analog of the ordinary Vlasov equation 
or self-consistent field approximation (SCF A). Indeed, this 
sort of mean field theory follows immediately in the limit 
that correlations between particles and fields may be ig
nored, so that 

h (i,A )--f(i)g(A ). (2.18) 

In this approximation, one concludes that 

af(i) + ~ (dr _1_p'1) 
aT] axa dT] fJ 2m 

a (dr 1 a '''''VI'') 
- aPa dT] 2mfJ 2 PJl-Pv aT J 

- ~ (A..1 ~ aJl-fJ -I I(qAf/!A )f) = 0, (2.19) 
aPa A 

where 
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(2.20) 

denotes an average value defined with respect to the one
oscillator g(A ). Similarly, one finds that 

ag(A) ag [2 ~fJ2 fJ" ] 
---PA --+ liJA + -(1 +6n)-

aT] aqA ( - yl1l1) fJ 

ag A {drj .} ag 
XqA apA + fJ ~ dT] f/!A(l) apA = 0, (2.21) 

where 

{
dr. } f dr. -' f/! A (i) == di f(i}--:-!- f/! A (i) 
dT] dT] 

(2.22) 

denotes an average value defined with respect to f(l). Quite 
generally, given any function t of the particle and field varia
bles, one may define the average values 

(t)= f IJ dBg(B)t(I, ... ,N:l,2, ... ) (2.23) 

and 

[t}== f I} djfU)5(I, ... ,N;I,2, ... ). (2.24) 

The connection between Eqs. (2.19) and (2.21) and the 
ordinary SCF A is easy to establish. Thus, if one introduces 
the "average" field 

(2.25) 

and supposes thatJ-L is symmetric under particle interchange, 
it follows from Eq. (2.21) that 

fJ-I~fJ(cJ»_..1(cJ» 

+ ~fJ2 (cJ»-(1+6n)fJ" (cJ» 
(_yl1l1) fJ 

- 41rAN f d 3p dr f, (2 26) 
- (_gl1l1) (_g)1/2 dT] , . 

or, equivalently, that 

V JI- VJI-( cJ> ) + nR [g]( cJ> ) - ~(cJ» = 41rA p/m, (2.27) 

where 

-. - f d 3i drj • 

pIll Nm (_ g)1/2 dT] f(l) (2.28) 

is the covariant mean density associated withf(i). In terms of 
(cJ> ), Eq. (2.19) takes the form 

af + a (dr 1 '1) 
aT] axa dT] fJ 2m P 

a (dr 1 a '''''Vf) 
- apa dT] 2mfJ 2PJl-Pv aT 

- ~ (A..1 ~ a JI- ( cJ> ) f) = o. 
apa 

(2.29) 

Equations (2.27) and (2.29) are precisely what is usually 
meant by a relativistic mean field theory. 10 

III. A PROJECTION OPERATOR APPROACH 

In the limit that the particle-oscillator distribution 
h (i,A ) may be approximated as an uncorrelated product 
f(i)g(A ), the exact equations (2.16) and (2.17) reduce to the 
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coupled system (2.19) and (2.21) involving only I(i) and g(A ). 
The problem, however, is thath (i,A ) does not factorize exact
ly in this simple way: particle--oscillator correlations will, of 
course, exist, and they will exert a nontrivial influence upon 
the evolution of I and g. What one might, therefore, like to 
do, and what can in fact be done, is express the "correlated 
component" of h, namely Ii (i,A )==h (i,A ) - l(i)g(A), as a 
functional of I and g, enabling one thereby to obtain exact 
equations involving only I and g. 

The physical picture that one envisions is simple 
enough. In a sense that is to be made precise, the pieces of the 
total distribution function Il that do and do not involve cor
relations are mutually "orthogonal." And, as such, it is rea
sonable to think of the uncorrelated component as serving as 
a source for the correlated component, and the correlated 
component as serving as a source for the piece not involving 
correlations. More precisely, one expects to be able to de
compose Il into a sum of two orthogonal pieces, a "relevant" 
IlR and an "irrelevant" Ill' which satisfy a pair of coupled 
equations; and, given this coupled system, one should be able 
to obtain a single equation for Il R containing no explicit ref
erence to III except, possibly, through an initial condition. 

This physical picture may be realized mathematically 
by means of a projection operator formalism. The first object 
is to write Il in the form 

Il =IlR + IlI=II/(IIIIg(A ) + Ill' (3.1) 
i A 

i.e., as a sum of the relevant component Il R , constructed as a 
product of irreducible contributions, and an irrelevant con
tribution III J.l - IlR' which contains all the information 
about correlations. The idea then is to construct a projection 
operator P, which, when acting upon Il, yields the desired 
IlR' i.e., an operator P which satisfies the requirements 

PIl = IlR and (1 - P)1l = III (3.2) 
and 

P(17)P(17') = P(17) (17)17')· (3.3) 

Such a P will render precise the picture that one envisions. 
An important additional demand is that P be "compatible" 
with the notion of time translation, i.e., that the commutator 
of P (which may well involve 17!) and a"l annihilatell: 

[ P (17), a"l ]Il = O. (3.4) 

Within this general framework, there are still a number 
of different ways in which one might proceed. In the context 
of Newtonian statistical mechanics, the most elegant ap
proach would entail an application of techniques developed 
by Balescu, Prigogine, and their co-workers. 12

,13 As dis
cussed, e.g., in the classic paper by Balescu and Wallen
bom,12 this procedure enables one to extract an exact Mar
kovian equation for the evolution of a "kinetic component" 
of the total distribution function; and, as is evidenced by the 
work of Balescu and Paiva-Veretennicoff, 14 that program 
may be adapted readily to such special relativistic problems 
as the consideration of an electrostatic plasma in Minkowski 
space. 

The principal restriction inherent in this approach is 
that it relies upon the existence of a time-independent Ha-
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miltonian. The necessity for a Hamiltonian in and of itself is 
perhaps not that much of a problem, but the demand that it 
be time independent, so that the equations of motion for the 
particles and field involve no time-dependent forces, is much 
more serious. For an arbitrary dynamical background, this 
is simply impossible! For the special case of a static space
time, the only explicit time dependence is to be found in the 
functions (/) (xQ ,17) and p(xQ ,17), and even this dependence is 
eliminated by the introduction of the field oscillators. If, 
however, the space-time is only conformally static, the equa
tions of motion will involve n (17) and, for a general space
time, things only get worse. 

For this reason, this paper will adopt a simpler and less 
elegant, but more general, approach along the lines suggest
ed by Willis and Picard,15 which has already found fruitful 
applications in the study of Newtonian self-gravitating sys
tems. I 6-18 

What is needed is an explicit representation of P. Were 
one dealing with a collection of N particles and ff oscilla
tors, N and ff both finite, this would be straightforward. 
Given, however, that there are infinitely many oscillators, 
one must be somewhat careful. The potential complications 
may be avoided best by ordering the eigenvectors t/J A so that 
P may be defined as a limit with ff ~ 00 : 

This P, defined as an operator acting upon any function S, is 
itself constructed froml andg, and, therefore, is clearly time
dependent. It is, however, easy to see that Eq. (3.4) will hold 
and, moreover, that PIl = IlR' That P is idempotent is less 
obvious, but a proof may be constructed along the lines used 
for the Newtonian analog. 15,18 

Given this P, the game is in fact quite simple. Start with 
the Liouville equation (2.11), viewed as an operator equation 

(3.6) 

where L (17), like P (17), is a linear operator. The idea then is to 
act on Eq. (3.6) with P and (1 - P) to conclude that 

(3.7) 

and 

(3.8) 

These relations demonstrate explicitly that III and IlR can, 
in fact, be interpreted, respectively, as sources for Il R and Ill' 
It is then easy to write down a formal solution to Eq. (3.8), 
yielding III as a functional of Il R , and to substitute that for
mal solution back into Eq. (3.7). Thus, in terms ofthe initial 
condition III (17 = 0), one sees that 
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a",J.LR + iPLJ.LR = - iPL (1])~(1],0).u/(1] = 0) 

- So'" d1]'P(1])L (1])~(1],1] -1]') 

X [1 - P (1] - 1]')] 

(3.9) 
where 

~(1]2,1]1) = Texp { - i i~2 [1 - P(1])]L (1])}, (3.10) 

and T is a (conformal) time-ordering operator. In the limit 
thatJ.L/(1] = 0) = 0, i.e., in the absence of initial correlations, 
one has an exact, closed equation for the evolution of J.LR' 
WhenJ.L 1(1] = 0):;6 0, one may speak of a propagation of non
trivial initial conditions. 

At this stage it is convenient to introduce a bit of nota
tion. Let 

dr; 1 b' 

vf= d1] fJ 2m r" (i)P~ (3.11) 

denote the ordinary three-velocity of the ith particle. Simi
larly, introduce the quantities 

F (.) dr; [ - 1 . . . 
a I = d1] 2mfJ 2 P~ P~ a'a y<V(i) 

-A.::1 ~(11 a:. fJ -I ~ qA "'A (i)] (3.12) 

and 

F(A )=[tLI~ + ~fJ 2 _ (1 + 6n) fJ "]qA 
(-r"'''') fJ 

A dr· 
+ fJ ~ d~ "'A(i), (3.13) 

which may be identified, respectively, as the total forces act
ing upon the ith particle and the A th oscillator. In terms of 
these definitions, it is easy to verify that 

iPLJ.LR = L a,a a (VfJ.LR) + L a,al (Fa(i)J.LR) 
I 'XI I rpa 

- L / (PAJ.LR) + L a,a ({F(A )}J.LR)' 
A uqA A rpA 

(3.14) 

where, recall, ( ) and { 1 denote averages defined with re
spect to the g's and f's, respectively. Thus, setting 
J.L/(1] = 0) = 0, one concludes that 

fn dB f n dj[ a",J.LR + iPLJ.LR ] 
VB loFl 

=aJ(i)+~ [vif(i)] +~ [(Fa(i)f(i)] 
axf ap~ 

= - f n dB f ndj iP(1])L (1]) i"'d1]' 
VB loF; 0 

X ~(1],1] -1]')i[ 1 - P(1] -1]')] 

XL (1] -1]').uR(1] -1]'), (3.15) 

and, similarly, that 
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a",g(A) - PA a:A) + aa [[F(A )}g(A)] 
qA rpa 

= - f n dB f ndj iP(1])L (1]) i"'d1]' 
BoFA Vj 0 

X ~(1],1] -1]')i[ 1 - P(1] -1]')] 

XL (1] -1]').uR (1] - 1]'). (3.16) 

The left-hand side of these equations, which involve iPLJ.L R' 
would, if equated to zero, yield precisely the SCF A. The 
right-hand sides, which involve iPLJ.LI' reflect the effects of 
particle-oscillator correlations. 

The right-hand sides can in fact be recast in a simpler, 
and more suggestive, form. Note first of all that, for any 
functions, 

f n dBfndj(l-p)s=o=fndBfndj(l-p)s. 
BoFA Vj VB JoF; 

(3.17) 

This implies that one may ignore the first P (1]) in Eqs. (3.15) 
and (3.16). Similarly, it follows from Eq. (3.1) that 

f n dBfn djJ.LI = 0 =In dBf n djJ.LI· 
BoFA Vj VB joFl 

(3.18) 

These relations imply that one need only consider those con
tributions to iP(1])L (1]) that involve explicitly the particle
oscillator couplings. Thus, for example, 

fn dBfn djiPLJ.LI 
VB joFl 

=fn dBfn djiLJ.LI 
VB joF; 

where 

Fa (A--+i) = - A dr; .::1 ~ (i) a:. fJ -lqA "'A (i) (3.20) 
d1] 

is the force exerted upon particle iby oscillator A. And, simi
larly, one sees that 

f n dBfndjiPLJ.LI 
BoFA Vj 

=f n dBfn dj~ LF(i--+A ).ul' (3.21) 
BoFA Vj aPa; 

where 

(3.22) 

is the force that particle i exerts upon oscillator A. In terms of 
these pairwise forces, one finds that 
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where 

Ya(A-Ij = Fa (A_Ij - (Fa(A-i) (3.24) 

and 

(3.25) 

represent suitably defined "fluctuating forces." Finally, one 
may observe that, in Eqs. (3.19) and (3.21), the true Fa (A_i) 
and F(i-a) may be replaced by Ya(A-i) and Y(i_A), 
yielding thereby a somewhat more symmetric form. Thus, 
for example, it follows from Eq. (3.18) that the quantity pro
portional to (Fa (A-i), which one wishes to append, will 
vanish identically since the average value is a function only 
ofx~ andp~. 

By implementing these definitions and simplifications, 
one is led to the desired coupled equations, written in the 
forms 

aJ(i) + ~ [vif(i)] + ~ [ (Fa (i)/(i)] 
ax~ ap~ 

and 

= f II def II dk fTJ dT!, 
lie k #-; Jo 

XL L [~Yb (B-j;77 - 77') 
liB IIj apb 

+ ~ YIj-B;77 - 77')]f.L R (77 - 77') 
apB 

x L ~ Y(i-A;77) [1 (77,77 - 77') 
; apA 

XL L [~Yb(B_j;77 - 77') 
liB IIj apb 

+ ~ YIj-B;77 - 77')]f.LR (77 - 77'). 
apB 

(3.26) 

(3.27) 

IV. PHYSICAL INTERPRETATION AND THE EFFECT OF 
NONLINEARITIES 

As emphasized already, the exact equations (3.26) and 
(3.27) embody two sorts of influences, namely (i) "average" 
effects, involving (Fa (A_i) and {F(i_A )}, which derive 
from the quantity iPLf.LR and, as such, do not involve expli
citly the effects of correlations; and (ii) the effects of "devia
tions from average conditions," involving the fluctuating 
forces Y a (A_i) and Y(i_A ), which derive from iPLf.LI 
and, as such, reflect explicitly the effects of correlations. In 
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particular, in the limit that iPLf.LI may be neglected alto
gether, one recovers the SCFA of Sec. II. 

All this is very nice. One potential subtlety in the inter
pretation of these equations should, however, be discussed. 
Specifically, in that one is not assuming that all particle
oscillator correlations may be neglected, it is no longer ob
vious that the average (<P) entering into the definition of 
(Fa (Ij) still satisfies the average field equation (2.27). One 
might anticipate that (<P ) would depend not only upon/Ii), 
but upon some higher-order correlation functions. It is 
therefore important to verify explicitly that 

(Fa(A-Ij) = -A dT; L1~(lja.~ n -1(qAtPA(lj), (4.1) 
d77 

where (qA tPA) is determined by the SCFA equations. 
The proof of this assertion is not difficult. Thus, if one 

exploits the exact relation (2.17) to express the time evolution 
of g(A ) in terms of h (i,A ), one sees immediately that 

a~(qAtPA) =aTJ fdA qAtPAaTJg(A) 

= aTJ f dA qA tP A [PA a;~~) + ... ] 

= - aTJ (PAtPA)' (4.2) 

Here the third equality follows from an integration by parts 
and the observation that terms involving ag(A )lapA do not 
contribute. A second application of Eq. (2.17) then implies 
that 

One knows, however, that 

f dA h (k,A) =/(k), (4.4) 

If one sums this relation over all A and recalls the complete
ness relation (2.8), one recovers the SCFA [Eq. (2.26)]. 

It should, however, be stressed that although the equa
tionsfor (qA tPA) or (<P) do not involve the effects of correla
tions, the equations for a more complicated object like 
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(q! ~) or «(/) 2) most definitely will! Indeed, an analysis 
paralleling Eqs. (4.2H4.5) implies that 

~ (q! ~ (i) - 2(P! ~ (11) 

+ 2 m! + - (1 + 6n) - (q! ~ (i) [ 
Jiln2 n"] 

(-rTJTJ) n 

f
A f dT'k = - 2 dA qA tP ,/(11- L dk - tP A (k )h (k,A ), 
n k d7J 

(4.6) 

a relation which involves h (i,A ) irreducibly. 
One can actually choose to view the correlations buried 

in h (i,A) as providing a source for the difference 
(q! ~) - (qA tPA )2. One knows, of course, that 

~ [(qAtPA )2] = 2(qAtPA)~ (qAtPA) + 2[aTJ (qAtPA) ]2, 
(4.7) 

and, therefore, it is easy to see that 

~ (qA tP A (i)2 - 2(P A tPA (i)2 

+2[m! + Jiln
2 

-(1 +6n)n"](qAtPA(i)2 
(-rTJTJ) n 

= - 2(qAtPA(11) fdA tPA(ll ~ 

X ~ f dk ~; tP A (k )h (k,A ) 

A f dT'k = - 2(qA tPA (11) - L dk - tPA (lltPA (k If(k). 
n k d7J 

Let 

h (k,A )=h (k,A ) - /(k )g(A ) 

(4.8) 

(4.9) 

again denote the particle--oscillator correlation function. 
Then, in terms of the quantities 

8!=(q! ~) - (qAtPA)2 (4.10) 

and 

D!=(P! ~) - (PAtPA)2, 

Eqs. (4.6) and (4.8) imply that 

(4.11) 

In the SCFA, h is assumed to vanish, so that the right-hand 
side ofEq. (4.11) disappears. If, however, one allows correct
ly for a nontrivial h (i,A ), this is no longer true: in this case, it 
would be inconsistent to demand that 8! and D! simulta
neously vanish identically. 

These considerations suggest the importance of under
standing how the basic formalism and interpretation would 
be altered if one were to allow for nonlinear equations of 
motion. As a concrete example, consider a collection of par
ticles that interact via fields that still satisfy the linear equa
tions (2.3), but in which the particle equations of motion 
involve a nonlinear coupling with (/) of the form considered 
by Hakim2•3 or Kandrup5: 
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dx~ dT'j 1 b • j 

-=---1' (l)Pb 
d7J d7J 11 2m 
and 

dp~ dT'j [ - 1 . . if. 
d7J = d7J 2mn 2 P~ p~ a t W

(ll 

- m.:1 ~(i) a;'. log (1 + ,1:(11) l (4.13) 

In the limit that IA(/) 1m I < 1, this reduces to Eq. (2.2), which 
only involves (/) linearly. In general, however, all powers of 
(/) will be involved. 

Given that the field equations remain unchanged, one 
can still expand (/) in terms of the oscillators of Eq. (2.9) to 
obtain Eqs. (2.10). And, given the particle and oscillator 
equations, one can again formulate the "complete" Liouville 
equation and obtain expressions for the evolution of the re
duced/(i) andg(A ) in terms of higher-order correlation func
tions. Because the field equations are still given by Eq. (2.3), 
the equation for aTJg(A ) remains unchanged. The nonlinear 
couplings in Eq. (4.12) will, however, have a profound influ
ence upon the equation for aTJ/(i). Thus, one finds explicitly 
that, in this case, 

a/Ii) + ~ [dT'i _1_p'tf(ll] 
a7J ax~ d7J n 2m 

a [dT'i 1 j i . v • ] 

- ap~ d7J 2mn 2 PI' Pv a'a Y' (ilf(l) 

a [dT'i f . 
- -i m -.:1 ~(i) II dB a~ 

aPa d7J '1B 

X log (1 + ~ n -1 L qA tPA (i)) ]f(i; 1,2, ... ) = 0, 

A ~1~ 
where, now, 

f(i;I,2, ... )= f JJ dj fl (4.15) 

is the reduced distribution appropriate for a single particle 
and all of the oscillators. The equations of motion no longer 
involve a simple pairwise particle--oscillator interaction, 
and, therefore, Eq. (4.14) involves the fullf(i; 1,2, ... ), rather 
than h (i,A ). 

In the limit that IA(/) Iml <1, one may approximate that 
10g(1 + u)~u and recover thereby Eq. (2.17). To next higher 
order, one has that 10g(1 + u)~u - !u2

, so that one acquires 
an additional quadratic contribution of the form 

- -;. ~ dT'i .:1 ~(11 f II de a;'.n -2 
apa m d7J 'Ie 

XL qAtPA(ll L qBtPB(i).F(i;I,2, ... ) 
A B 

a ,12 dT'i . 
= --. --.:1~(I) 

ap~ m d7J 

X [~f dA a;'.n -2 q! ~(llh (i,A) 

+ B~Af dA f dB a;'. n-2qAqBtPA(lltPB(i}/(i;A,B)). 

(4.16) 

where, explicitly 
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I (i;A,B )=J II dj II de p. 
};b-I C;b-A,B 

(4.17) 

At this stage, it is again natural to implement a relativis
tic SCFA by supposing that 

h (i,A ),.....,/(i)g(A), I (i;A,B ),.....,/(i)g(A )g(B). (4.18) 

In this approximation, Eq. (4.18) reduces to 

a 1 2 d'T'. [ 
- -. _A _ __ ' .d ~(i) a:. In -2(q! tflA (i) 

ap~ m dTJ A 

+ I n -2(QAtPA(11)(QBtPB(11)}r(i) 
B;b-A 

a ,2 d'T'· = __ . _A __ ' .d~(i)~ (4)2(i)f(i), (4.19) 
ap~ m dTJ p. 

Equation (4.20) does not yet coincide completely with the 
sort of equation that one typically encounters when describ
ing a self-gravitating system. The additional nontrivial as
sumption that one requires is that (q! tflA)':::::!.(qAtPA)2, so 
that (4)2) = (4) )2. As is evident from Eq. (4.11), the differ
ence between these two quantities is related to the correla
tion function h (i,A ) and, therefore, this approximation ought 
not to be that unreasonable in the limit that 

IU:::qlR = IIf(llIIg(A ). 
; A 

One sees quite generally that, if Eq. (4.20) is valid, 

af(i) + ~ [d'T'; _I_p't!(i)] 
aTJ ax~ dTJ n 2m 

a [d'T'; I ;; a; v ')f . ] 
- ap~ dTJ 2mn 2 Pp. Pv a y'" (I (I) 

a [d'T'; . --. m-.d~(i) 
ap~ dTJ 

Xa~ (log (I + A~ (i)) )i(i)] = 0, 

(4.20) 

(4.21) 

and, in the limit that (q~ ~ )':::::!.(QA tPA )n, this takes the form 

af(i) + ~ [d'T'; _1_p't!(i)] 
aTJ a~ dTJ n 2m 

-a!~ [~: 2m~ 2 p~ p~ ~ y"'V(I¥(ll] 

_ ~ [m d'T'; .d ~(11 ~ log (1 + A (4) (i) )Y(i) 
ap~ dTJ p. m 

=~ ~~ 
precisely the type of expression that one would ordinarily 
consider in a simple mean field theory. 

The consideration of nonlinear field equations also in
troduces the possibility of a logical inconsistency. Specifical
ly, a "natural" thing to do in many cases, e.g., for a self
gravitating system, would be to linearize the basic equations 
at the very outset and then proceed as if the "fundamental" 
theory really were linear. Thus, for example, if one were 
working with a flat, static background, one could realize the 
effects of the "fluctuating forces" in a perturbation series 
which really amounts to an expansion in powers of the cou-
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pling constantA (see Refs. 13 and 14): the lowest-order con
tributions will beO (A 2) and higher-order contributions 0 (A n ) 

could, at least in principle, be evaluated systematically. The 
obvious problem, however, is that the terms that one is ig
noring because of the linearization may also be realized in 
powers of A, and that, in particular, one will be neglecting 
contributions to the mean field 0 (A 2)! 

On a purely formal level, one cannot evaluate the correla
tional effects associated with fluctuating forces even to lowest 
order without also introducing nonlinear mean field effectsl 

The ultimate justification for so doing would seem to be 
based not simply upon naive power counting, but upon the 
notion that the mean field and correlational effects are some
how decoupled, the former representing large-scale "global" 
phenomena, the latter representing "microscopic" or "local
ized" phenomena. Thus, for example, the kinetic theory of 
self-gravitating systems developed by Israel and Kandrup4-7 
corresponds to a situation in which one considers the domi
nant mean field contributions, which, in this language, 
would be 0 (A ), and the dominant correlational effects, which 
would be 0 (A 2), but ignores higher-order contributions or 
couplings between these effects. Any attempt to improve 
upon that admittedly naive approach will involve important 
questions of principle! 

v. DISCUSSION 

The principal objective of this paper was to indicate 
how, starting from a "complete" statistical description of a 
collection of particles interacting via a simple scalar field in a 
fixed, conformally static space-time, one could derive useful 
information about the evolution of reduced one-particle and 
one-oscillator distribution functions. The analysis is of in
trinsic interest in its own right, and, moreover, should indi
cate how one might hope to describe the evolution of realistic 
self-gravitating systems, such as a relativistic cosmology or a 
cluster of stars. 

In Sec. II, attention focused primarily upon the problem 
of trying to understand in the clearest possible way the phys
ical content of the sort ofSCFA encountered, for example, in 
conventional descriptions of self-gravitating systems in gen
eral relativity.lO,1l Section III then demonstrated explicitly 
how, at least in principle, one can transcend that sort of 
mean field theory to derive exact coupled equations for the 
evolution of reduced distributions that contain no explicit 
reference to higher-order correlation functions. 

The analysis in these sections was predicated entirely 
upon the fact that the particle and field equations are both 
linear. This is certainly true for the case of the electromag
netic interaction and, as discussed by Israel and Kandrup,4 
such an assumption should also be legitimate in some ap
proximation for the description of self-gravitating systems, 
provided that "deviations" from some "average" conditions 
are not too large. Nevertheless, it is clear that linearized in
teractions are not the whole story, and, for this reason, much 
of Sec. IV was devoted to the question of how an allowance 
for nonlinear effects might alter the basic physics. Thus, for 
example, it was emphasized that the usual sorts of perturba
tion expansions, in terms of powers of a coupling constant A, 
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may require a reassessment. And, moreover, it was indicated 
that the standard sort of mean field theory, as applied to 
nonlinear interactions, amounts, in the context of the SCF A, 
to the assumptions (i) that particle-field correlations may be 
neglected entirely and (ii) that expectation values of products 
may be equated with products of expectation values, so that, 
e.g., (~ f/lA )'.:::!!(qA.f/!A. )2. 

The types of problems that remain should also be em
phasized. The most important of these is probably the for
mulation of a tractable approximate expression for the "col
lision operator" that described the effects of the fluctuating 
forces, or, better yet, the development of a usable systematic 
perturbation expansion in terms of which to describe these 
effects. For the case of a homogeneous configuration in Min
kowski space, this should not be difficult. The Balescu-Pri
gogine formalism, as applied to an electromagnetic plas
ma,13 clearly does the trick. It is, however, evident already at 
the level of the Newtonian theory that an allowance for spa
tial inhomogeneitiesl9 or a nontrivial background space
time, e.g., a k = 0 Friedmann cosmology,20 can lead to qual
itatively different results! In particular, the absence of a 
static background almost certainly precludes the possibility 
of an "equilibrium." 

Another important issue concerns the possibility of ob
taining useful information about other, more complicated, 
objects of interest, such as the two-particle correlation func
tion. The point is that, when considering such astrophysical 
phenomena as the clustering of galaxies or the evolution of 
"clumps" in a cluster of stars, one wishes to know not only 
the one-particle/Ii) but, in addition, such quantities as the 
two-particle distribution (say) H (iJ)' It is, for example, this 
object that yields the observed spatial galaxy covariance 
function measured by Peebles21 and his co-workers. The for
mulation of exact equations for these sorts of objects, inde
pendent of higher-order correlations, is, in a Newtonian 
framework, straightforward albeit messy. 18 The relativistic 
generalization introduces no new issues of principle aside 
from those considered in this paper. 

That relativistic effects will in fact prove of crucial im
portance for the understanding of galaxy clustering, or even 
the evolution of dense stellar systems,22.23 may well be un
likely (although these effects ought to be connected with the 
formation of massive black holes at the center of a galaxy!). 
The desire to understand how to pose the problem correctly 
in a relativistic framework is, however, a natural one. 

Finally, there remains the problem of trying to under-
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stand how one could deal with nonlinear interactions in a 
completely satisfactory way: only by solving this problem 
might one claim to "understand" self-gravitating systems. It 
is, of course, useful to have a simple linearized theory, and, 
for most practical purposes, such a theory may be enough. 
Ultimately, however, one needs to ascertain precisely what 
the "completely correct" description entails, so that one may 
appreciate fully what is, and is not, being ignored! 
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A dust cloud is examined within the framework of the general relativistic characteristic initial 
value problem. Unique gravitational initial data are obtained by requiring that the space-time be 
quasi-Newtonian. Explicit calculations of metric and matter fields are presented, which include 
all post-Newtonian corrections necessary to discuss the major physical properties of null infinity. 
These results establish a curved space version of the Einstein quadrupole formula, in the form 
"news function equals third time derivative of transverse quadrupole moment," for this system. 
However, these results imply that some weakened notion of asymptotic flatness is necessary for 
the description of quasi-Newtonian systems. 

I. INTRODUCTION 

In this paper, we describe the details of a new approach 
to the calculation of gravitational radiation from a quasi
Newtonian source. We work within the framework of the 
fully relativistic initial value problem on a null cone and take 
the Newtonian limit to obtain a hierarchy of corrections to 
purely Newtonian behavior. The novel features of our com
putational scheme include the use of the true curved-space 
null cones for the propagation of radiation; a unified treat
ment of the space-time region extending from the material 
sources to null infinity; a well-defined prescription designed 
to eliminate unphysical incoming gravitational waves; and a 
geometrical treatment of null infinity for the evaluation of 
the Bondi news function. These techniques have two key 
advantages. First, they lead to a unique prescription, within 
general relativity, for producing physically reasonable initial 
gravitational data corresponding to a Newtonian system. 
Second, they give a means of calculating post-Newtonian 
effects, including corrections to the equations of motion and 
extensions to the Einstein quadrupole formula. 

At this stage, it is premature to attempt a comparison 
and critical review of how our new scheme relates to the 
large literature of alternative approaches to this subject. 
Rather, the purpose of this article is to present an exposition 
of our results in the context of a specific Newtonian model. 
We also take this opportunity to present a number of new 
and useful results, extending previous workI

•
2 to higher or

der where the first outgoing radiation terms appear. 
The use of a simple physical model illustrates the com

putational possibilities for our formalism. The higher-order 
radiation calculations lead to quite long expressions. These, 
computed using MACSYMA, are presented in the appendices. 
The body of this paper is used to discuss both general formal
ism and computational strategy, as well as specific tricks 
used for the model calculation. Section II reviews Newtoni
an dynamics, procedures for evaluating time derivatives of 
Newtonian quantities, and the treatment of matter discon
tinuities. Section III presents the general rules governing 
quasi-Newtonian dynamics, including formulas determin
ing the metric up to third-order corrections. It also discusses 

post-Newtonian equations of motion. Section IV applies 
these general techniques to our model system. Section V 
deals with asymptotic issues such as the comparison of the 
gravitational radiation with the Einstein quadrupole for
mula.3 Section VI summarizes our results and discusses both 
some unresolved issues remaining in the analytic approach 
and the prospects for numerical computation. The notation 
and conventions used throughout the paper are presented in 
Appendix A. Other appendices contain explicit expressions 
for lengthy results discussed in the corresponding main sec
tions. 

II. THE NEWTONIAN CALCULATION 

We review some Newtonian computational techniques 
for self-gravitating fluids. These are of interest, not only as a 
foundation for understanding relativistic corrections, but 
also for the evaluation of many terms occurring in the quasi
Newtonian dynamics. 

Our main interest in this paper is not purely formal tech
niques but their application to a simple physical model. The 
model consists of an initially homogeneous ball of dust, cen
tered at the origin. The initial density of the dust has the 
discontinuous form 

{
k, r<R, 

p= 
0, r>R, 

while its initial Newtonian velocity is anisotropic 

(2.1) 

VI = vr Y2 . (2.2) 

The evolution of this model follows from the coupled 
gravitational and hydrodynamical equations of motion, con
veniently expressed in Cartesian coordinates. In order to 
agree with the signature convention for the full space-time in 
the following sections, we choose the signature for the flat 
Newtonian three-geometry to be (-, -, -). Then the 
Poisson-Euler equations are 

V2c1>= - cI>;k;k = 41rp , 

P.o + (pvt = 0 , 

pvi•O = - PVkVi;k + P;i + Pcl>;i • 

(2.3) 

(2.4) 

(2.5) 
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The fluid has a matter stress tensor 

TIj = PVjVi - pglj 

and a gravitational stress tensor 

tlj =(41r)-I[~;j~;/ _!~;k~;kglj]' 

satisfying 

(2.6) 

(2.7) 

t/ k;k = - p~;j . (2.8) 

Consequently, the momentum flux is given by 

(pv/ ),0 = - OJ k;k , (2.9) 

where 

Olj = TIj +tlj' 

The inertia tensor of the fluid is 

IIj = f PXjXi d 3V, 

with trace 

(2.10) 

(2.11) 

1= iillj (2.12) 

and tracefree part 

QIj=IIj-! Iglj= f p(x/xj -+c5ljr)d 3V. (2.13) 

To calculate time derivatives of this tensor at a given instant, 
we use the dynamical equations (2.3H2.5), (2.9), and (2.10). 
By integrating over all space and using the divergence 
theorem to eliminate surface terms, we obtain for matter 
with compact support, 

Ilj,o = f p,ox/xj d 3V= - f (PVk);kXjXi d
3V 

= 2 f pv(/vj) d 3V. (2.14) 

Similarly, 

Ilj,oo = 2 f Olj d 3V, (2.15) 

Ilj,ooo = f (-glj[2p,o +p(~,o +~;kVk)] 

+ 4 [p;(/ +p~;(;]vj) -~,o~;ljhT}d3V. (2.16) 

For the initial dust ball described by (2.1) and (2.2) we 
may easily solve (2.3), choosing the zero of potential at the 
origin. For results, see Appendix B. 

To further develop this model, it is natural to work in 
spherical coordinates. In addition, to establish correspon
dence with the quasi-Newtonian formalism described in Sec. 
IV, we choose a reference frame with freely falling origin. 
Equations (2.3H2.5) then take the form4 

r-I(~·),l1 + r-2~.:A:A = 41TP, 

p,o - (rpvI),1 /r - (pVB)'B /r = 0 , 

(pvA ),0 - (rpv A VI),I /r - (PVA VB)'B /r 

(2.17) 

(2.18) 

-p,A -p~.,A =0, (2.19) 

(ovl),o - (rpvlvl),I/r - (oVIVA):A /r + PVA~ /r3 

- P,I - P~·,I = 0 . (2.20) 

Here VI and VA are the covariant velocity components and 
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~. the Newtonian potential in this frame. As boundary con
ditions, we require that ~. and its gradient vanish at the 
origin, in accord with the free-fall behavior of the origin 
world line. 

To determine Ilj,ooo for our spherical dust model from 
(2,16) we must still compute ~. ,0 • From the time derivative 
of (2.17) and (2.18), we obtain 

(2.21) 

At this point, we must proceed carefully since p has a step 
discontinuity at r = R so that the right side of (2.21) acts as a 
c5-function source. To compute the magnitude of the result
ingjump in the radial derivative of~·,o we integrate (2.21) 
across the discontinuity 

a(~·,otl R -I LR_+ (~·,O),l1 dr 

= 41TR -I LR_+ (rpvI),lr-1 dr 

= [ - 41rR -2(rpv l )h_ = - 41rkvR 3Y2' 

(2.22) 

Despite the density discontinity, ~·,o itself is continuous at 
r = R. Now, it is straightforward to determine ~·,o from 

(~.) = {201Tkvr3Y2, r<R, (2.23) 
,0,11 0, r>R, 

together with the conditions at r = R. For results see Appen
dixB. 

In a similar way, wemaycalculate~·,oo' Here, thePois
son equation has source terms involving both c5 functions 
and their first derivatives. The source for ~. ,000 is even more 
singular, containing second derivatives of c5 functions. We 
avoid these pathologies by reformulating the calculation in 
terms of integrals of these quantities. A useful trick is to 
switch from Poisson equations of the form 

V2j=S, (2.24) 

with singular sources S, by introducing a new variable 1'de
fined by4 

~f!' (2.25) 

which satisfies the smoothed equation 

rV2
T= f rS (2.26) 

by virtue of the operator identity [rV2,S r- I
] = O. Jumps in 

T and its derivatives at r = R may be calculated by integrat
ing the Poisson equation to get 

a(T,I) =R -2a(f f rs), (2.27) 

a(T) = R 2 a(f f f rS ) . (2.28) 

This procedure is used to compute S ~·,ooo/r. For results, 
see Appendix B. 

Now that we can compute time derivatives of fluid 
quantities and the Newtonian potential we may return to the 
evaluation of I Ij,ooo . For our dust model it is now straight-
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forward to show that (2.16) reduces to 

Iij,(»J = W 'fi2k 2vR 7(I5''3l5j3 -ll5ij)' 

This has vanishing trace, so Qij,(»J = I ij,(»J . 

III. THE QUASI-NEWTONIAN FORMALISM 

(2.29) 

For a given Newtonian space-time, such as the dust 
model in the previous section, there exists a procedurel

,2 for 
constructing a A-dependent sequence of quasi-Newtonian 
general relativistic space-times. These space-times are de
scribed on a common manifold in such a way that they share 
a family of null cones emanating from a geodesic world line. 
In a null coordinate system based upon these null cones, with 
xa = (XO, Xl,~) = (U, r, e, </J), 

dr = [eU1P (1 + A 2W /r) - A 4r2h ABUA UB ]du2 

+ U~2p du dr + U 3r2UA du d~ 

- A 2r2hAB d~ dxB , (3.1) 

where h ABh Be = I5A B , det(h AB) = sin2 e , and 
hAB = qAB + A 2YAB . The factors of A ensure that (3.1) in
duces a Newton-Cartan geometry in the limit A = O. In this 
version of Newtonian theory, the absolute time slices are null 
hypersurfaces. Smoothness at the origin of the null coordi
nates must be interpreted in terms of the local Fermi coordi
nates t = u + Ar, x = r sin e cos </J, y = r sin e sin </J, 
z = rcos e. 

The matter source consists of the A-dependent ideal flu
id energy momentum tensor 

T,.", = (p +A 2p )WI'WI' - A 2pgl'V' 

where the four-velocity has the form wI' = t,1' + A 2VI' • For 
A = 0, the contravariant components satisfy wa = (1, Vi), 

with Vi = (vi, vA) the polar coordinates of the fluid velocity in 
the background Newtonian theory. 

Einstein's equation G I'V = - 81TTl'v decomposes into 
hypersurface equations which determine p, UA , and W in 
terms of the gravitational null data CAB =y AB,1 and the initial 
matter data p, p, and Vi; a gravitational evolution equation 
which determines the time derivative of CAB; and the matter 
evolution equation TI'V ~ = 0 which determines the time 
derivative of the matter data. 

These equations are easiest to examine, in terms of a A 
expansion, by introducing the spin-weight zero potentials4 Z 
and a satisfying UA~ = 3Z /v'1 and CAB~qB = 32a. Here 
CAB is the "shear tensor" of the null cones and a the "shear 
potential." The hypersurface equations then take the form 

- 4rp,I = Jp , (3.2) 

(r4Z,l ),1 = 2r41/3 /r2), I - (2 + 3 3)r2a + Jz , (3.3) 

WI =.l?F 32 f (a + a) + (2 - 3 d18 , 4 

+(l/4r2)[r"33(Z+Z)),1 +Jw , (3.4) 

where the J 's are hypersurface quantities. More specifically, 
theA-expansion coefficients Jpln), Jzln), and Jwln) involve the 
matter fieldsp, Va' andp up to order n and the hypersurface 
gravitational fields p, Z, W, and a up to order n - 2. The 
gravitational evolution equation takes the form 
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[r2(a-Z)),1 = -2{J+Ja , 

where 

Ja = Ur f (r2a;o),l +Ka' 

(3.5) 

(3.6) 

and Ka (III involves matter fields up to order n and hypersur
face gravitational fields up to order n - 2. 

Equations (3.2)-(3.5) can be combined to yield the Pois
son equation 

r2V2(r2a),1 = r2S==Jp + Jz ,! + (r2Ja,d,l - U a , (3.7) 

where 

V2 = r- 2 !.... r2!.... + r- 2 3 3 ar ar 
is the Laplacian for Euclidean three-space. The boundary 
conditions for solving this Poisson equation are that (r2a),l 
and its gradient both vanish at the origin, in accord with the 
condition that the vertices ofthe null cones trace out a time
like geodesic. In the Newtonian limit, this leads to a freely 
falling reference frame with potential <1>*, as introduced in 
Sec. II. The method of calculating the various J's has been 
discussed and their forms given up through 0 (A 2) terms. 
Here we will need the J 's up through 0 (A 3). Results to this 
order are given in Appendix C. 

In order for a general relativistic system to have a New
tonian system with potential <1>* as its limit it is necessary 
that 

32(raIOI),l = - 2 32<1>* • 

Here, for simplicity in removing the 3 operators, we set 

(r2aIOI),! = - 29 <1>* , (3.8) 

where g; projects out the I = 0 and I = 1 parts. This removes 
the monopole and dipole terms in a lO) which play the role of 
gauge terms and do not affect any quantities of physical in
terest. 

The initial gravitational data a, at u = uo, for the corre
sponding quasi-Newtonian relativistic system are deter
mined by requiring that (3.8) hold for u > uo, at least in the 
formal sense of matching time derivatives. The details of this 
procedure and the salient features of the resulting space-time 
have been worked out quite generally up through the deter
mination of a 121• 2 Here we need a l31 for the Newtonian model 
presented in Sec. II. Proceeding at first in general, the deriva
tion begins with the specification of the initial Newtonian 
matter data and the initial determination of <1>*. These quan
tities are then evolved according to Euler's equations. For 
our particular model in Sec. II, this was carried out up to the 
determination of <I>*,(»J . Next, the initial value of a lO) is 
found from (3.8) and all other initial zeroth-order quantities 
obtained from the hypersurface equations (3.2)-(3.4). The 
initial time derivatives of alOI are then obtained from those of 
<1>*, also via (3.6). The time derivatives of the hypersurface 
equations then give the time derivatives of all other zeroth
order quantities. 

Given this start at the alOI level, the iteration scheme 
proceeds by determining the initial value of all) using the 
Poisson equation (3.5). Note that alO),o appears in the source 
for a(l) but it has already been determined. The time deriva-
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tives of a(1) are found from the time derivatives of the Poisson 
equation. A new feature arises here-the source contains P,o' 
Inititially,p is chosen to equal the density of the background 
Newtonian system and has no A dependence. However, the 
time dependence of p, as determined by the matter evolution 
equation Tl'v;v, will in general lead to A-dependent time de
rivatives of p even at u = uo. The same considerations apply 
to the velocity and pressure. The post-Newtonian correc
tions to the Euler equation, obtained this way, are given in 
Appendix C, at least to the order required in this paper. 

The continuation of this iteration scheme becomes more 
burdensome at each order because the source for a(n) in
volves the u derivative of a(n-I), which in tum involves the 
second u derivative of a(n - 2) continuing down to the nth u 
derivative of the Newtonian potential. Thus to procede from 
the (n - 1) level to the n level requires the solution of n addi
tional Poisson equations and the assembly of n complicated 
source terms, in which nth-order post-Newtonian correc
tions appear. The details of this procedure will be explicitly 
given in the next section when we calculate the initial quasi
Newtonian data, up through a(3), for the Newtonian back
ground presented in Sec. II. 

IV. THE QUASI-NEWTONIAN CALCULATION 

The leading term in the news function describing gravi
tational radiation appears at order A 3, for our quasi-Newto
nian model. This is in accord with the Einstein quadrupole 
radiation formula which involves three time derivatives, 
each one carrying with it a factor of A. Thus it will be neces
sary to calculate a to 0 (A 3). The time derivative of a also 
enters the news function but, because of the factor of A pro
vided by time differentiation, a,o is needed only to 0 (A 2), As 
explained in Sec. III, the derivation of these terms requires 
a,oo toO (A ), which in tum requiresa,ooo to Newtonian order. 

The initial spherical symmetry of our dust model sub
stantially simplifies the initial values of the J's which form 
the source S for the Poisson equation (3.7). Explicit formulas 
for the sIn), up to third order, appear in Appendix 0, as well 
as formulas for the u derivatives of these source terms. As 
explained, in Sec. III, the latter are required to determine the 
u derivatives of the a(n)'s which appear in S (n + I). In obtain
ing these formulas, we have inverted the CI operators which 
occur in (C4) and (C6). In so doing, we have set to zero the 
arbitrary monopole and dipole gauge terms in the resulting 
a's. 

When carrying out explicit calculations for this model, 
great care must be taken in handling boundary conditions at 
the outer boundary of the dust. This requires keeping a "zoo
logy" of the boundary behavior of the various functions in
volved in order to calculate the boundary contributions to 
the radial integrations. The introduction ofr, as described in 
Sec. II, reduces the degree of discontinuity encountered in 
the Poisson equations. This is necessary to avoid delta func
tion terms atA 3 order. In terms ofr, Eq. (3.7) takes the form 

~v2";'n) = J rtn
) , (4.1) 

where 
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f (
~a(n») 

";'n)= ,I. 

r 
(4.2) 

For uniformity of notation we extend these definitions to the 
Newtonian variables, defining ";'0) to be f <1>* /r, so that 
S (0) = 41rp(O) (wherep(O) is the Newtonian density described in 
Sec. II). When these methods are used, the entire calculation 
can be carried out using functions no more discontinuous 
than a step function. The calculation proceeds in analogy 
with Eqs. (2.24)-(2.28). 

To begin the calculation of a for the current model, Eq. 
(3.8) is first used to produce a(O). Because of the initial spheri
cal symmetry of the matter distribution, this consists only of 
a monopole part. As explained above, such terms will be 
dropped. 

It is helpful to carry out the remaining calculation en
tirely in terms of ";'n). With ";'n) in hand, a(n) can be recovered 
via Eq. (4.2) (using integration by parts to avoid difficulty 
from boundary terms). Figures 1-3 illustrate the flow of the 
calculation at these orders. Equation numbers given in the 
diagrams refer to the equations used to move from one node 
to the next. It is useful to consider these diagrams as collec
tions of cells, each of which consists of the construction of an 
sIn) and the solution of a Poisson equation for a new ";'n). 
Thus each cell represents one iteration of the quasi-Newtoni
an scheme. In each case the new source is constructed via Eq. 
(3.7) (or some u derivative thereof), and each Poisson equa
tion is of the form (4.1). Convenient expressions for the need
ed source terms can be found in Appendix O. The nth-order 
source terms contain lower-order hypersurface terms which 
can be calculated using the hypersurface equations (3.2)
(3.4). 

Consider first Fig. 1, and the calculation of";' I). The first 
needed term is S(O),o=41rp(O),o ,derived from the (Newtoni
an) hydrodynamical equation (2.18). This is used as a source 
to produce '1'(0),0 via the Poisson equation (4.1). The result is 
essentially <1>*,0' given by Eq. (B2). From ".<0),0 and miscellan
eous known matter terms, Eq. (01) yieldS '1'(1). 

Figure 2 illustrates how the calculation of ".<2) first in
volves the time derivative of the ";'1) calculation to obtain 
'1'(1),0' In a manner exactly analogous to the previous exam
ple, '1'(1),0 is constructed from the Newtonian quantity S(O),oo 
and terms derivable from previous results (via the hypersur
face equations). Given ".<1),0 and various known matter 
terms, (02) yields S (2). Then ";'2) is provided by the inversion 
of the Poisson equation (4.1). 

5(0) 
,0 

1 (4.1) 

,{"(oJ (misc. terms) ,0 

'" /(D1) 
s (1) 

FIG. 1. Diagram of the calculation of .rl). 
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s(O) 
,00 

! (4.1) 

(0) . 
"( 00 (mlsc. terms) 

~ / (3.7),(04),(0.5) 

s (1) 
,0 

1 (4.1) 

'( (1) (misc. terms) 

'\ /(0.2) 

S(2) 

1 (4.1) 

"(2) 

FIG. 2. Diagram of the calcula
tion ofT'2). 

Finally, Fig. 3 shows that the calculation of r(3) first 
involves the calculation of r(2),o' Equation (03) is used to 
construct S(3) from r(2),o and lower-order hypersurface 
terms. At this level, note that relativistic corrections to the 
Newtonian equations of motion are required in the construc
tion of S (I},oo and S (2),0' The necessary ingredients are sup
plied in (04HOl1), in Appendix O. 

v. THE FLUX AND OTHER ASYMPTOTIC ISSUES 

To discuss the asymptotic properties of the quasi-New
tonian system, it is necessary to introduce large r expansions 
of the metric variables. For simplicity we do this in the axi
symmetric Bondi formalismS appropriate for the dust model 
described earlier. The traditional Bondi metric for the A
dependent system is then 

s(O) 
,000 

! (4.1) 

(0) 
'( ,000 (miSC. terms) 

"" / (3.7),(0.6),(0.7) 

S (1) 
,00 1 (4.1) 

(1) 
'( ,00 (mi SC. terms) 

"" / (37),(0.4),(0.5) 

S(2) 
,0 

1 (4.1) 

"(2) (mi sc terms) ,0 

"" /(0.3) 
S(3) 

1 (4.1) 

"(3) 

FIG. 3. Diagram of the calculation of T'3). 
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d~ = (Vr-1eu 2p _ A 4 U2reU 'Y)du2 + U,eU 2p du dr 

+ U, 3 Ur~ 2y du dO _ A 2r(eU 2y dO 2 

(5.1) 

where 

hAD dxA dxB = eU2y d0 2 + e-U2Y sin2 Od4i, (5.2) 

UA = U~ 2Y8~ , (5.3) 

and 

A 2W=V-r, (5.4) 

so that the shear of a null hypersurface of constant u is pro
portional to r,l . The asymptotic behavior of r is r = K + c/ 
r + 0 (r- 2

). The hypersurface equations then give the 
asymptotic forms of the other metric variables. The leading 
order (constant) terms in the radial expansions of /3 and U 
shall be called H and L, respectively. 

Consider a conformal factor ll) and a new angular coor
dinate OB' such that 

ll)2[eU2K d0 2 + e- u2K sin2 0 d4i] = dO~ + sin2 OB d4i. 

(5.5) 

This transformation produces a standard Bondi frame in the 
large r limit, rather than the nonstandard frame imposed on 
the original coordinate system by the requirement of 
smoothness at the origin. Details are given in Ref. 6. The 
following formulas fix ll) and 0: 

(5.6) 

ll) = e".2K sin OB/sin 0 . (5.7) 

In terms of the above quantities, Ref. 6 gives a formula for 
the leading-order Bondi news function. With the inclusion of 
the proper A factors, this formula becomes 

N = C,o/A 2 + C,2L + (CL,2 + cL cot 0)/2 

+ e- u2Kll) sin 0 [(~2Hll)b(ll)2 sin 0)-1 b/(u' S). 

(5.8) 

In standard Bondi coordinatesS all the terms on the right
hand side of (5.8) would vanish except the c,o term. 

With these results in hand, the news function for the 
dust model of the previous sections can be evaluated by a 
straightforward but lengthy calculation. The value of ll), an 
intermediate result, can be found in Appendix O. The final 
result for the leading A dependence is 

N = ~ n2k 2vR 7 sin2 0 + O(A). (5.9) 

Note that this result involves the complete cancellation of 
individual terms in (5.8) which are 0 (A -2) and 0 (A -I). Even 
in the leading order, N (0) is only about one-tenth the size ofits 
constituent terms. Observe that N(O) has a pure spin-2 qua
drupole angular dependence. Also, it has quadratic k depen
dence, indicative of the matter-matter interactions neces
sary for a dust system to radiate. 

The Einstein quadrupole formula, derived via linearized 
theory, may be put in the form NL = Q,ooo, where NL is the 
linearized "news" and Q is the transverse Newtonian qua
drupole moment qiqQij' Here qi is the Cartesian coordinate 
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version of the dyad vector t/. The term Q.CX1J can be calculat
ed using Eq. (2.29), a purely Newtonian result. For this parti
cular model at u = uo, we find N (0) = Q,CX1J' This extends the 
validity of the Einstein quadrupole formula and suggests its 
more general validity for quasi-Newtonian systems. 

One outstanding asymptotic feature of our solution is 
the appearance of a In r/TJ term in a(3). This behavior is not 
in accord with the conventional description of asymptotic 
flatness for which the peeling property of the Weyl tensor 
implies 'l'i = 0 (r - 5+ i), in terms of the Newman-Penrose 
components ofthe Weyl tensor. For the dust model ofthis 
paper, all the 'I"s are in agreement with this peeling proper
ty, at u = uo, except for '1'0' which is given by 

'1'0 = - w rrk 2vR lOA. 3 sin2 
() [In(r/ R )/,-5] + 0 (A. /,-5) . 

(5.10) 

This departure from conventional asymptotic behavior 
is disconcerting but it should be taken seriously as an indica
tion that the description of radiation from isolated physical 
systems possibly requires a broader description of asympto
tic flatness. In fact, there exists a class of logarithmically 
asymptotically flat (LAF) space-times which include our 
dust model as a special case.7 These LAF space-times are 
asymptotic solutions of Einstein's equations whose Weyl 
tensor (in terms of a Penrose compactification8

,9 with con
formal factor 0) vanishes at null infinity as 0 (0 In 0), rather 
than 0 (0) as would be required by the peeling property. In 
all other regards, LAF space-times have essentially conven
tional asymptotic features. 

In our model, logarithmic asymptotic flatness results 
from the requirement of a Newtonian limit for times u > Uo. 

Is it possible to restore conventional asymptotic flatness by 
requiring only a certain degree of tangency in time between 
the Newtonian system and the A. = 0 limit of the general 
relativistic system? By requiring that Eq. (3.8), and its first 
and second u derivatives, hold only at u = uo, the initial gra
vitational data would be freed up at orders n;>3. This offers a 
possibility of removing the logarithmic term in a(3). Of 
course, for this procedure to have any physical justification 
there should be no concomitant change in the news function, 
so that the quadrupole radiation formula remains intact. In 
this regard, note that a(3) determines a(2),o in a nonlocal way 
(through the gravitational evolution equation) and that the 
asymptotic parts of both a(3) and a(2),o enter in the news func
tion, so that there are severe global constraints on any accep
table modification of a(3). Nevertheless, it turns out that the 
source modification4 

{)S(3) = (20/3r)(r<I>*.9c1>*,O),1 (5.11) 

in the Poisson equation (3.7), leads to a {)a(3), which satisfies 
these constraints and which cancels the logarithmic term in 
a(3). Thus it is possible to restore the peeling property at the 
expense of a Newtonian limit which is only tangential in 
time. 

There is then a choice of strategies: (i) a strict Newtonian 
limit may be imposed at the expense of a weakened asympto
tic flatness or (ii) conventional asymptotic flatness may be 
imposed at the expense of a weakened Newtonian limit. 
From a formal standpoint, the present evidence favors alter-
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native (i) since it fits into a canonical LAF formalism where
as there exists some arbitrariness in the choice of modifica
tion {)S (3) in the case of our dust model and some uncertainty 
as to how this modification might generalize. A considera
tion of the Newman-Penrose quantities lO offers a possible 
physical explanation for the existence oflogarithmic asymp
totic behavior.7 These quantities are well defined and are 
constants of the motion in the conventional asymptotically 
flat case. For a system with spatial reflection symmetry, they 
reduce to the product of the mass and quadrupole moment in 
the static case, so that it would seem plausible that they also 
equal this product in the slow-motion approximation im
plied by the Newtonian limit. But this product is not a New
tonian constant of the motion. The logarithmic behavior re
solves this paradox by providing a setting in which the 
Newman-Penrose quantities cannot be defined. Our dust 
model lends credence to this explanation since the asympto
tic part of {)S (3) which is associated with the logarithmic be
havior is proportional to the time derivative of the product of 
Newtonian mass and Newtonian quadrupole moment. 
VI. SUMMARY 

We have demonstrated that the quasi-Newtonian for
malism can be implemented to obtain a completely analytic 
treatment of the initial gravitational radiation from a simple 
model. As might have been expected from a first attempt at 
this approach, the calculations were immense. We hope the 
success of this model will lead to the development of more 
powerful techniques. In particular, calculational techniques 
of a more general nature would be desirable, especially to 
obtain a generalization of the quadrupole radiation formula 
established in Sec. V. 

Our results imply that some weakened form of asympto
tic flatness is necessary for the description of quasi-Newtoni
an systems. One possibility is the LAF version,' but we re
gard the present status of this issue as tentative. Versions of 
the more general type investigated by Couch and Torrence11 

and by Goldberg and Novak12
,13 may turn out to be more 

appropriate. 
Our formalism supplies a method for prescribing quasi

Newtonian gravitational initial data for numerical evolution 
of the characteristic initial value problem. 14 However, pres
ent attempts to solve the Einstein equation numerically with 
initial data given by this formalism have met with limited 
success in calculating the flux. For our dust model, this is 
because there are individual terms of order l/ A. and l/ A. 2 in 
the right-hand side of Eq. (5.8) for the news function. As 
mentioned earlier, these terms exactly cancel analytically to 
produce a news function whose leading term N (0) is 0 (A. (0)). 

Numerically, however, the code must be extremely accurate 
to resolve N(O). In a model without initial spherical symme
try, there are also OIl/A. 3) terms which must combine to 
cancel. In this sense N (0) is produced by terms of order A. 3. 

Thus to numerically calculate N (0) in the general (nonspheri
cal) case one must resolve the 0 (A. (0)) terms to one part inA. - 3

• 

If one wishes to operate in the Newtonian regime, where A. is 
of order 10-2

, this implies an accuracy of one part in 106 in 
the numerical solution. A code in which these cancellations 
are included analytically might be possible, but no such 
method has yet been developed. 
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Our approach provides immediate access to other mat
ters of physical importance which have never been explored. 
The Bondi mass M is a prime example. One would expect 
that the leading terms in a A expansion would satisfy 
M = m +..1 2B + 0(..1 3),wheremistheNewtonianmassand 
B the Newtonian binding energy. But this elementary de
mand on the reasonableness of the Bondi mass has never 
been established for a radiating system. If it is in fact satis
fied, what are the post-Newtonian corrections? Similar con
siderations apply to the reasonableness of angular momen
tum expressions in general relativity. The prospect of having 
a firm grasp on the relationship between matter sources and 
asymptotic behavior at null infinity is very exciting. 
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APPENDIX A: CONVENTIONS 

Our conventions are adopted to agree, as closely as pos
sible, with those of Refs. 5 and 6. We use signature 
+ - - -; units for which G = c = 1; Greek letters rang

ing over 0-3 for space-time indices; lowercase Latin letters 
ranging over 1-3 for spatial indices; capital Latin letters 
ranging over 2 to 3 for indices on topologically spherical 
two-spaces; a semicolon to denote space-time covariant dif
ferentiation; a colon to represent covariant differentiation 
with respect to the unit sphere metric qAB; a comma for par
tial differentiation; a unit sphere dyad for which 
qAB = 2q(A qB I; and Eisenhart's curvature conventions, IS for 

I 

which vp.;afJ - vp.;{Ja = vvR vp.afJ ' Rp.v = R ap.va , R = R aa 

and the intrinsic scalar curvature of the unit sphere equals 
- 2. The numerical conventions for the unit sphere spin

weight ladder operator 3 are fixed by the examples VA:B~qa 
= d(v A ~ )/v1, f:A. A = 3 dJ, and (d 3 - 3 d),., = 2s,." for a 

spin-weight s quantity,.,. We writef= ~f(nIA n for the ex
pansions of A-dependent fields. We use the shorthand nota
tion 

f f= ff(S)dS. 

We define angular functions proportional to the Y1m by 

Y2 = 3 cos2 
() - 1, Y4 = 35 cos4 

() - 30 cos2 
() + 3 , 

Y6 = 231 cos6 
() - 315 cos4 

() + 105 cos2 
() - 5 . 

We denote by f!l1 the operator which projects out I = 0 and 
I = 1 harmonics, e.g., f!l1 (A + B cos () + C cos2 

() ) 

= C (cos2 
() - 1)' 

APPENDIX B: NEWTONIAN QUANTITIES 

Using the methods described in Sec. II, the Newtonian 
gravitational potential and its time derivatives can be calcu
lated for the spherical dust model described by Eq. (2.1) and 
(2.2). The results, to the level needed in the calculations that 
follow, are 

$*- ' {~1Tkr, r<R 

- 21TkR 2 - ~ 1TkR 3/r , r>R, 
(Bl) 

$* _ {.I? 1Tkv[r4 - ~ R 2r] Y2, r<R, 
,0 - -13 1Tkv[R 7/r] Y2, r>R, 

(B2) 

{
1TkV2[fW ~ - ¥ R 2r4)Y4 + Pi r6 - ~ R 4r)Y2 + ~ r6] + ~ rk2r, r<R, 

$* -
,00 - 1Tkv2[ _ rA (R 1l/r)Y4 - M (R 9/r )Y2 + M R 6] + ~ rk 2R 2, r>R, 

(B3) 

f $*,000 +rk2v(~r4-W!R2r)Y2' r<R, 

[

1TkV3 [(fl ~ - lliR 2~)Y6 + (W ~ - H R 4r4)Y4 + (9f ~ - ¥ R 6r )y2] 

-r- = 1Tkv3 [(-=mW(R 15/r 7) - ~ R 8)Y6 + ( - -&fs (R 13 /r) - £ R 8)Y4 - ~ R 8Yd 

+ rk2v[~(R 7/r) - mR 4] Y2, r>R. 

APPENDIX C: QUASI-NEWTONIAN FORMULAS dom in m A is fixed here by the requirements 

[mA],=o =~ and mA,lmA =0. 

(B4) 

To calculate the J's introduced in Sec. III, Einstein's 
equation is expanded in terms ofP, Z, W, a,p, Va' andp. In 
this process, it is convenient to express the contravariant 
two-metric h AB in terms of a dyad h AB = 2m(AmB I with the 
expansion 

To the order required in this paper, only p(OI appears in the 
J's and may be reexpressed in terms of a(O) by 

(Cl) 
2P(OI = - 32 f a(O). (C2) 

in terms of the auxiliary variables P and Q. The phase free
I 

Straightforward calculation then leads t04 
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M z = 161TAv1r(p + A 2p)(1 + AVI)~VA + U 2(r4P dZ,d,1 + A 2 [r4Wa)dZ ],1 

+ rA 2[Pd d2a -Pd3a - 2(dPWa] + 0(..1 4), 
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J w = - 41T[p~ +A 2p(2~{J + r/BVAVB ) -A 2p~] - (3A 2/2)d d(PP) + (A 2/2)d(PdP) + (A 2/2)d(PdP) 

-A 2{J(d2P+ d2J» + U 2{J(1 - d d).8 -A 2(d{J)d{J - A 2 dIP d{J) - A 2 d(Pd{J) 

+ (A 2/2~)[r" d(PdZ) + r" d(PdZ)),1 - (A 2r"/4)(dZ,ddZ,1 + O(A 4), 

d2Ja =Urd2 J r-I(~a,O),1 -161rA2p(VAr/)2-A2(rWd2a),1 -4A2{Jd2{J-U 2(d{J)2 

- 4A 2Pd d{J + U 2[(d{J)dP- (d{J)dP) +A 2Pd d[~(Z + Z)l,l - (A 2r"/2)(dZ,d 

+ A 2~(d d2a)dZ + (A 2~ /2)Wa)d d(Z - Z) + A 2 [(dP)(~ dZ ),1 - (dP )(~ dZ ),1 ] + 0 (A 4) • 

(CS) 

(C6) 

It is also convenient to have the following combination which appears in S: 

d(Jp + Jz,d = - S1T~ d[(p +A 2p)(1 +AVI)2) + 161TAv1[~(p + A 2p)(1 + AVI)r/VA ],1 +A 2{r"[2,8 dZ,1 + Wa)dZ]}.1I 

+A 2[Pd 32 - Pd3 - 2(dP)d2](~a),1 + O(A 4). (C7) 

The post-Newtonian equations of motion are obtained from aA expansion of the matter evolution equation. In this paper, 
we need only the equations for dust (p = 0). A straightforward calculation to the required order leads to 

O(A 3) = [~p(1 + AVI)l,o +A 2(~p),oVo +A {~p[Vo - (W /r)(1 +AVI) + AUAVA ] 1.1 - [~p(1 +A 2vo)vd,1 

+A [~pUB(1 +AVI)]:B - [peU2P (1 +A 2vo)h ABVA lB +A 2p~VI,OVI +A 2pVA,Or/BVB , (CS) 

O(A 3)= [~p(1 + Avd21,0 +(1 +AVI){p~[ -VI-(AW/r)(1 +AVI)) 1.1 +A2(p~UAl.IVA 

+ (I +AVI)AVO(P~),I + {p~(1 +AVI)[ UBA (I +Avd - r-2eU2PhBCvc] 1:B + APVB,ltjlCVC , (C9) 

O(A 2) = [~p(1 + AVI)VA ],0 + [P~VA( - r-IAW + AVo - VI)],I + [P~VA(AUB - r-2tj1cvcl]:B 

-P~VI:A( -Ar-IW + AVo - vd -P~VC:A(AUC - r-2tj1CvB ) -p~(1 + AVI)Vo:A . (CIO) 

Here Vo can be eliminated using 

Vo = (I -AVI)[(W /2r) +{J + (1!2)V I
2 + (1!2~)r/BVAVB] + (AVIW /r) -AUAVA + O(A 2), (Cll) 

which follows from the normalization condition wawa = - 1. 

APPENDIX D: EXPLICIT FORMULAS FOR THE MODEL 

For u = UO' the source terms are given by 

~S(I) = - 161r~pvl - (4/r)(r34>*,o),1 , 

~S(2) = _ S1T~PV 2 + (2/r)[r3(~aU) ) ] I ,0,1 ,I' 

~S(3) = (2/r)[r3(~a(2») ] + 2[r"f3 Z(I)] ,0 ,I ,I ,0 ,I ,II 

(DI) 

(D2) 

+ [2 - ~ ~ :r] [(rW(°laU»),1 + 4{J (O){J (I)] . 

(D3) 

The u derivatives of these source terms, at u = uo, are 
obtained by differentiating the general formulas given in Ap
pendix C, and then specializing to the initial conditions of 
our model, In this way, they can be obtained from aA expan
sion of the following equations for the u derivatives of Ja and 
for the combination Jp + J Z,I : 

Ja,o + 0 (A 3) = Ur J (~a;,lOo - A 2(rWa,o ),1 - 4A 2{J{J,O , 

(D4) 

Jp,o + JZ,IO +O(A3) 

= - S~[p(1 + AV I )2),o + 161TVU d-I[~p(1 

+ AvllrtVA ],01 + U 2 [r"{JZ,OI 1.11 , 

2 J 4>* 000 Ja,oo + O(A ) = - 4Ar -r-' -, 
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(DS) 

(D6) 

I 
Jp,oo + JZ,IOO + 0 (A 2) = - S1T~[P(1 + Avd2),00 

+ 161TVU d-I[~pr/VA ],100' 

(D7) 

The initial u derivatives of the matter variables appearing in 
these equations are given by 

[~p(1 +Avd2),o + 0 (A. 3) 

= (p~vd,1 + (A /210,1 rW + Aprw'1 + (A /2)( P~VI2),1 

-A{J(p~),1 -Ap~ d dZ +A 2p,ITVIW 

+ U 2prvl w'1 + A 2prWvI,I , (DS) 

[~p(1 + AvllrtVA ],0 + O(A 2) 

= (1!v11o~ d[ (W /2r) + {J) , (09) 

[~(p(1 + AVI)2) ,00 + O(A 2) 

= [p~(W/2r+{J),1 +(p~v/),d,1 

+p d d(W /2r +{J) +A [2p~VI4>* - 4p~vJ3 

- P~V131,1I + A ~~VI),I 4>*,1 - U (p~/3,O),1 

+A ~~4>*,O),1 +Ap~4>*,ol 

-Ap d d[~a,o + 2 J {J,o] , (DIO) 

(DII) 

which follow from the specialization of the post-Newtonian 
equations (CSHCIO) to our model. Note that the d's appear-
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ing in (09) and (011) cancel the inverse d's in (05) and (07), 
respectively. 

Using these sources and the formalism described in 
Sees. III and IV, we can calculate a to 0 (A 3). These results, 
plus many needed hypersurface quantities, are given below. 

For clarity we introduce X =r/R, and denote the value of a 
quantity lin the interior or exterior of the dust sphere by 1< 
or I>, respectively. As discussed earlier, monopole terms 
which are physically irrelevant have been dropped. 

The values of the terms of a can be shown to be 
I 

a(O)=O, (012) 

a< (I) = 1TkvR 4[ -tr X 4 +X2 - ,"X] Y2' 

a> (I) = 1TkvR 4[§X-2 - roX-4] Y2 , (013) 

a< (2) = 1Tkv2R 7{ [~X7 +lliXs _ijX4 +~X3]Y4 + [~X7 +ruX3 _~X2_~X] Y2) , 

a> (2) = 1Tkv2R 7{ [rlh X - 2 + -i7J! X-4 +~X-s - ~X-6] Y4 + [-MX-2 +~ X-4] Y2} , (014) 

a< (3) = rk 2vR 6Y2[-=;iH4 X 6 +W!X4 _WX3 +W X 2 -~X] 

+1Tkv3R lOr [~XIO+mxS _~X7 +MIX6_~XS]Y6 

+ [~8XIO+~X6_~XS+~X4_AX3]Y4+ [~XIO+~X4_~X3+¥X2-mX]Y2}' 

a> (3) = rk 2vR 6Y2[-Ib\ log(X)/X4 - tmX-2 + WN X-4 - tX - S] 

+ 1Tkv3R lOr [~X-S - rtm-IX-6 + .fMX-7 -mX-S] Y6 

+ [TIm X- 4 + rlH-s x - s - HrsX -6] Y4 + [TIt! X- 4] Y2} . (DIS) 

These quantities are related via the hypersurface equations to the remaining metric variables. To the order needed for the 
calculation described in Sec. IV, these are 

2867 

P (0) = 1Tkr p (0) = 1TkR 2 
< '> , 

p < (I) = 1Tkv U r] Y2 , P> (I) = 1Tkv U R 5] Y2 
Z(O)=O, 

Z< (I) = 1TkvR 4[&X4 + ~X2 - ijX] Y2 , 

Z> (I) = 1TkvR 4[ -r + ~X-I _ljX-2 + MX- 3 - roX-4] Y2 , 

W < (0) = ~ 1Tkr, W> (0) = 1TkR 3 [2X - J] , 

W < (I) = 1TkvR 6[ -M X 6 -! X 4 + M X 3] Y2 , 

W> (I) = 1TkvR 6[2X 2 - ~X + «X- I - ~X-2] Y2 . 

To the order required for the calculation of See. IV, the u derivatives of 1", p, and Z are 

1" < (1),0 = 1Tkv2R 7{ [~X7 + ~Xs - fI X4] Y4 + [-TiH X 7 + #X 3 - -AAX2] Y2) , 

(016) 

(017) 

(018) 

(D19) 

(020) 

(021) 

1" > (1),0 = 1Tkv2R 7{ [~X-4 + -!&X-s + -dh] Y4 + [-MX-3 + £] Y2) , (022) 

1" < (1),00 = 1Tkv3R 9{ [~X9 + ~ X 7 - ru X 6] Y6 + [-=rtW X 9 + W! X S 

_WX4]Y4+ [~X9+WX3_WX2]Y2) +rk2v[ -~XS+1WX3_~4X2]Y2' 

1" > (1),00 = 1Tkv3R 9{ [~+ -r&n X- 6 - ~X-7] Y6 + [~ + -mX-4 - -HtfsX-S] Y4 + [~] Y2) 

+ rk 2vR S[ -=rt!-6 + ~X-3] Y2 , (023) 

1" < (2),0 = 1Tkv3R 10{ [,p X 10 + tfiM X S -.li&ff X 7 + fmX 6] Y6 

+ [~XIO+WX6_tmXS +UX4] Y4 + [~XIO+WX4_WX3 +¥/X2] Y2) 

+ rk 2vR 6[ -'11W X 6 + W/X 4 - W/X 3 +W/X2] Y2 , 

1"> (2),0 =1Tkv3R 10{ [~X-S _~X-6+&X-7]Y6 

+ [MsX-3_~X-4+~SX-S]Y4+ [~X-3]Y2) +~k2VR6[W-wrA6X-3+~X-4]Y2' 
(024) 

P (0) =.s 1Tkvr4y P (0) = 11TkvR 4y < ,0 l 2 , > ,0 2 2 , 

Z (0) =1TkvR3[JX3+4X]Y Z (0) =1TkvR3[X-I+~X-4]y. < ,0 7"3 2 , > ,0 J3 2 
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The conformal factor {t}, used in the construction of the "news" in Sec. V, has the following value: 

{t} = 1 - ~ trkvR sA. 3Y2 -10 trkv2R sA. 4[9Y4 + 20Y2] + ~ ~k2VR 7A. 5Y2 + .... (D27) 
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Collision-free gases in spatially homogeneous space-times 
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The kinematical and dynamical properties of one-component collision-free gases in spatially 
homogeneous, locally rotationally symmetric (LRS) space-times are analyzed. Following Ray and 
Zimmerman [Nuovo Cimento B 42, 183 (1977)], it is assumed that the distribution function/of 
the gas inherits the symmetry of space-time, in order to construct solutions of Liouville's 
equation. The redundancy of their further assumption that/ be based on Killing vector constants 
of the motion is shown. The Ray and Zimmerman results for Kantowski-Sachs space-time are 
extended to all spatially homogeneous LRS space-times. It is shown that in all these space-times 
the kinematic average four-velocity ui can be tilted relative to the homogeneous hypersurfaces. 
This differs from the perfect fluid case, in which only one space-time admits tilted ui

, as shown by 
King and Ellis [Commun. Math. Phys. 31, 209 (1973)]. As a consequence, it is shown that all 
space-times admit nonzero acceleration and heat flow, while a subclass admits nonzero vorticity. 
The stress 1T'ij is proportional to the shear (Tij by virtue ofthe invariance of the distribution 
function. The evolution of tilt and the existence of perfect fluid solutions are also discussed. 

I. INTRODUCTION 

General relativistic kinetic theory provides a self-consis
tent approach to the study of matter, which incorporates the 
particle structure and dispenses with the additional pheno
menological equations required in the usual fluid models of 
matter. Its study can therefore help to deepen an under
standing of matter in general relativity, and to clarify the 
basis of the idealized fluid picture. Further, the theory allows 
for a unified treatment (at a classical level) of massive parti
cles and massless particles representing radiation. A self
gravitating gas of galactic particles provides a cosmological 
model that is in many ways more fundamental and realistic 
than the usual fluid models. For a gas of massless particles 
moving in a background geometry, we obtain a model of 
radiation in cosmology. 

The difficulty of translating these advantages of the the
ory into useful results is the extreme complexity of the equa
tions. In the general case of a multicomponent charged self
gravitating gas with collisions, the Einstein-Maxwell
Boltzmann system of equations governs the gas behavior and 
the space-time geometry. At this general level, the theory is 
mainly concerned with constructing collision integrals and 
deriving the EMB system and its general properties (see, for 
example, Refs. 1-4 for further discussion and references). To 
make further progress towards an understanding of the mat
ter and geometry, it is necessary to impose simplifying as
sumptions. These assumptions are broadly of three types. 

(1) Assumptions about the nature and behavior of the 
gas. For example, under certain conditions on the collision 
integral, approximation theories may be developed, leading 
to foundations for relativistic thermodynamics.4-6 

(2) Assumptions on the space-time geometry, consid
ered either as background (test gas), or as generated by the 
gas (self-gravitating gas). An example of the former type is 
the analysis of photons or neutrinos in a symmetric cosmolo
gical background.7 Self-gravitating gases have been investi
gated in static spherically symmetric space-times, 8.9 Robert-

son-Walker space-times,IO-13 and Bianchi 
space_times.4,9,12.14-16 

(3) Assumptions which impose symmetries on the distri
bution function! For example, isotropy of/in momentum 
space leads in the uncharged collision-free case to a Robert
son-Walker geometry (apart from special cases),17 and to 
weaker, but significant, restrictions on the geometry in the 
case with collisions. 18 In addition, a more general class of 
"matter symmetries" admitted by / (uncharged collision
free case) has been considered. 19.20 

In this paper our principal concern is to establish rela
tionships between the space-time geometry and the kinema
tics and dynamics ofthe gas, in a cosmological context. We 
provide a development and extension of the work by Ray and 
Zimmerman. 12 We follow them in making the following as
sumptions, listed according to the types described above. 

(I) The gas is a one-component collision-free gas without 
charge. 

The physical situations we have in mind include galactic 
particles (considered as identical for simplicity-the exten
sion to a mass spectrum is not difficult IO), and photons prop
agating through the universe without interacting with the 
matter. The collision-free assumption means that the distri
bution function is a constant of the motion, so that we can 
appeal to geometric methods in trying to construct reasona
ble solutions to Liouville's equation. A generalization to a 
multicomponent collision-free gas is relatively straightfor
ward, since the various components are necessarily nonin
teracting. 

(II) The space-time geometry is spatially homogeneous 
andLRS. 

These space-times admit a Gr of motions, r = 4 or 6, 
acting transitively on spacelike hypersurfaces. The case 
r = 6 gives the Robertson-Walker geometry, which is the 
standard cosmological geometry.21 Uncharged collision
free gases in these space-times have received considerable 
attention, and we will therefore confine attention to the r = 4 
geometries. These have been studied extensively as cosmolo-
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gical models with fluid and electromagnetic source 
terms.22

-
24 For collision-free gases, Ray and Zimmerman 

have studied a self-gravitating gas in one of the seven such 
geometries.9

,12 This paper aims to give a systematic analysis 
for all the r = 4 geometries. 

(III) The distribution function is invariant under the G4 

of motions. 
In general the distribution function/will not inherit the 

space-time symmetries (cf. the somewhat analogous situa
tion regarding the electromagnetic field tensor2S

). Even 
when the gas itself generates the space-time geometry, it is 
only an average of/over momentum space at each point that 
has the same symmetry as the metric. (Ellis et al.13 provide 
an example of an anisotropic/which generates a Robertson
Walker geometry.) However, for a gas under assumptions (I) 
and (II), the further invariance assumption (III) is a natural 
and important starting point. 

Ray and Zimmerman make the following further as
sumption. 

(IV) The distribution function is a function of Killing 
vector constants of the motion. 

These are linear first integrals generated by the inner 
product of a Killing vector with the geodesic four-momen
tum. 14 

We will show in Sec. IV that (IV) in fact follows from 
(III) via Liouville's equation. First we give a brief summary 
of the relevant kinetic theory and invariance conditions in 
Sec. II, followed by a review of the LRS spatially homogen
eous metrics and their G4's of motions in Sec. III. In Sec. IV 
we derive a unified expression for the invariant distribution 
functions in all the space-times. This is used to solve Liou
ville's equation. Using these solutions, we calculate in Sec. V 
the kinematic quantities of the test gas. In Sec. VI we consid
er the neutral self-gravitating gas; in particular, we show that 
the average four-velocity ui can be tilted in all the space
times. The stress tensor 1T ij is shown to be proportional to the 
shear tensor (T ij' Such a relationship emerges as a linear term 
in approximation theory of nonequilibrium gases.6 Our re
sult holds exactly for a collision-free gas. Further dynamical 
properties are discussed in Sec. VI. In Sec. VII we give some 
concluding remarks. 

Notation: We follow the notation and conventions as 
used in standard references. I

•
21 In particular: commas de

note partial derivatives; semicolons denote covariant deriva
tives; .!f x is the Lie derivative along the vector field X; 
a, b,c, ... are indices in the orthonormal tetrad basis; i,j,k, .. . 
are indices in the coordinate basis; at = a/axi; and /, J,I(, .. . 
are indices in the Lie algebra of Killing vectors. Coordinates 
Xi = (t,xa) = (t,x, y,z), a = 1,2,3 are chosen so that at is time
like future-directed, and a a are spacelike. Individual compo
nents of tensors are labeled using (0,1,2,3) for tetrad compo
nents and (t,x, y,z) for coordinate components. 

II. COLLISION-FREE GAS 

In this section we review briefly the relativistic kinetic 
theory of an uncharged collision-free one-component gas, I 
and discuss the invariance ofthe distribution function/un
der Killing symmetries. 12,19 
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Let/be a one-particle distribution function for a Gibbs 
ensemble of systems of particles of rest mass m (>0). Then 
fIx, p) determines the number of particles at event x with a 
four-momentum p. The space-time geometry at x is deter
mined by the metric g. Here,fis a non-negative smooth func
tion on P (m), the phase space for rest mass m. At each x, the 
momentum space Px is the region in the tangent space con
sisting of future-directed nonspacelike tangent vectors. The 
mass shell at x is the hypersurface Px(m) = (pePx I 
gij i pi = - m2 J , in particular, Px (0) is the future light cone 
at x. The mass shells are the fibers of phase space: P(m) 
= UPx(m). Here, P(m) is a hypersurface in the phase space 
for all rest masses P = UPx' which is a region of the tangent 
bundle. Local coordinates Xi on space-time induce local co
ordinates (Xi,pi) on P, where p = i ai. Then P(m) is given 
locally by 

(2.1) 

Choosingpa as coordinates on the mass shell, we have local 
coordinates (xi,pa) on P(m), and then pt is determined on 
P(m) by (2.1). 

A. Liouville's equation 

The possible particle motions are given by (2.1) and 

i dx
i 

di ri i k P =-, -= - ikP p, 
dv dv 

(2.2) 

since free particles not subject to collisions follow geodesics. 
The r i ik are the connection coefficients and v is an affine 
parameter: v = (proper time)/m for m > O. The family of in
tersecting geodesics given by (2.2) is naturally lifted (Xi(V) 
_(Xi(V), dxidv)) into a nonintersecting congruence of phase 
orbits in phase space. The tangent vector field to the phase 
orbits is (dxi/dv)iJ/axi + (d pidv)iJ/a i, and by (2.2) this 
gives the Liouville vector field 

.(a . ka) L =p' axi -r'ikP api , (2.3) 

a directional derivative along the phase flow. Since Lm = 0, 
L is tangent to P (m) and so the restriction of L to P (m) is justS 

L=i(~-raijpi~). (2.3') 
ax' apa 

Since the gas is collision-free,fis constant along the phase 
flow, giving Liouville's equation 

L/=O. (2.4) 

B. Kinematics and dynamics 

lis assumed to vanish sufficiently rapidly at infinity on 
the mass shell, so that its moments over the mass shell are 
bounded. The first moment 

(2.5) 

is the particle four-current density, and the second moment 

Tij= f ipi/1Tm (2.6) 

is the energy-momentum tensor. In (2.5) and (2.6), 1T m is the 
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covariant volume element on Px(m), given in any basis by 

11' m = ( - det g)'t2 d pl23 I( - Po), (2.7) 

and the integrals are taken over the whole mass shell Px(m). 
Here, n defines the kinematic average four-velocity u of the 
gas by 

(2.8) 

where N is the number density. The kinematic quantities 
associated with the average behavior of the gas are given by 
the u congruence 

Ui;j = frij + ~ Ohij + wij - ui uj ; (2.9) 

frij is the shear (fr[ij) = frij u j = d i = 0),0 = Ui;i the expan
sion, wij the vorticity (w(ij) = wij u j = 0), and ui = ul;) uJ the 
acceleration. Here, hij = gij + Ui uJ is the projection tensor 
into the rest space of u. The average dynamic quantities of 
the gas are given by T, 

Tij =/lUI uJ + ph ij + l uJ + ui qJ + ttJ, (2.10) 

where /l is the energy density, p the isotropic pressure, qi the 
heat flow (qi U' = 0), and 'TfJ the stress (anisotropic pressure) 
(11' ij uJ = 0 = tt i) (all quantities are measured by a u observ
er). For the average behavior of the gas to be that of a perfect 
fluid, the condition is4 

(2.11) 

(as measured by the kinematic average velocity u). From 
(2.4H2.6) follow the conservation equations 

ni;, = 0 = Tij ;J' (2.12) 

For a test gas, the kinetic energy-momentum tensor (2.6) 
makes a negligible contribution to the total energy-momen
tum tensor, so that the space-time geometry is determined as 
a background geometry independently of the distribution 
function, which is restricted only by Liouville's equation. 
For a self-gravitating gas, the kinetic energy-momentum 
tensor is the source of the gravitational field. In this case the 
self-consistent Einstein-Liouville system of equations holds: 

Gij= Tij, LI=O, (2.13) 

where G is the Einstein tensor. [Consistency follows from 
(2.12) and the contracted Bianchi identities.] 

C. Invarlance of the distribution function 

If space-time admits a Gr of motions, generated by r 
Killing vector fieldsX/J with structure constants C K IJ' then 

.!/Igij =0, [XI,XJ ] =CK IJXK' (2.14) 

where .!/ I==.!/ Xl' Does the invariance of the metric lead to 
any invariance conditions on the distribution function I? 
Following Ehlers' we define the invariance of I under a 
space-time vector fieldXby 1'1= 0, where X is the complete 
lift26 of X=Xiai : X=X iali!3i+Xi ,Jpalal. [This is 
the natural definition since X generates the local G, 
(x, pH t/l.x, t/l.* pI, where x-;. x is the local G, generated 
by X.] Hence the condition fori to be invariant under Gr is 

XII==XI i al + Xl i ,J pJ a! = 0, all 1. (2.15) 
ax' ap' 

For a test gas, (2.15) is clearly not in general satisfied. But 

2871 J. Math. Phys., Vol. 26, No. 11, November 1985 

even for a self-gravitating gas, (2.15) will not hold in general: 
.!/ I g = 0 => .!/ I G = 0 and so by (2.13), .!/ I T = 0; how
ever, this imposes by (2.6) invariance only on an average ofl 
over the mass shell. Specifically, Berezdivin'9.27 shows that 

.!/I ni= f l(XI I)11'm'.!/I Tij= f lpJ(XII)11'm. 

(2.16) 

From (2.16) follows the invariance condition onl for a self
gravitating gas in a space-time admitting Killing vectors Xl 

(2.17) 

Equation (2.15)=>(2.17), but not conversely, as shown by El
lis et al.,13 who present in k = 0 Robertson-Walker space
time ani that is invariant under the translation subgroup but 
not under the rotational subgroup of the G6• 

Liouville's equation implies that I is a constant of the 
motion. Now Killing vectors lead to constants of motion 

YI(X,P) =gij(X)XI i(x)pJ=>LYI = O. (2.18) 

If I is assumed to be a function only of the YI' and to be 
invariant under the Xl' then from (2.14), (2.15), and (2.18) 
follows the result' 

I K aF 
=>YK C IJ-=O. 

aYJ 
(2.19) 

What appears not to have been recognized is the simple inte
grability condition following from (2.19) after differentiation 
with respect to YJ 

C J IJ aF = O. (2.20) 
iJyI 

III. SPATIALLY HOMOGENEOUS LRS SPACE-TIMES 

The space-times considered in this paper admit a G4 of 
motions transitive on spacelike hypersurfaces. Hence at each 
point there is a G, of isotropy about a preferred direction. 
These are the class A space-times in MacCallum's elegant 
classification.28 (MacCallum's class A also includes the G4 

transitive on timelike hypersurfaces.) This classification is a 
considerable improvement on the previous Kruchkovich
Petrov (KP) classification,29 used by Ray and Zimmerman. '2 
The metrics for these space-times may be described in a uni
fied form using canonical coordinates (t,x,y,z) 

ds2= -dt 2 +A(t)2[dx+lh(y)dzj2 

+ exp(2jx}B (t )2[dr + h ,2 dr), (3.1) 

where t = const gives the homogeneous hypersurfaces S3(t ); 
at is geodesic and normal to S3(t ) and t is proper time; a a are 
tangent to S3(t ); h is given by 

h (y) = (y,cosy, coshy), for k = (0,1, - 1); (3.1') 

and I,k,je{ 0, ± 1 J are parameters distinguishing the differ
ent geometries. Seven different group types occur, classified 
according to their G3 subgroups, as shown in Table I. The 
subgroups may act simply transitively (G3 on S3) or mUltiply 
transitively (G3 on S2)' Class Alc is the exceptional Kan-
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TABLE I. Group classification for spatially homogeneous LRS space
times. 

MacCallum Bianchi-Behr Bianchi-Behr 
type of KP type type of type of 
G4 ofG4 I 

Ala VI4 0 
Alb VII 0 
Alc VIII 0 
A2a III I 
A2b VIII I 
A2c VII I 
A3 V 0 

k 

0 
-I 

I 
0 
I 

-I 
0 

j 

0 
0 
0 
0 
0 
0 
I 

G3 on S3 G3 on S2 

I, VIIo VIIo 
III VIII 

II 
IX 
III, VIII 

IX 

V, VIIh VIIo 

towski-Sachs space-time30-it does not admit a simply tran
sitive G3• By (3.1), an orthonormal one-form basis is 

E a = {dt, A (dx + Ih dz), exp(jx)B dy, 

exp(jx)Bh ' dz J • (3.2) 

In this basis, the components of the Einstein tensor con
structed from the metric (3.1) give28 

Q=I=~ Gab = 0, except GOI=l=O in class A3; 

(3.3) 

The inverse metric of(3.1) is 

t j = diag( - I,A -2 + h 2 L,M,L + (1 -l)h ,-2 M) 

- 2hL{)(i x {)Jl z' (3.4) 

whereL =1 (h 'B )-2,M ==exp( - 2jx)B -2. The components 
r a ij l pj of the connection coefficients in class A space
times will be needed for the Liouville vector (2.3'). These 
components are given in the Appendix. 

MacCallum does not give explicit forms for the basis of 
Killing vectors. These are given by Petrov29 (p. 229), except 
for the A2b and A2c geometries. Petrov's coordinates 
(X I,x2,x3,x4) correspond to (x,y,z,t) in (3.1), except in class 
A2a, where Xl = y, x2 = x. For classes A2b and A2c, we use 
the forms given by Kramer et al.31 (p. 127) in complex co
ordinates (w,t,;). The coordinate transformation t = x + z, 

; =,j2 eiz (tany/2, tanhy/2) for k = (1, - 1), brings their 
metric (with 1= - k /2) into the form (3.1) (I = 1, j = 0), 
after a rescaling of time. Then we can transform the basis of 
Killing vectors into our canonical coordinates. The results of 
these transformations are collected in Table II. In the basis 
of Killing vectors, X4 generates the local rotational symme
try; X 2, X3 span the plane of symmetry; and XI is along the 
preferred direction. (X2 in class Alb disagrees with Petrov's 
expression29 for his corresponding XI (p. 229). The C 4

32 for 
class Ale disagrees with the corresponding C 2

31 in Kan
towski and Sachs30 [Eq. (3)].) Table II gives the structure 
constants, as well as the one-form C J IJt which distinguishes 
class A3 as exceptional (C J 

JJ =1=0). This exceptional geomet
ric behavior of A3 [confirmed by (3.3)] will be reflected in 
exceptional behavior of the distribution function (Sec. IV). 

We will now examine the invariant tensors. The metric 
tensor and all tensors covariantly constructed from it, such 
as the Einstein tensor, are clearly invariant under the class A 
G4 of motions. We now find the most general invariant vec
tor and symmetric spatial (0,2) tensor in class A space-times. 

2872 J. Math. Phys., Vol. 26, No. 11, November 1985 

In the non-LRS Bianchi space-times23 with a maximal 
G3 on S3' the existence of an invariant triad Ea spanning S3 
implies that any vector of the form F(t )a, + Fa(t)Ea is in
variant. In the LRS case, however, only one direction at each 
point in S3 is invariant, leading to stringent restrictions on 
invariant vectors and spatial tensors. From Table II we see 
that for all class A space-times 

.Y/a,=o=.Y/ax , alII. 

Hence ax is the preferred direction in S3' Since the G4 is 
transitive on S3' we also have .Y IF = 0 for all I¢:?F = F(t). 
Then it follows that in all class A space-times 

.Y/ vj=O, forallI¢:?v=F(t)a, +H(t}ax, (3.5) 

for some F, H. Any invariant vector lies in the t-x plane at 
each point, and has constant components over S3 (in the ca- . 
nonical coordinate basis). Thus there is a one-parameter 
family of invariant unit vectors. By (3.1) and (3.5) any invar
iant unit timelike vector U (future directed) satisfies 

.Y / uj = 0, for all I, (3.6) 
uj uj = - l¢:?u = cosh ",a, +A -I sinh", ax' 

while any invariant spacelike vector C orthogonal to u satis
fies 

.Y / cj = 0, for all I, 

(3.7) 
c

j 
Cj = 1, c j 

Uj = 0 ¢:?c = sinh ",a, +A -I cosh ",ax. 

where", = "'(t) is the (hyperbolic) angle oftilt,32 measuring 
the deviation of U from the normal a, to S3' Here, u is normal 
to S3¢:?'" = ~ is tangent to S3' 

The projection tensor hij = gij + U j uj into the rest 
space of U [satisfying (3.6)] is invariant. Hence any invariant 
symmetric (0,2) tensor in the rest space of U satisfies 

.Y/Sij =0, for aliI, 

S[ijl = 0 = Sij u j ¢:?Sij = P(t)c j cj + Q(t)hij' 

for some P, Q.If S is also trace-free (S j j = 0), then 

Sij = Pit )(Cj Cj -! hij)' 

(3.8) 

(3.9) 

The restrictions on invariant tensors given by (3.5)-(3.9) will 
be important when we consider the average kinematical and 
dynamical properties of the gas (Secs. V and VI). 

IV. INVARIANT DISTRIBUTION FUNCTIONS 

We now investigate the consequences of assumptions 
(I)-(IV) (Sec. I), using the theory and results of Secs. II and 
III. The analysis applies to both test gases and self-gravitat
ing gases-that is, only Liouville's equation (2.4) is imposed. 
The further restrictions arising when Einstein's field equa
tions are imposed (self-gravitating gas) are taken up in Sec. 
VI. 

A. KIlling vector constants of motIon 

We begin with the simplest case: all assumptions (I)-(IV) 
are imposed. The metric is given by (3.1) and Table I, with 
structure constants and Killing vectors of the G4 given in 
Table II. The distribution function automatically satisfies 
Liouville's equation since it is a function of constants of the 
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~ TABLE II. Killing vectors for spatially homogeneous LRS space-times. 
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<0 
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;:II 
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III 
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~ 
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~ 
I» 

~. 

~ ..... 
Co) 

MacCallum 
typeofG. 

Ala 

Alb 

Ale 

A2a 

A2b 

A2c 

A3 

X, X2 X3 

ax ay az 

ax - cos z ay + (cothy sinz - l)az cos z ay - (cothy sin z + I)az 

ax sin z ay + coty cosz az cos z ay - coty sin z az 

ax az -ay+zax 

ax - cosz cscy ax + sin z ay + cos z coty az sin z cscy ax +coszay -sinzcotyaz 

ax - cosz cschy ax + sin z ay + cos z cothy az sin z cschy ax + cos z ay - sinz cothy az 

-ax +yay +zaz ay az 

Positive 
X. structure constants C J

IJ 

-zay + yaz C~ = 1 0 
C!3 = 1 

sin z ay + cothy cos z az C~. = 1 0 
C!3 = 1 
Ci3 = 2 

az Ci3 = I 0 
C;. = 1 
C!2 = 1 

- z ay + !(r - y2)ax + y az C~3 = 1 0 
C~. = 1 
C;3 = 1 

az -ax C;. = 1 0 
C!2 = 1 
Ci3 = 1 
C~3 = 1 

az -ax C;. = I 0 
q. =1 
Cj2 = I 
C~2 = 1 

-zay +yaz C~, = 1 
C~. = 1 
q, =1 - 28/ 
C!3 = I 



                                                                                                                                    

motion [assumption (IV)). The problem reduces to the solu
tion of the coupled first-order linear system (2.19) for all 
seven class A geometries, extending the Ray and Zimmer
man result 12 for class A lc. The integrability condition (2.20) 
is trivially satisfied in classes Al and A2; but in class A3, it 
imposes the restriction aF laYI = O. This restriction is se
vere: the system (2.19) in class A3 is inconsistent unless 
F = const, and the constant must be zero sincef has bounded 
moments. In classes Al and A2, the system (2.19) may be 
solved by the method of characteristics, 33 and we obtain the 
distribution function in terms of the constants of motion YI 
[(2. 18)j34 

AI: f=F[YI,(1 +k)(2-k)(Ji +yi) 

+ 2k2 ~ + k(l- k)Y2Y3], 

(4.1) 

A2: f=F[YI,Ji +~ +k~ +2(1 +k-k 2)YIY4]' 
A3: f=O, 

where F is non-negative and suitably bounded on the mass 
shell. By (2.18), (3.1), and Table II, the solutions (4.1) may be 
reexpressed in terms of (Xi, pal 

f(x,p) = (1 - j)F [A (t)2(px + Ih (yJpZ), 

B(t )4( pi' + h '( y)2 pz')]. (4.2) 

[For convenience, we use the same symbol Fin (4.1) and 
(4.2).] Equation (4.2) agrees with Ray's corrected version9 of 
the Ray-Zimmerman solution l2 for class Alc (k = 1, 
1= 0 = 1). Using the orthonormal tetrad (3.2), we obtain 
from (4.2) a unified form for all class A geometries, which 
shows clearly how finherits the space-time symmetry. 

Theorem 4.1: In the spatially homogeneous LRS (class 
A) space-times with a neutral one-component collision-free 
gas, the distribution function invariant under the G 4 of mo
tions and based on Killing vector constants of motion is spa
tially homogeneous in space-time and LRS in momentum 
space. Specifically, 

f(x,p) = (1 - j)F [A (t)pl, B(t)2(p22 + p32)], (4.3) 

where F is an arbitrary smooth non-negative function suit
ably bounded on the mass shell. 

In Theorem 4.1, A and B are metric scale functions (in 
the canonical coordinate system) [(3.1)];pQ = EQ(p) are com
ponents of the four-momentum in the canonical orthonor
mal tetrad (3.2); andj is a group parameter given in Table I. 
The exceptional geometry of class A3 (j = 1), previously 
noted in Sec. III, leads to a trivial distribution function under 
the assumptions of Theorem 4.1. An invariant f in class A3 
space-time cannot be a function only of Killing vector con
stants of the motion; alternatively, iff is based on Killing 
vector constants of motion, then it cannot be invariant under 
the class A3 G4 (it will in general be non-LRS in momentum 
space and inhomogeneous in space-time). 

B. Invarlance without Killing constants 

We now drop the assumption (IV), that f be based on 
Killing vector constants of the motion. Our motivation is 
firstly to establish the relationship of this assumption to the 
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invariance assumption (III); secondly, to construct nontri
vial solutions for class A3. We begin by solving the invar
iance condition (2.15), a coupled linear system which again 
yields to solution by characteristics, though with more diffi
culty.34 The solutions for all class A space-times may be ex
pressed in the single form 

f(x,p) = F [t,pX + lh (y)pZ, 

(4.4) 

In particular, we get nontrivial solutions for class A3. Using 
the tetrad (3.2), (4.4) becomes 

f(x,p) = F [t,A (t)-I pi, B (t )_2(p22 + p32)], (4.5) 

which shows thatfis spatially homogeneous in space-time 
and LRS in momentum space-that is, this feature of 
Theorem 4.1 follows purely from G4 invariance.35 

The invariant distribution functions (4.4) and (4.5) do 
not satisfy Liouville's equation (2.3') and (2.4). This must 
now be imposed on (4.4), using the connection coefficients 
given in the Appendix. Writing Fin (4.4) as F = F(t,u,v) [so 
that u = A -I pi, V = B -2 (p22 + p32)], we find that Liou
ville's equation reduces to 

pt [aF _ 2 ~ u aF _ 4!!..:... v aF] 
at A au B au 
+ jv [(B)2 aF _ 2u aF] = 0, 

A au av 
(4.6) 

where, by (2.1), pt = (m2 +A 2U2 +B 2v)I/2. In classes Al 
and A2 (j = 0), (4.6) may be integrated 

Al,A2: F=F(A 2u,B 4v). (4.7) 

Equation (4.7) gives exactly the samefas (4.3). So we have 
shown the redundancy of assumption (IV) in classes A 1 and 
A2. 

Theorem 4.2: In class Al and A2 space-times with a 
neutral one-component collision-free gas, if the distribution 
function is invariant under the G4 of motions and satisfies 
Liouville's equation, then it is based on Killing vector con
stants of motion. 

(Then the results of Theorem 4.1 hold.) The distribution 
function must always be based on constants of the motion by 
Liouville's equation. For a one-component gas, there are at 
most six functionally independent such constants.36 In class 
A space-times, four constants are generated by the Killing 
vectors. Theorem 4.2 implies that iff depends on any con
stants not arising from Killing vectors,37 thenf cannot be G4 

invariant. 
Class A3 is again exceptional. With j = 1 in (4.6) we 

have been unable to find the general solution (the special 
solutions with A a: B give the degenerate Robertson-Walker 
subclass of A3). 

Theorem 4.3: In class A3 space-time under the condi
tions of Theorem 4.2, the distribution functionfis spatially 
homogeneous in space-time and LRS in momentum space. 
Specifically,fis of the form (4.5) and subject to (4.6). 

V. KINEMATICS OF THE GAS 

We use the forms derived in Sec. IV for invariant distri
bution functions in class A space-times to obtain the kine-
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matic quantities associated with the average behavior of the 
gas (Sec. II). As in Sec. IV, only Liouville's equation is im
posed, so that the results hold for both test gases and self
gravitating gases. The further restrictions imposed by Ein
stein's field equations in the self-gravitating case are 
investigated in the next section. 

By (2.15) and (2.16), the four-current density n is invar
iant under the G4 for invariant/, and then (3.5) gives n 

XI/ = 0, for all I=:}.!L'I ni = O=:}n = a(t) at + /3 (t) ax, 

(5.1) 

for some a, /3. Since at is normal to the homogeneous hyper
surfaces S3(t ), we see that n, and hence the kinematic average 
four-velocity u [(2.8)], will be tilted relative to S3(t) if /3 :;60. 
We now show that /3 may be nonzero. In the orthonormal 
tetrad (3.2), we have gab = diag ( - 1,1,1,1), so that volume 
element (2.7) on the mass shell is 

1r m = dp l23l po, 

where by (2.1), 

(5.2) 

pO = (m2 + pI' + p2' + p3')1/2, (5.3) 

and the mass shell is given by (5.3) with - 00 <pl,p2,p3 
< 00. The tetrad components of n are given in terms of the 
coordinate components by 

na = Ea(n) = (nt, A (nX + IhnZ),exp/jx)Bn Y, 

exp/jx)Bh Inj. (5.4) 

By (2.5) and (5.2) 

na = Ipa ~ /(x,p)dpl23, (5.5) 
pO 

where the integral is over all of R3. Then/(x,p) in (5.5) is 
given by (4.3) in classes Al and A2 

A1,A2: /(x,p) =F[ApI,B 2(p2' +p3')], (5.6) 

and by (4.5) in class A3 

A3: /(x,p)=F[t,A- l p!,B-2(p2'+p3')]. (5.7) 

In (5.7), Fis subject to (4.6). In all classes, Fis even inp2 and 
p3, so that the integrand in (5.5) for a = 2,3 is an odd func
tion, integrated from - 00 to + 00, and hence the integral 
vanishes: n2 = 0 = n3. By (5.4), this gives n Y = 0 = nZ, so 
that na = (nt, AnX,O,O) in all classes. Now Fis not necessarily 
even inpl, so that (5.5) may give nl = nl(t ):;60 in all classes. 
Hence nX = nX(t) may be nonzero. Clearly (5.5) 
=:}no = nO(t):;60, so that nt = nt(t):;60. We have confirmed 
(5.1) and shown that /3 may be nonzero. 

Equation (5.1) implies invariance of the number density 
N and kinematic average four-velocity u [(2.8)]: 0 = .!L'I ni 
= .!L' 1 (Nui)=:}.!L' 1 N = 0, .!L'I ui = 0 (using Ui .!L'I ui = 0). 

Hence N = N(t), and u is given by (3.6); that is, 

L/= 0 = XI/' 

all I=:}u = cosh t/l{t)at + A (t)-I sinh t/l{t lax' 

7/J:;6 0 in general (5.8) 

(7/J = 0¢::::?/3 = 0). Then the invariant unit spatial direction or
thogonal to u is given by (3.7) 

C = sinh 7/Jat +A -I cosh 7/Jax' (5.9) 
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[By (5.1), (4.5), and the above analysis of the integral (5.5), it is 
clear that (5.8) holds whether or not Liouville's equation is 
imposed.] 

The invariance of the kinematic average four-velocity 
follows from the in variance 0/ the distribution /unction. 38 

The invariance of u imposes severe restrictions on the kine
matic quantities [(2.9)] 

.!L'I ui = 0 = .!L'I gij=:}.!L'I Ui;j = O=:}.!L'I () = 0, 

.!L'I i/ = 0, .!L'I Uij = 0 = .!L'I Wij' 

By (3.5H3.9) these invariance conditions imply (cf. Ref. 22) 

() = () (t), ,i = a(t )ci
, 

(5.10) 
U ij =,j3 oit )(ci cj - jhij), Wi = w(t )ei, 

where a is the magnitude of the acceleration, U is the magni
tude of the shear l (u2 = !u ij d j, U ij = O¢::::?u = 0), Wi = -! 
.(u 1\ du)i is the vorticity vector,39 and w is the magnitude of 
the vorticity (wij = O¢::::?wi = O¢::::?w = 0). 

The kinematic quantities are thus determined by invar
iance of the distribution function up to four functions of t. 
Direct calculation gives 

() = cosh 7/J(log AB 2 cosh 7/J)' + 2j sinh 7/JI A, 

a = sinh 7/J(log A sinh 7/J)', 

U = ,j3(() 13 - cosh 7/J(log B )' - j sinh 7/JI A ), 

w = I( -A sinh 7/J/2B2). (5.11) 

By (5.11 ), W = 0¢::::?17/J = 0; a = O¢::::?(A sinh 7/J)' = 0; () 
= O{:::>(AB 2 cosh 7/J)' + 2jB 2 sinh 7/J = 0; and U = O¢::::?(A 
X cosh 7/JIB)' - j sinh 7/JIB = O. The class A space-times de
generate into higher symmetry if A 'B '= 0, (A IB)' = 0, or 
(AB 2)' = O. We exclude these possibilities so as to confine 
attention to nondegenerate class A space-times. We can col
lect the above results in the following. 

Theorem 5.1: For a neutral one-component collision
free gas in spatially homogeneous LRS (class A, nondegener
ate) space-time, if the distribution function/is invariant un
der the G4 of motions, then the number density, the 
kinematic average four-velocity ui

, and the kinematic quan
titiesareinvariant under the G4 [(5.8H5.11)]; ui may be tilted 
relative to the homogeneous hypersurfaces. (This also holds 
when Liouville's equation is dropped.) In all class A space
times, the acceleration vanishes if and only if the tilt is zero 
or arcsinh (Ao! A (t I). The vorticity always vanishes in classes 
Al and A3; in class A2 it vanishes only if the tilt vanishes. 
The expansion and shear cannot both vanish; either vanishes 
if and only if the tilt is a solution to 

(AB S cosh 7/J)' + sjB S sinh 7/J = 0, 

wheres = 2(() = 0) or s = - 1 (u = 0). 

The results of Theorem 5.1 are consistent with the con
servation equations Tij;j = 0, since these follow directly 
from Liouville's equation. I However, the conditions on the 
tilt 7/J for the vanishing of various kinematic quantities are 
unlikely to be consistent with Einstein's field equations. Un
der what geometric conditions will the tilt vanish? A partial 
answer is given by the following. 
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Theorem 5.2: If the distribution function of Theorem 5.1 
is also invariant under spatial inversion in momentum space, 
then the kinematic average four-velocity is orthogonal to the 
homogeneous hypersurfaces. 

Such invariance is expressed using the orthonormal tet
rad3/(x,pO, _ pI, - p2, _ p3) = /(x,pO,pl,p2,p3).By(5.6)and 
(5.7), this implies / is even in pI, and so by (5.5) n l = 0 
~nx = 0 [by (5.4)]~u = at (cf. Ref. 39, p. 244). 

It is interesting to compare our results with those of 
King and Ellis,32 who analyze self-gravitating perfect fluids 
in spatially homogeneous space-time. They find that for an 
expanding fluid, the acceleration vanishes if and only if the 
tilt vanishes or d pldp = 0; that there are no shear-free tilted 
perfect fluids; and that in the class A space-times, only A3 
admits a tilted perfect fluid, which has zero vorticity. We see, 
as expected, that the collision-free test gas allows for a wider 
range of behavior. 

Finally, we look at the conservation equation (2.12) for 
n. By (2.8), this is N,i ui + NO = 0 (and hence 0 = ~N 
= const). Using (5.8) and (5.11) this can be integrated 

N = No exp ( - 2j f dt ta~h t/J )lAB 2 cosh t/J) -I. 

[Compare Eq. (3.1) in Ref. 32.] 

VI. DYNAMICS: THE SELF-GRAVITATING GAS 

The distribution functions invariant under the class A 
G4 of motions and satisfying Liouville's equation are given 
by (5.6) and (5.7) [subject to (4.6)). We now impose the field 
equations (2.13), so that the gas itself generates the class A 
geometry. The geometric form (3.3) of the Einstein tensor 
implies that the energy-momentum tensor satisfies 

a¥-ir-:=?Tab = 0, except TOI¥-O in general in class A3; 

(6.1) 

By (2.6), using (5.2), we have 

Tab = f pa pb p~/(X'P)dp123, (6.2) 

where po is given by (5.3). We want to determine whether 
(6.1) imposes any further restrictions on the forms (5.6) and 
(5.7) ofthe distribution function fIx, p). First we note that the 
symmetry and evenness of/inp2 and p3 imply T22 = T33 and 
T02 = T03 = TI2 = Tl3 = T23 = 0, since integration in 
(6.2) is over - ct:J <p2,p3 < ct:J. Hence the only possible re
strictions can arise from TOl. In class A3, TOl ¥-O in general, 
so that clearly no restrictions are placed on the functional 
form of/Ix, p) as given by (5.7). In classes A 1 and A2, we have 
TOI=O 

by (6.1), (6.2), and (5.6). Ray asserts9 that (6.3) implies Fmust 
be even inpl. Then by (5.5) this implies n l = 0, so that the 
kinematic average four-velocity u is forced to be orthogonal 
to the homogeneous hypersurfaces. This is Ray's conclusion 
in class A1c. However, in our opinion Ray's assertion and 
his conclusion are false. The function 
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G (Api) = exp - (Api - a)2 - (al/3 )exp - (Api - /3 f, 
(6.4) 

where a,f3 are nonzero constants, provides a counterexam
ple. The distribution function 

F=G(Apl)H[B2(p22 +p32)] (6.5) 

is not even inpl provided a ±/3 ¥-O, but it does satisfy (6.3), 
since 

f: 00 sG(s)ds = 0 (6.6) 

(see Ref. 40, p. 307). Further, (6.5) is a physically reasonable 
distribution function if H is non-negative and suitably 
bounded on the mass shell, and if a/3 <0. Thus, while (6.3) 
does restrict the functional form of the distribution function 
J, the restriction is not that/must be even inpl. 

Finally, we show that the condition (6.3) does not force u 
to be orthogonal. To do this, we show that the counterexam
ple (6.5) leads to a nonzero nl. Using (6.4) and (5.3) in (5.5), we 
obtain 

nl(t) = A (t )-1 r dp23 H [B (t )2(p22 + p32)] Jft2 
XI[A (t),p2

2 
+p3

2
], (6.7) 

where 

1= f: 00 s(M2 + S2)-1/2G(s)ds, 

with s==A.pI, M 2==A. 2(m2 + p22 + p3
2
). From (6.7), I¥-O 

~n I ¥-O, and so our task reduces to showing that I ¥- o. Now 
only the odd part of G makes a contribution to I, so that 

1= 2 100 

s(M2 + S2)-1/2G_(s)ds, (6.8) 

where 

G _(s)=(G (s) - G ( - s))/2 

= e-.r[e- a2 sinh 2as - (al/3)e- P2 sinh 2/3s] 

(with a/3<O¥-a +/3). We note that sG_(s) is bounded, 
smooth, and changes sign once for s;;;'O. And (M 2 + S2) -1/2 is 
bounded, smooth, and monotonic for s;;;'O. Also, (6.6) 
~ f 0' sG _ (s)ds = 0 [sG _ (s) describes equal areas above and 
below thes axis]. Hence we can apply the second mean value 
theorem40 to (6.8) [using (M2 + r)- 1/2-o as s-ct:J], to get 
I=2M-If~sG_(s)ds (where O<a<ct:J)~I¥-O by (6.6). 
[Qualitatively, what happens is that the precise balance im
plied by (6.6) is broken by the scaling factor (M2 + r)-1/2 in 
(6.8).] 

We can summarize the preceding results in the follow
ing. 

Theorem 6.1: For a neutral one-component collision
free gas in class A space-time, if the distribution function is 
invariant under the G4 of motions and satisfies Liouville's 
equation, then its functional form [(5.6) and (5.7)] is consis
tent with Einstein's field equations. Further, the kinematic 
average four-velocity may be tilted in all class A space-times. 

We note that the restriction (6.3) on the distribution 
function in classes A 1 and A2, while admitting noneven F, is 
a severe constraint on F. A more detailed investigation of the 
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field equations may provide a more lucid condition for 
TOl = 0 than (6.3), and thus help to clarify the circumstances 
under which tilted four-velocity occurs. It is also interesting 
to compare our result with that of King and Ellis.32 The 
comparison is more meaningful than in Sec. V;since the gas 
is self-gravitating. For a self-gravitating perfect fluid, only 
class A3 admits a tilted u. For the self-gravitating collision
free gas, class A3 is also exceptional, in that the restriction 
TOl = 0 does not hold, allowing for a wider range of behavior 
of the distribution function. However, the average four-ve
locity of the gas, unlike the fluid four-velocity, may still be 
tilted in all spatially homogeneous LRS space-times. 

A. Dynamical quantities 

By (2.16), invariance off leads to invariance of the ener
gy-momentum tensor T 

X]f= 0=}2'] Tij = O. (6.9) 

This is consistent with the field equations 

2']gij =0, Gij= Tij~2'] Tij=O, 

but we note that in variance of the energy-momentum tensor 
follows directly from in variance of the distributionfunction
without the Einstein (or even the Liouville) equations. Equa
tion (6.9) imposes severe restrictions on the dynamical quan
tities defined by T [(2.10)], given the invariance of u [(5.8)] 

2']( puiu j + ph ij + qiu j + qjui + ~j) = 0, 

2']ui = 0=} 2']p = 0 = 2'] p, 2'] qi = 0, 2'] ~j = 0; 

and by (3.5)-(3.9), these invariance conditions imply 

p =p(t), p =p(t), t/ = Q(t)ci, 
(6.10) 

~j = .J31T(t )(cic j - ! h ij), 

where Q is the magnitude of the heat flow, and 1T is the mag
nitude of the anisotropic stress (~=! 1Tij ~j, ~j = 0¢>1T 
=0). 

Comparing (5.10) and (6.10) we obtain the transport law 

X]f=O, forallI~ij = -A(t)CTij, (6.11) 

which holds for all class A space-times, tilted or orthogonal 
(we exclude the degenerate case CT = 0). The relation (6.11) 
between stress and shear, which emerges as a linear term in 
approximation theory of the Boltzmann equation,6 holds ex
actly by virtue of the invariance of the distribution function 
in spatially homogeneous LRS space-times. (In their analysis 
of spatially homogeneous space-times with u orthogonal, 
MacCallum et al.41 point out that the approximation theory 
leading to 1T = - ACT does not hold in the collision-free case, 
but that it may hold for small shear.) 

Theorem 6.2: For a neutral one-component collision
free gas in (nondegenerate) class A space-time, if the distribu
tion function is invariant under the G4 of motions, then the 
energy density and isotropic pressure are spatially homogen
eous, and the anisotropic stress is proportional to the shear. 

Equation (6.10) also shows that the heat flow q is along 
the preferred direction. To determine the relation between q 
and U, and the forms of the four dynamical functions in 
(6.10), we must use the field equations to obtain the form of 
T. By (6.1), (5.8), and (5.9), 
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T ob = diag(TOO,TI1,T22,T22) + 2jToll)(Oo l)b)I' 
(6.12) 

UO = (cosh ""sinh ",,0,0), CO = (sinh ""cosh ",,0,0). 

Then direction calculation using (6.12) gives 

p = TOO cosh2 
'" + T 11 sinh2 

'" - jTOI sinh 2"" 

p = (TOO sinh2 
'" + T 11 cosh2 

'" + 2T22 - jTOI sinh 2",)/3, 

Q = - [(TOO + TI1)sinh 2t/1-2jTOI cosh 2"']12, 

1T = .J3(p - T22). (6.13) 

Thus the function A in (6.11), which we may identify as the 
coefficient of viscosity of the gas, is given by 

A = .J3(T22 - p)/CT. 

Equations (6.2), (5.3) and the non-negativity off imply 

TOQ>O (no sum). (6.14) 

By (6.13), (5.11), and (6.14), the heat flow has the following 
properties: 

"'=I=~ = - A UO. 

'" = ~ = (jTOl)c0, 

~ = CX:>tanh 2", = 2jTol/(TOO + TI1), 

where (for "'=1=0) 

A = (TOO + TI1 - 2jTOI coth 2",) 

X [sech ¢'(log A sinh "'Y] - I. 

(6.15) 

(6.16) 

Thus when u is tilted ("'=1=0), the heat flow obeys the trans
port law 

qi = _ 7Jh ij(r,j + rUj ), 

with 

h ij r,j = [(A - 7Jr)/7J] Ui. 

(6.17) 

Here, r may be identified as the temperature of the gas, and "I 
as the heat conduction coefficient.2 

In classes A 1 and A2, ~ = CX:>", = 0 by (6.15), and this 
is consistent with the constraint field equations21 

(6.18) 

since R be is diagonal [by (3.3)] and Ub = -l)b 0. In class A3, 
'" = 0 does not force ~ = 0 unless TOl = O. Again, this is 
consistent with (6.18) sinceR be is not diagonal [(3.3)]. In fact, 
using the explicit form h ob (~(J;b - CT be;d h cd) _ "lobed 
XUb(IVc;d + 2wcUd) for the rhs of (6.18),21 and the forms 
(5.10) and (5.11) for the kinematic quantities, we find that for 
the orthogonal self-gravitating gas in class A3 

A3(",=0): TO I =2(B'/B-A'/A)/A (6.19) 

[compare Eq. (3.16) in Ref. 32] and thus by (5.11) 

A3 ('" = 0): TOl = O{::>uob = O. (6.20) 

Now Uo = 0 = IVo in the orthogonal case, so that CTob = 0 
reduces the class A3 geometry to its Robertson-Walker sub
class. If we consider only nondegenerate class A geometry, 
this means that TOl and hence ~ never vanish in the orthogo
nal class A3 case. 

Theorem 6.3: Under the conditions of Theorem 6.2, if 
the distribution function also satisfies the Einstein field 
equations, then the heat flow is proportional to the accelera-
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tion if u is tilted; if u is orthogonal, the heat flow is zero in 
classes A 1 and Al, but in class A3 it is nonzero and along the 
preferred direction [(6.15)]. 

B. Evolution of tilt 

We can use the conservation equations to investigate the 
evolution of tilt. Using the form (2.10) for Tab, the conserva
tion equations 

Ua Tab;b = 0, hab Tbc;c = 0 (6.21) 
become21 

jl + (Jl + p)8 + 1rab o"'b + ¢';a + qa ua = 0, (6.22) 

(Jl + P)Ua + ha C(p;c + 1rc b;b + qc) 

+ qb(tVab + (Tab + ~ 8hab ) = O. (6.23) 

King and Ellis32 show that a self-gravitating perfect fluid in 
spatially homogeneous space-time is either always tilted or 
always orthogonal. This also holds for the collision-free gas 
in class Al and A2 space-times. 

Theorem 6.4: For a gas under the conditions of Theorem 
6.3 in class Al and A2 space-times, the kinematic average 
four-velocity u is locally either always orthogonal or always 
tilted. 

To prove this, suppose that '1/1 = 0 at some time t = to' 
Then using (5.8H5.ll), (6.10) and (6.13) in (6.23), we obtain 

'1/1'( TOO + T 22) _ j[ TOI(log A 2 B 2 TOI)' 

+ 2(TII - T22)/A ] = 0, (6.24) 

where all quantities are evaluated at t = to. When j = 0, 
(6.14) and (6.24)~'I/I'(to) = O. Since to is arbitrary, Theorem 
6.4 is proved.42 In class A3 (j = 1), (6.24) does not give a 
clear answer. For t/J(to) = 0, the constraint field equations 
(6.18) retain the form (6.19) for t = to, while the conservation 
equation (6.22) gives 

TOO(log AB 2 TOO), + T I I (log A )' + 2T22(log B )' 

+ jTOI(t/J' + 2/ A ) = 0, (6.25) 

for t = to' The Raychaudhuri field equation21 

iJ - ua;a +! 8 2 + 2(ul - tVa tVa) + (Jl + 3p)/2 = 0, 

evaluated at t = to [t/J(to) = 0] gives 

(AB 2)" /(AB 2) + 2(10g A / B )'2 + '1/1'2 + 2N' + TOO 

+ Til + T22 = O. (6.26) 

Equations (6.19) and (6.24H6.26) do not seem to force or to 
rule out 'I/I'(to) = O. The remaining six field equations 

R cd hac hbd = 1rab + (Jl - p) hab /2, 

evaluated at t = to [t/J(to) = 0], also appear to leave open the 
nature of'l/l'(to)' Hence we conclude that Theorem 6.4 may 
not hold in class A3. 

C. Perfect fluid 

The question of whether the average behavior of the self
gravitating gas can become that of a perfect fluid was consid
ered by Ray.9 Ray argued that a gas under the conditions of 
Theorem 6.3 in class Alc space-time, with u orthogonal, 
could not exhibit perfect fluid behavior, i.e., that conditions 
(2.11) could not be satisfied. This result backs up the conjec-
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ture of Ellis et al.4 that a collision-free gas can behave like a 
perfect fluid only if the shear vanishes. While Ray's result is 
plausible to us, it is not clear to us whether his proof, which is 
based on an extension of the argument applied in static 
spherically symmetric space-time,8 can be applied to all class 
A space-times. By a different approach, we can prove the 
following partial result. 

Theorem 6.5: A gas under the conditions of Theorem 6.3 
cannot exhibit perfect fluid behavior in classes Al and A2 
with tilted u, or in class A3 with orthogonal u. 

For the tilted class Al and A2 case, the result follows 
immediately from (6.13): '1/1=1=0=::4'=1=0, which violates the 
perfect fluid conditions (2.11). This result is in fact just the 
corollary of the result due to King and Ellis.32 In the orthog
onal class A3 case, the result follows from (6.15) and (6.20): 
'1/1 = O=>Tol=l=O (unless (Tab = 0, which implies Robertson
Walker geometry) ~ =1= O. In the remaining cases, the prob
lem reduces to the consideration of certain multiple integral 
identities. For the orthogonal class Al and A2 case, qa = 0 
by (6.13), so that the perfect fluid condition reduces to 
1rab = 0, which by (6.10), (6.13) (with '1/1 = 0) and (6.2), (5.6), 
becomes 

](t)=i dp l23(pl' _ p2')(m2 + pI' + p2' +p3')-1/2 
R' 

XF [A (t )pI, B (t )2( p2' + p3')] = O. (6.27) 

Perfect fluid behavior will be possible if there exists a physi
cally reasonable F such that (6.27) holds for t in an open 
interval. Since nonzero values of A and B may be arbitrarily 
assigned on an initial hypersurface t = to, it should be possi
ble to get] (to) = 0 for a reasonable choice of F. However, it 
seems unlikely that ]'(to) = 0, without restricting A '(to), 
B '(to). If the conjecture ofEllisetal.4 is correct,l'(to) = Owill 
require (Tab (to) = O. In the tilted class A3 case, 

¢' = O¢:>(T OO + TII)sinh 2'1/1- 2Tol cosh 2'1/1 = 0, 
(6.28) 

1rab = O¢:>Too sinh2 '1/1 + Til cosh2 '1/1 

- T22 _ TOI sinh 2'1/1 = 0 

follow from (6.13). Equation (6.28) can be written as a pair of 
integral identities of the form (6.27), but with the appearance 
of the additional function rfJ(t ). By similar arguments to the 
above, it seems unlikely that these identities can be satisfied 
by reasonable F of form (5.7) without severe restrictions on 
A, B, and '1/1. [Certainly '1/1 = 0, (log A /B)' = 0 will allow the 
identities to hold, since these conditions correspond to a 
Robertson-Walker geometry with Fisotropic in momentum 
space.] 

In conclusion, it is likely that Theorem 6.5 will hold for 
all class A cases, although we have been unable to provide a 
definite answer on the basis of (6.27) and (6.28). 

VII. CONCLUSION 

We have achieved the aim of obtaining the invariant 
distribution functions for all collision-free gases in spatially 
homogeneous LRS space-times, showing how they are spa
tially homogeneous in space-time and LRS in momentum 
space (Theorems 4.1-4.3). We showed that these gases can 
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have average velocities tilted relative to the homogeneous 
hypersurfaces (Theorem 5.1). Both results were shown to 
hold also for self-gravitating gases (Theorem 6.1). We ob
tained the kinematic quantities associated with the average 
behavior of the gas, showing in particular that only class A2 
could have nonzero vorticity (when the tilt is nonzero) 
(Theorem 5.1). We obtained the dynamical quantities of the 
self-gravitating gas, and showed that the stress is always pro
portional to the shear, while the heat flow is proportional to 
the acceleration (nonzero tilt) (Theorems 6.2 and 6.3). We 
showed that locally tilt cannot be "created or destroyed" in 
classes Al and A2 (Theorem 6.4). Finally, we discussed per
fect fluid behavior, obtaining a partial result (Theorem 6.5) 
and a plausibility argument for the impossibility of such be
havior. 

Although we were able to obtain some results by use of 
the conservation and certain field equations, our feeling is 
that a more detailed analysis using tetrad methods3,23,32 (and 
therefore reducing the field equations to first order and sup
plementing them with the Jacobi identities) would be more 
successful in clarifying the relationships amongst the kinetic 
and geometric variables. A suitable tetrad {Ea } for both tilt
ed and orthogonal cases would be one in which Eo = U, 

El = C [(5.8) and (5.9)]. 
What emerges throughout this paper is the power of the 

assumption that the distribution functionfbe invariant un
der the space-time group of motions [(2.15)]. We showed that 
the further assumption that f be based on Killing vector 
constants of the motion is redundant in class Al and A2 
space-times, and too restrictive in class A3. We were then 
able to derive kinematic and dynamical properties of the gas 
which rest, finally, on the G4 invariance off Now invariance 
under the full group of motions is the strongest assumption 
satisfying the condition (2.17), i.e., S (XI f) pi pi 'IT m = 0 for 
all I, which is imposed onfby the field equations for the self
gravitating gas. The next step is to consider ways of weaken
ing the assumption of G4 invariance. If we cannot find the 
most general restriction onf that satisfies (2.17), we could try 
assuming invariance off under a subgroup of the G4 0fmo
tions. (This is essentially the approach followed by Ellis et 
al. l3 in Robertson-Walker space-time.) 

In the case where the gas particles each carry a charge e, 
Ray9 has extended the Ray-Zimmerman analysisl2 of class 
A1c. Ray constructs modified Killing vector constants of 
motion by assuming G4 invariance of the electromagnetic 
vector potential A, and then shows that class A1c space-time 
cannot admit charged particles. Ray's result may be ex
tended34; under Ray's assumptions (G4 invariance of A and 
f), charged particles are possible only in class A3 space-time. 
This follows directly from the straightforward proof that a 
G4-invariant A [which must be of the form (3.5)] leads in 
classes Al and A2 to a space-like four-current Ji = Fij;i 
(F = - 2dA ), which violates the relation 1 J i = eni. In class 
A3, Ji is timelike, so that e may be nonzero. 

Finally, the methods of this paper can be applied to the 
more general non-LRS spatially homogeneous Bianchi 
space-times. For G3-invariantfbased on Killing vector con
stants of motion, partial results have been obtained by 
Misnerl4 (type I), Matznerl5 (type V), and MacCallum and 
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Ellis43 (group types with aa = 0 or na a = 0). These results 
may be unified and extended along the lines of this paper,44 
although the problem is clearly more difficult. 
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APPENDIX: CONNECTION COEFFICIENTS 

The components r a ij i pi==.r a in class A space-times 
are 

r a = 2p'(pX A '/A,pY B'/B,r B'/B) +1', 
where 

l' = khr(O,h I pZ, - 2pY /h ') in class AI, 

l' = (2h (A '/A - B '/B )p' pZ - (h /h ')(A /B)2 pX pY 

_ h '[(A 2/B2 _ k)(h/h ')2 _ k/h 12 

_ (1 - k 2)] pYpz, _ h (A /B)2 pX pZ 

- h 'h (A 2/B2 - k )pz',(lIh ')(A /B)2 pX pY 

+ (h /h ')(A 2/B2 - 2k)pY r) in class A2, 

l' = (- (B /A)2 exp(lx)(pT + r), 
2pX pY, 2px PI in class A3. 

From r a one can read off the connection coefficients r a ij' 
The remaining connection coefficients are 

r'ij = diag(O, AA I,exp(2jx)BB I, 

exp(2jx)h 12BB I + lh 2 BB ') + 1 (2hBB ')15(1 XI5.fJ z. 
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Necessary and sufficient conditions are derived for space-time to admit a spacelike conformal 
motion with symmetry vector parallel to a unit spacelike vector field na. These conditions are 
expressed in terms of the shear and expansion of the spacelike congruence generated by na and in 
terms of the four-velocity of the observer employed at any given point of the congruence. It is 
shown that either the expansion or the rotation of this spacelike congruence must vanish if Dna / dp 
= 0, where p denotes arc length measured along the integral curves of na

, and also that there exist 
no proper spacelike homothetic motions with constant expansion. Propagation equations for the 
projection tensor and the rotation tensor are derived and it is proved that every isometric spacelike 
congruence is rigid. Fluid space-times are studied in detail. A relation is established between 
spacelike conformal motions and material curves in the fluid: if a fluid space-time admits a 
spacelike conformal Killing vector parallel to na and na ua = 0, where ua is the fluid four-velocity, 
then the integral curves of na are material curves in an irrotational fluid, while if the fluid vorticity 
is nonzero, then the integral curves of na are material curves if and only if they are vortex lines. An 
alternative derivation, based on the theory of spacelike congruences, of some of the results of 
Collins [J. Math. Phys. 25, 995 (1984)] on conformal Killing vectors parallel to the local vorticity 
vector in shear-free perfect fluids with zero magnetic Weyl tensor is given. The necessary and 
sufficient condition for vortex lines to be material lines is derived and the restriction this places on 
the flow of a thermodynamical perfect fluid is determined. As an application, a pure magnetic 
field in a rotational fluid is considered and results similar in nature to Ferraro's law of isorotation 
are obtained. Throughout, corresponding results for a timelike conformal motion and for 
Newtonian theory are given for comparison. 

I. INTRODUCTION 

The properties of a time like conformal motion with 
symmetry vector parallel to a timelike unit vector field va can 
usefully be expressed in terms of the kinematical quantities 
of the timelike congruence of curves generated by va. For 
instance, the necessary and sufficient conditions for space
time to admit a timelike conformal Killing vector may be 
expressed in terms of the shear, expansion, and acceleration 
of this congruence. I

-
3 In this paper we adopt a similar ap

proach to the study of spacelike conformal Killing vectors 
admitted by space-time: we relate the properties of a space
like conformal motion with symmetry vector parallel to a 
spacelike unit vector field na to quantities such as the shear, 
expansion, and rotation of the spacelike congruence of 
curves generated by na. We find that the four-velocity wa of 
the observer employed to determine the deformation of this 
congruence at any given point plays an important role. 

The theory of spacelike congruences in general relativi
ty was first formulated by Greenberg,4 who also considered 
applications to the vortex congruence in a rotational fluid. 
The theory has been developed and further applications have 
been considered by several authors.5

-
15 In Sec. II the basic 

aspects of the theory of spacelike congruences required in 
this paper are reviewed briefly. If the four-velocity wa of an 
observer is specified at anyone point then the four-velocity 
of the observer employed at any other point along a spacelike 
congruence is not arbitrary but is determined by a transport 

law for wa along the congruence, derived by Greenberg: for 
instance, in a fluid space-time, if an observer comoving with 
the fluid can be chosen at anyone point, then a comoving 
observer can be employed at any other point along a space
like congruence in the fluid if and only if the curves of the 
congruence are material curves in the fluid. 15.16 

In Sec. III, necessary and sufficient conditions are de
rived for space-time to admit a spacelike conformal motion 
with symmetry vector parallel to the unit tangent vector field 
na

; these conditions are expressed in terms of the expansion 
'!J and the shear Y ab of the spacelike congruence generated 
by na and in terms of the four-velocity wa of the observer. 
Two forms of the basic theorem are given, the first of which 
is suitable for specialization later to a fluid space-time and in 
which four necessary and sufficient tensor conditions are 
derived. The first two of those conditions correspond direct
ly with the two necessary and sufficient tensor conditions for 
space-time to admit a timelike conformal motion and also 
with the two necessary and sufficient tensor conditions for a 
conformal motion in three-dimensional Euclidean space. 
Vanishing shear is one of these conditions in each case. The 
remaining two tensor conditions therefore apply specifically 
to spacelike conformal Killing vectors and are purely rela
tivisitic; they can be combined, with the aid of the Greenberg 
transport law for wa

, into a single condition on the Lie deri
vative of ~ with respect to na, and this leads to the alterna
tive form of the basic theorem. As applications of the theo
rems, it is proved that there exist no proper spacelike 
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homothetic motions with constant expansion 'C and that if 
space-time admits a conformal Killing vector parallel to na 

and Dn° / dp = 0 (p denotes arc length measured along the 
integral curve of nO), then either the expansion 'C or the rota
tion f!II of the spacelike congruence generated by n° must 
vanish. Both these results have direct analogs in the theory of 
timelike conformal Killing vectors3,17 and in Newtonian the
ory. 

The propagation equation for the projection tensor p ab 
(defined in Sec. II) and for the rotation tensor f!II ob are con
sidered in Sec. IV. A spacelike congruence can be defined as 
rigid by direct analogy with the condition for a rigid timelike 
congruence,6 and we show with the aid of the propagation 
equation for p ab that every isometric spacelike congruence 
generated by a spacelike Killing vector is rigid. It is well 
established that every isometric timelike congruence is rig
id. 18 The equation governing the propagation of f!II ab along a 
spacelike congruence generated by a conformal Killing vec
tor was first derived by Prasad and Sinha.14 It shows that a 
close relationship exists between the rotation and the expan
sion of this congruence, which can be exploited by making 
use of the concept of a flux tube. 

The remainder of the paper is concerned with fluid 
space-times and with spacelike conformal motions parallel 
to unit vector fields n°, which satisfy na ua = 0, where ua is 
the unit four-velocity of the fluid. This latter condition is 
satisfied, for instance, by the unit vector parallel to the local 
vorticity vector of the fluid, wa

, and to the electric and mag
netic field four-vectors in an electrically conducting fluid. In 
Sec. V, the necessary and sufficient conditions derived in Sec 
III for space-time to admit a spacelike conformal motion are 
rewritten for a fluid space-time. Prasad and Sinha 14 estab
lished a similar theorem but they did not observe that one of 
the conditions can be expressed in terms of the vorticity vec
tor, which is important in applications. Our results may be 
used to derive general properties of spacelike conformal mo
tions. For instance, we establish a connection between space
like conformal motions and material curves in the fluid. 16 
That such a relationship exists for a timelike conformal mo
tion is well known: if a rotational fluid space-time admits a 
timelike conformal motion parallel to ua

, then an accelera
tion potential will exist and therefore the vortex lines will be 
material lines in the fluid. We prove that if space-time admits 
a spacelike conformal motion parallel to n° (na ua = 0) and if 
the fluid is irrotational then the integral curves of na must be 
material curves in the fluid, while if the vorticity ofthe fluid 
is nonzero then the integral curves of na are material curves if 
and only if they are vortex lines. This result is purely relativ
istic and demonstrates the important role played by vorticity 
in spacelike symmetries of fluid space-times. Although 
spacelike symmetries with symmetry vector parallel to wa 

have been studied and generalizations of the first Helmholtz 
theorem derived,I9-21 this close relationship between space
like symmetries, vorticity, and material curves appears to be 
a new result. We illustrate it, for the special case of Killing 
vectors, by considering the Friedman-Robertson-Walker 
models (w = 0) and the Godel model (w #- 0). Our results may 
also be used to establish the existence of spacelike conformal 
motions, and we demonstrate this by giving an alternative 
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derivation of some of the results established recently by CoI
lins22 on conformal Killing vectors parallel to the local vorti
city vector in shear-free perfect fluids with zero magnetic 
Weyl tensor. Our derivation is based on the theory of space
like congruences and makes use of general expressions for 
the expansion 'C(w), the shear Yab(w), and the rotation 
f!II ab (w) of a vortex congruence,15 as well as the propagation 
equation for the expansion along the congruence. Both 'C (w) 
and Yab(w) depend explicitly on the shear of the fluid O'ab 
and on the magnetic part of the Weyl tensor H ab , which 
explains the important role played by O'ab and Hab in deter
mining if a fluid space-time admits a conformal Killing vec
tor parallel to wa. 

In Sec. VI we investigate further properties of material 
vortex lines. Starting from the vorticity propagation equa
tion,23,24 the necessary and sufficient condition for vortex 
lines to be material lines in the fluid is derived and the restric
tion this places on the flow of a thermodynamical perfect 
fluid is examined: except for two special cases, vortex lines 
will be material lines if and only if they lie along the intersec
tion of the surfaces S = const and T // = const, where S is 
the specific entropy, Tis the temperature, and / is the index 
of the fluid.25 Also, in order to illustrate further the results of 
Sec, V, we consider a pure magnetic field in a rotational 
fluid; if the local electric field vanishes identically then it 
follows directly from Maxwell's equations that the magnetic 
field lines are "frozen-in" to the fluid. 24 Hence if space-time 
admits a spacelike conformal Killing vector field everywehre 
tangent to the magnetic field lines, then the vortex lines must 
coincide with the magnetic field lines. This flow is investigat
ed and quantities conserved along a magnetic field/vortex 
line are derived. Results similar in nature to Ferraro's law of 
isorotation26 in nonrelativistic magnetohydrodynamics are 
obtained. 

Finally concluding remarks are made in Sec. VII. 
Throughout the paper corresponding results for a timelike 
conformal motion and also results from Newtonian theory 
are given for comparison. Properties which apply specifical
ly to spacelike conformal motions, as well as purely relativis
tic effects, can therefore be isolated. The notation and con
ventions of Ellis23,24 are followed throughout. 27 

II. SPACELIKE CONGRUENCES 

We review briefly the basic aspects of the theory of 
spacelike congruences that will be required in this paper. 4,15. 

Consider a spacelike congruence, i.e., a family of nonin
tersecting spacelike curves, 

xa =Xa(1t,p) , (2.1) 

where the three parameters 1Ja (a = 1,2,3) specify the parti
cular spacelike curve of the congruence and where p is some 
parameter along the curve, which we take to be the arc 
length measured from some arbitrary section of the con
gruence. The unit tangent vector na at a point P on a curve 
Crff of the congruence is defined by 

a (axa
) 

n= ap 1'/,,' 
(2.2) 

We have nana = + 1 and since na forms a vector field, 
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nana;b = O. We now introduce an observer at P with unit 
four-velocity wa such that ~ is orthogonal to ~ at P; thus 

(2.3) 

To observe the deformation of the curves of the congruence 
at P, the observer wa erects a "screen" orthogonal to ~ at P 
so that the curves pass perpendicularly through the screen at 
P. The screen is the two-surface dual to the surface formed 
by Wa and na' We introduce the projection tensor 

Pab = gab + WaWb - nanb ; 

clearly 

PabWb=O, Pabnb=O. 

The tensor P ab projects vectors onto the screen at P. 

(2.4) 

(2.5) 

The connecting vector 8xa connects points with the 
same value of the parameter P on neighboring curves of the 
congruence: 

(2.6) 

Since the 8xa connect points of equal p, it is easily verified 
that 

(2.7) 

where .Y stands for the Lie derivative with respect to the 
n 

vector field n°. Now, 8xa need not lie on the screen at P, and 
we therefore construct at P the orthogonal connecting vec
tor 

(2.8) 

which lies on the screen at P; we have Wa1 t>xa = 0 and 
na1 t>~ = O. With the aid of (2.7) we obtain 

* Pab (1 t>xb)* = (p~ p:nc;d h t>Xb + Pac(WC - "C)Wbt>Xb , 

(2.9) 

where we have introduced the notation 

A* a _ DA a _ A a b 
---- 'b n , dp , 

(2.10) 

A a =A ~bWb. (2.11) 

Now, except at P, the motions of the observers employed 
along a curve ~ of the congruence have still to be specified. 
We choose observers such that 

* Pac(wC - "C) = 0 , (2.12) 

(WaWa)* = 0, (wana)* = O. (2.13) 

By (2.3) and (2.13), ~ will be a unit vector orthogonal to na 

along ~ , and by (2.12), Eq. (2.9) reduces to 

(2.14) 

the rate of change of separation of two spacelike curves, as 
seen by observers wa in their screens, is given by a linear 
transformation from the orthogonal connecting vector 1 t>xa, 
the transformation being determined by the tensor 
p~ p:nc;d' On splitting p~ p:nc;d into its irreducible parts, 
we have 

2883 J. Math. Phys., Vol. 26, No. 11, November 1985 

p~ p:nc;d = fII ab + !1fPab + Y ab , (2.15) 

where the rotation tensor fII ab' the expansion 1f, and the 
shear tensor Y ab of the curves of the congruence are defined 
by 

fII ab = p~ p:n[c;d 1 ' 

1f = pabna;b , 

Y ab = p~ p:n(c;d) - !1fPab . 

Clearly by (2.5), 

fII abwb = 0, fII abnb = 0; 

Y ab w
b = 0 , Y ab n

b = 0 , Y: = 0 . 

The rotation vector is defined by28 

fila = !7]abedWb fll cd . 

(2.16) 
(2.17) 

(2.18) 

(2.19) 

(2.20) 

Since fII cd lies on the screen, it is easily verified that fila is 
parallel to n°. Equation (2.20) may be inverted to give 

fII ab = 7] abed fIIcWd , (2.21) 

and the magnitude of the rotation fII is defined by 

f112 = fII a fila = !fII abfllab . (2.22) 

From (2.15) the rotation, expansion, and shear of the con
gruence determine the covariant derivative of n a through the 
identity 

* na;b =fllab +!1fPab +Yab +nanb -"aWb -wa(wtnt;b) 

* - wawb(wt"t) + Wanb(Wtnt). (2.23) 

Conditions (2.12) and (2.13) are equivalent to the single 
condition 

* * ~ ="a + (Wb"b)Wa _ (Wbnb)na, (2.24) 

which is the transport law for ~ derived by Greenberg.4 

Equation (2.24) may be rewritten equivalently as 

A * * h :"b = wa + (wbnb)na , (2.25) 

where 

h: = K: + WaWb . (2.26) 

It is shown in Appendix A that the unit four-velocity field ua 

of a self-gravitating fluid with na ua = 0 satisfies Eq. (2.25) if 
and only if na is tangential to a material curve in the fluid. 16 It 
follows directly that in a fluid space-time, comoving observ
ers wa = ua can be employed all along a spacelike con
gruence generated by na with naua = 0 if and only if the 
curves of the congruence are material curves in the fluid. [If 
na ua = 0, a comoving observer can always be employed at 
anyone point since (2.3) is satisfied by wa = ua

.] 

In Newtonian theory, we denote by 

(2.27) 

a congruence of curves in three-dimensional Euclidean 
space, where P is some parameter along the curves which we 
take to be the arc length measured from some arbitrary sec
tion of the congruence. The projection tensor paP is defined 
by 
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paB = haP _ nan P , (2.28) 

where h aP is the flat three-space metric tensor and the unit 
tangent vector na is defined as in (2.2). The connecting vector 
{)xa and the orthogonal connecting vector 1 {)xa are defined as 
in general relativity. Since {)xa satisfies an equation of the 
form (2.7), it is easily verified that 

PaP(l{)X P)* = (~p'pnA..T)l{)XP, (2.29) 

which compares with (2.9); a significant difference between 
Newtonian theory and general relativity is that in Newtoni
an theory it is not necessary to employ special observers 
along the congruence. On decomposing p! PpnA..T into its 
irreducible parts, we have 

p! PpnA..T = &laP + !ifPaP + YaP' (2.30) 

where 
/Jl1 A. T 

;:naP =PaPpn[A..T) ' (2.31) 

if = P"'TnA..T , (2.32) 

YaP = p! ppn(A..T) - !ifPaP . (2.33) 

Clearly, 

&laPnP=O; YapnP=O, Y~ =0. (2.34) 

The rotation vector &la is defined by29 

&la = !1JaPY&l PY , (2.35) 

and since &l pynY = 0 it is easily verified that &la is parallel to 
na

; we also have 

&l ap = 1JaPy &lY , 

and we define 

&l2 = &l a&la = !&l ap&laP . 

(2.36) 

(2.37) 

Finally, it follows from (2.30) that na.{J may be decomposed 
according to 

* na.{J = &laP + !ifPaP + YaP + nanp . (2.38) 

III. SPACE LIKE CONFORMAL MOTIONS 

Letsa=sna,wherenana= + lands=(sasa)1/2>0. 
The infinitesimal point transformation 

~_xa + Es a, (3.1) 

defines a spacelike conformal motion of space-time, and S a is 
a spacelike conformal Killing vector of space-time, if and 
only if 

(3.2) 

where"? stands for the Lie derivative along S a and ¢'(XC) is 
s 

some scalar function of position called the conformal factor. 
Equation (3.2) may be rewritten equivalently as 

(3.3) 

We express the necessary and sufficient conditions for 
space-time to admit a spacelike conformal motion with sym
metry vector S a = sna in terms of the properties of the space
like congruence generated by na. We first state the corre
sponding result for space-time to admit a timelike conformal 
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motion with symmetry vector 1Ja = nva, where va va = - 1 
and 1J = (-1Ja1Ja)1/2>0 (see Refs. 1-3). 

Theorem 3.1: Space-time admits a timelike conformal 
motion with symmetry vector1Ja = 1JVa (va va = - 1,1J > 0) if 
and only if 

(i) (Tab = 0 , (3.4) 

(ii) Va = (log 1J).a + (813)va , (3.5) 

where (Tab' 8, and Va' are, respectively, the shear, expansion, 
and acceleration of the timelike congruence generated by va 
(see Ref. 30). The conformal factor r/J satisfies 

r/J = 1J813 . (3.6) 

It follows directly from (3.6) that a timelike conformal 
Killing vector is a proper conformal Killing vector if and 
only if 8 #0. For a spacelike vector Sa = Sna, we have the 
following result. 

Theorem 3.2: Space-time admits a spacelike conformal 
motion with symmetry vector sa = sna (na na = + 1, s> 0) 
if and only if at any given point 

• 
(ii) na = - (log S ).a + !ifna , 

(3.7) 

(3.8) 

(iii) Wana = -!if , (3.9) 

(iv) p!(nb + Wtnt;b) = 0, (3.10) 

where Y ab and if are, respectively, the shear and expansion 
of the spacelike congruence generated by na and as mea
sured by an observer with four-velocity wa (wawa = - 1, 
wana = 0). The conformal factor r/J satisfies 

r/J = sif 12. (3.11) 

Proof.' (a) Suppose first that space-time admits a space
like conformal motion with symmetry vector sa = Sna. 
Then 

S(a;b) =r/Jgab (3.12) 

for some scalar function ¢'(XC). Contract (3.12) in tum with 
the tensors wawb, wanb, Wapbc, nanb, napbc, and pacpbd; this 
gives, with the aid of definition (2.18) for Y ab , 

WaWb: Wana = - r/JIS, (3.13) 

wanb: Wa[:a + (logS).a ] = 0, (3.14) 

Wapbc: ab [ , t] 0 P nb + wnt;b = , (3.15) 

• nanb: S =r/J, (3.16) 

napbc: pab[:b + (logS).b] =0, (3.17) 

pacpbd; Y ab + !(if - 2r/JIS)Pab= O. (3.18) 

First, take the trace of (3.18). Since Y: = 0, we obtain 

if = 2r/JIS, (3.19) 

which gives (3.11). With (3.19), (3.18) reduces to condition 
(3.7), namely Yab = O. 

To derive (3.8), we note from (3.14) and (3.17) that 
• 
na + (log S ).a must be parallel to na; thus 
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• 
na + (log S ).a = Ana (3.20) 

for some scalar function A. Contracting (3.20) with na gives 
A = (log S )* and on using (3.16) and (3.19), this may be re
written as A = !~, which establishes (3.8). 

Condition (3.9) follows immediately from (3.13) and 
(3.19), and (3.10) is simply (3.15). 

(b) Conversely, suppose that conditions (3.7H3.1O) are 
satisfied. Then using expansion (2.23) with Yab = 0 for na;b 
we have 

S(a;b) =S[!~Pab + ((logS).(a +~(a)nb) 

+ Wawb(w,n') - w(a p~)(n, + w'ns;,)]. (3.21) 

Applying (3.8H3.1O), we find that (3.21) reduces to 

S(a;b) = (S~ /2) gab' (3.22) 

Thus Sa is a conformal Killing vector of space-time with 
conformal factor tP = S~ /2. 0 

Conditions (3.7)-(3.10) are in a form suitable for applica
tion to fluid space-times, which will be considered in Sec. V; 
in particular (3.9) provides a useful expression for the expan
sion ~. The two conditions (3.9) and (3.10), however, may be 
combined into one tensor equation, which can be expressed 
in several forms. For instance it is easily verified that (3.9) 
and (3.10) are equivalent to the single equation [obtained by 
expanding P: in (3.10) and using (3.9)] 

• 
na + w'nr;a - (w'n,)na - ~wa = o. (3.23) 

With the aid of the Greenberg transport law (2.12), (3.23) can 
be rewritten more concisely and in a form more consistent 
with the aim of expressing the conditions in terms of the 
properties of the associated spacelike congruence. In the der
ivation of Theorem 3.2, we did not use the Greenberg trans
port law, which the four-velocities wa of all observers em
ployed along the congruence must satisfy. 

Theorem 3.3: Space-time admits a spacelike conformal 
motion with symmetry vector Sa = Sna (na na = + 1, S> 0) 
if and only if 

(i) Y ab = 0 , (3.24) 

• 
(ii) na = - (logS).a + !~na , (3.25) 

(iii) .!L'wa = !~Wa , (3.26) 
n 

where Y ab and ~ are, respectively, the shear and expansion 
of the spacelike congruence generated by na and as measured 
by an observer with four-velocity ~ (wa~ = - 1, wana 
= 0), which satisfies the Greenberg transport law (2.12). The 

conformal factor tP is given by tP = S~ /2. 
Proof: We show with the aid of the Greenberg transport 

law (2.12) that (3.26) is equivalent to (3.9) and (3.10). 
Suppose first that (3.26) is satisfied. Contracting (3.26) in 

tum with wa and p~ yields, respectively, (3.9) and 

• 
p~(wa + w'n,;a) = o. (3.27) 

On using the Greenberg transport law (2.12), (3.10) follows 
immediately from (3.27). 

2885 J. Math. Phys .• Vol. 26. No. 11. November 1985 

Conversely, suppose that (3.9) and (3.10) are satisfied. 
Applying (2.12), (3.10) may be rewritten as (3.27), and on 
noting that p~ = ~ + wawe - nane, (3.27) can be expressed 
as 

.!L'we = - (Wbnb)We . (3.28) 
n 

Finally, making use of (3.9) we obtain (3.26). 0 
It follows from (3.11) that a spacelike conformal Killing 

vector is a proper conformal Killing vector if and only if 
~ = O. Also from (3.25), 

• 
n =0 (3.29) 

[a;b 1 

is a necessary and sufficient condition for Sa = Sna to be a 
spacelike Killing vector. 

For comparison we state the corresponding theorem in 
Newtonian theory. 

Theorem 3.4: Three-dimensional Euclidean space ad
mits a conformal motion with symmetry vector Sa = Sna 
[nana= + 1,S=(SaS a)1/2>0] if and only if 

(i) YafJ = 0, 

• 
(ii) na = - (logS).a + !~na , 

(3.30) 

(3.31) 

where Y afJ and ~ are, respectively, the shear and expansion 
of the congruence of curves generated by na. The conformal 
factor tP satisfies 

tP=S~/2 . (3.32) 
o 

The two conditions (3.24) and (3.25) for a spacelike con
formal motion in space-time correspond directly with the 
two conditions (3.4) and (3.5) for a timelike conformal mo
tion and with the two conditions (3.30) and (3.31) for a con
formal motion in three-dimensional Euclidean space. Van
ishing shear is a necessary and sufficient condition which 
applies in all three cases. However, condition (3.26) [or (3.9) 
and (3.10)] has no analog either for a timelike conformal 
motion or in Newtonian theory. Results derived from (3.26) 
therefore describe purely relativistic effects that apply spe
cifically to space/ike conformal motions. These effects are 
most apparent in fluid space-times and will be considered in 
Sec. V. 

We conclude this section with some applications of 
Theorem 3.3, which make use only of properties (3.25) and 
(3.11) for the conformal factor tP. The results therefore have 
direct analogs in the theory of timelike conformal motions 
and in Newtonian theory. 

It can be shown that two different timelike conformal 
motions cannot have the same streamlines (Williams 17 estab
lished this result for proper timelike homothetic motions) 
and that there do not exist any proper timelike homothetic 
motions of constant expansion. 17 For spacelike conformal 
motions we have the following. 

Theorem 3.5: (i) Two different spacelike conformal mo
tions cannot both have symmetry vectors parallel to the 
same spacelike unit vector n°. 

(ii) There do not exist any proper spacelike homothetic 
motions of constant expansion. 
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Proof: (i) Consider two spacelike conformal motions 
with symmetry vectors sa = sna and ~ a = ~na, where S > 0, 
~>O, and nana = + 1. Then by (3.25), 

• 
na = - (logS),a + !~na , (3.33) 

• 
na = - (log~),a + !~na . (3.34) 

On subtracting (3.34) from (3.33) we obtain 

(log(S I~)),a = 0; (3.35) 

hence, S = a~, where a is a constant, which contradicts the 
assumption that the conformal motions are different. 

(ii) Suppose space-time admits a proper spacelike ho
mothetic motion of constant expansion. From (3.11), 
1/1 = s~ 12, and we have in general 

21/1,a = S,a ~ + ~,aS· (3.36) 

But for a homothetic motion, 1/1 is constant and ifthe expan
sion ~ is also constant then (3.36) reduces to ~,a = O. Hence 
(3.25) becomes 

(3.37) 

and on contracting (3.37) with na we find that ~ = O. Thus 
by (3.11), 1/1 = 0, which contradicts the assumption that the 
homothetic motion is a proper homothetic motion. 0 

It follows from (3.25) and (3.36) that the expansion ~ of 
a spacelike homothetic motion must satisfy the differential 
equation 

(3.38) 

Theorem 3.5 remains valid in Newtonian theory. 
As a second application of Theorem 3.3 we consider the 

• 
special case in which na = O. For a timelike conformal mo-

tion, the corresponding condition is if = 0 and the con
gruence consists oftimelike geodesic curves. Oliver and Da
vis3 have established the following. 

Theorem 3.6: If ",a = ",va (va va = - 1) is a timelike con
formal Killing vector and va = 0 then either (i) 0 = 0 and va is 
a timelike Killing vector or (ii) 0 :/= 0 and (d = 0, h : O,b = 0.0 

Since the shear of the congruence 0' ab vanishes, this re
sult is reminiscent of the class of results for a shear-free per
fect fluid with barotropic equation of state in which neces
sarily (dO = 0, established by Ellis31 for dust (ua = 0) and 
recently extended by Collins,22 White and Collins,32 and 
Collins and White.33 For a spacelike congruence we have the 
following. 

Theorem 3.7: If sa = sna (na na = + 1, S> 0) is a space-
• 

like conformal Killing vector and na = 0, then either (i) 
~ = 0 and na is a spacelike Killing vector or (ii) ~:/=O and 
~ =0, P:~,b =0. 

• Proof; Since na = 0, (3.25) reduces to 

~na = 2(log S ),a . (3.39) 

(i) 'iff = O. From (3.11) we have f/J = s'iff 12 = 0 and hence 
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sna is a Killing vector. But since 'iff = 0, it follows from (3.39) 
that S,a = 0 and therefore that S is constant. Thus na itself 
satisfies Killing's equation. 

(ii) 'iff :/=0. Covariantly differentiate (3.39) with respect to 
xb and take the skew part; this gives 

n[a ~,b 1 + 'iffn[a;b 1 = O. (3.40) 

Project on (3.40) with p~p~ and use definition (2.16) for 
flt abo Then 

'ifffltcd=O, (3.41) 

and since 'iff:/=O it follows that flt cd = O. Alternatively, by 
• projecting on (3.40) with napbc and using nb = 0, we obtain 

pcb'iff,b = O. 0 
It follows from Theorem 3.7 that if sna is a spacelike 

• conformal Killing vector and na = 0, then either the expan-

sion 'iff or the rotation flt of the spacelike congruence gener
ated by na, vanishes, i.e., 'iff flt = O. This result remains valid 
in Newtonian theory since it was established using only 
(3.25). 

Finally we note that in the statements of Theorems 3.2 
and 3.3, only one condition, (3.8) [or equivalently (3.25)], 
contains the factor s. Both theorems may be stated in a way 
independent of S by replacing (3.9) and (3.25) with 

• 
(n[a - !'iffn[a);b 1 = O. (3.42) 

A similar comment applies to the statements of Theorems 
3.1 and 3.4. 

IV. PROPAGATION EQUATIONS 

Further properties of the spacelike congruence generat
ed by a conformal Killing vector can be determined by con
sidering the propagation equations for tensor quantities 
along a curve of the congruence. In this section we will con
sider the propagation equation for the projection tensor p ab , 
which has application to the concept of a rigid spacelike con
gruence, and the propagation equation for the rotation ten
sor flt ab' The expansion 'iff enters these equations as a pro
portionality factor. An application of the propagation 
equation for the expansion will be made in Sec. V when de
termining the condition for a spacelike conformal Killing 
vector to be homothetic in a certain fluid space-time. Since 
the shear Y ab of a spacelike congruence generated by a con
formal Killing vector vanishes along the congruence, the 
propagation equation for Y ab is not considered. 

A. ProJection tensor 

Before considering the propagation equation for the 
projection tensor p ab we briefly review the results for a con
gruence of time like curves with unit tangent vector if (Va va 
= - 1). The projection tensor onto the instantaneous rest

space of va is hab = gab + vavb' 

Theorem 4.1: (i) For a timelike congruence of curves 
with unit tangent vector uP, 

.'f hab = 2(O'ab + (013) hab ) (4.1) 
v 
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and 

~ hab = 0 , iff (Tab = 0 and lJ = 0 . (4.2) 
v 

(ii) If space-time admits a timelike conformal motion 
with symmetry vector parallel to va then 

(4.3) 

o 
A timelike congruence may be defined as rigid if the orthog
onal distance between any neighboring pair of curves re
mains constant along the curves.17.18.34-38 It can be shown 
that, according to this definition, a timelike congruence is 
rigid if and only if 

(4.4) 

and hence from (4.2), it is rigid if and only if it is shear-free 
and expansion-free. A congruence will be called isometric if 
the unit tangent vector to the curves is parallel to a Killing 
vector. By (3.4) and (3.6), an isometric timelike congruence is 
shear-free and expansion-free, and hence every isometric 
timelike congruence is rigid. Although the converse, that a 
rigid timelike congruence is isometric, is true for a rotating 
timelike congruence in flat space_time18.3S,36 and in a space
time of constant curvature,17 it is not true in general. 18,37 

We now establish corresponding results for a spaceHke 
congruence. 

Theorem 4.2: (i) For a spacelike congruence of curves 
with unit tangent vector n°, 

(4.5) 

where Pab = gab + WaWb - nanb (Wa~ = - 1, Wana = 0), 
~ satisfies the Greenberg transport law, and Y ab and ~ are 
the shear and expansion of the congruence as measured by 
wa

• Also, 

~ Pab = 0, iff Y ab = 0 and ~ = 0 . (4.6) 
n 

(ii) If space-time admits a spacelike conformal motion 
with symmetry vector parallel to na then 

(4.7) 
n 

Proof: (i) We have 

• 
~ Pab = Pab + 2Pc(a nc;b) • (4.8) 

n 

On using (2.23) for nC;b' (4.8) becomes 

(4.9) 

• • 
and since wcnc = - wcnc (because wcnc = 0), (4.9) may be 

rewritten as 

On applying the Greenberg transport law for ~ in the form 
(2.12), (4.10) reduces to (4.5). 
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Clearly if Y ab = 0 and ~ = 0, then .Y Pab = O. Con-
n 

versely, suppose that.Y Pab = 0; then 
n 

(4.11) 

Since Y: = 0 and P: = 2, the trace of (4.11) gives ~ = 0, 
and therefore from (4.11), .Y ab = O. 

(ii) If space-time admits a spacelike conformal motion 
with symmetry vector parallel to n°, then by (3.24), Y ab = 0, 
and (4.5) reduces to (4.7). 0 

By direct analogy with the condition for a rigid timelike 
congruence, Ciubotariu6 defined a spacelike congruence to 
be rigid if the orthogonal distance between any neighboring 
pair of curves remains constant along the curves, and he 
proved that a spacelike congruence is rigid if and only if 

~ Pab =0. (4.12) 
n 

Ciubotariu also showed that (4.12) implies that.Y ab = 0 and 
~ = O. From (4.6), the converse is also true; a spacelike con
gruence is rigid if and only if it is shear-free and expansion
free. For an isometric spacelike congruence, the shear and 
expansion both vanish by (3.7) and (3.11), and hence every 
isometric spacelike congruence is rigid. We do not investi
gate here the converse of this result. 

These results can be illustrated by the vortex con
gruence in the GOdel universe6 and this will be considered 
briefly in Sec. V. In Newtonian theory the projection tensor 
is PaP = haP - nanp and Theorem 4.2 remains valid. 

B. Rotation tensor 

Before considering the propagation equation for the ro
tation tensor &t ab' we briefly review the results for the vorti
city tensor Wab of a congruence of timelike curves.30 There is 
a direct analogy between the equations governing Wab and 

&tab' 
Theorem 4.3: (i) If space-time admits a timelike confor-

mal motion with symmetry vector parallel to va (vaif 

= - 1), then 

h ~h tided + (lJ /3)wab = 0 , 

~ w a = - ilJwa + (WbVb Iva , 
v 

where wa is the vorticity vector. 30 

(4.13) 

(4.14) 

(4.15) 

(ii) If, further, ". denotes proper time measured along the 
world-line of va, and {j V is the volume of a material element 
as measured by va, then 

Dw lJ 
-+-w=O 
d". 3 ' 

41w3{jV) = 0, 
d". 

(4.16) 

(4.17) 

where w2 = wawa = !WabWab. 0 
Equations (4.13)-(4.17) are purely kinematical. Since 

(Tab = 0 for a timelike conformal motion, it follows that 
along the world-line of va, {j V cc ({j/ )3, where {j/is a character
istic length associated with the material element,· and (4.17) 
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may be rewritten as39 

D 
-=;-(ro6/) = 0 . 
dr 

(4.18) 

We now establish corresponding results for a spacelike 
congruence. 

Theorem 4.4: If space-time admits a spacelike confor
mal motion with symmetry vector parallel to n a (nana 

= + 1) then 

• 
(i) p~ ptgf cd + !ffgf ab = 0, (4.19) 

(ii) .!f gf ab = !$' gf ab , (4.20) 
n 

(iii) .!f gfa = _! $' gfa . (4.21) 
n 

Proof: (i) It is shown in Appendix B that, for any space
like congruence, the equation governing the propagation of 
gf ab along a curve of the congruence is 

• • 
p~ pt(gf cd - n[c;d I + 2w'nt;[cnd I) 

- 2Y[agfblc + $'gfab = O. (4.22) 

We use Theorem'3.3 to simplify (4.22). With the aid of(3.25) 

• for nc and definition (2.16) for gf ab' it is easily verified that 

• 
p~ ptn[C;d I = !$' gf ab . (4.23) 

Also, using (3.26) it can be shown that 

(4.24) 

and on applying the Greenberg transport law in the form 
(2.12) (which the four-velocity ~ of all observers employed 
along the congruence must satisfy), (4.24) becomes 

(4.25) 

On substituting from (4.23) and (4.25) into (4.22) and noting 
also that Y ab = 0 by (3.24), Eq. (4.19) is obtained. 

(ii) It is shown in Appendix B that for any spacelike 
congruence, (4.22) may be rewritten in the form 

(4.26) 

Equation (4.20) follows directly from (4.26) using (4.23) and 
(4.25). 

(iii) Since 

gfa = ~1}abcdwbgf cd.' 

we have 

.!f gfa = !.!f(1}abcd)Wbgf cd 
n n 

(4.27) 

+ !1}abcd (.!f Wb)gf cd + ~1}abcdwb.!f gf cd • (4.28) 
n n 

But, 

(4.29) 

and from (2.17) and (3.9) [or (3.26)] it follows that n';, = ~$'; 
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thus 

(4.30) 

On evaluating the second and third terms on the right-hand 
side of (4.28) using (3.26) and (4.20), (4.21) is obtained. 0 

Equations (4.19) and (4.20) were first derived by Prasad 
and Sinha14 and correspond directly to (4.13) and (4.14) for a 
congruence of timelike curves. Equations (4.15) and (4.21) 
differ in form because there is no condition corresponding to 
(3.26) for a timelike congruence. However, we do have 

.!fgfa =0, .!froa =0 (4.31) 
sn "IV 

(and also .!f vroa = 0). which is easily verified. Equations 
(4. 19H4.21 ) show that a close relationship exists between the 
rotation gf and the expansion $' of a spacelike congruence 
generated by a conformal Killing vector. To develop this 
relationship further we make use of the concept of a flux 
tube.40 We define a flux tube to be the two-dimensional sur
face swept out by the curves of the spacelike congruence that 
pass through a given simple closed curve. At any given point 
along the flux tube, we denote by 6A the cross-sectional area 
of the flux tube as measured by observer ~ at that point; p 
denotes arc length measured along a curve of the con
gruence. 

Theorem 4.5: If space-time admits a spacelike confor
mal motion with symmetry vector parallel to na (na na 

= + 1) then 

(i) ~: + ~$' gf = 0 , (4.32) 

(ii) ~gf26A) = 0 , (4.33) 
dp 

where gf and $' are the rotation and expansion of the space
like congruence generated by na and 6A is the cross-sectional 
area of a flux tube formed by curves of the congruence. 

Proof: (i) Equation (4.32) can be derived by starting from 
anyone of (4. 19H4.21). For instance, by contracting (4.19) 
with gfab, noting that gf abgfab = 2gf2, and using definition 
(2.10), (4.32) is immediately obtained. 

(ii) Since15 

$' __ 1_D6A 
- 6A dp , 

Eq. (4.32) may be written as 

_1_ Dgf + _1_ D6A = 0, 
gf dp 26A dp 

(4.34) 

(4.35) 

from which (4.33) is immediately derived. 0 
Equation (4.33), which was first derived by Prasad and 

Sinha, 14 yields a counterpart of the first Helmholtz theorem 
for vortex tubes,40 and like the first Helmholtz theorem it is 
purely kinematical. Since gf and 6A are measured by an 
observer wa satisfying the Greenberg transport law, (4.33) is 
valid along a curve of the congruence and not simply at one 
point. Thus gf2 c5A is conserved along a flux tube and can be 
defined as the strength ofthe flux tube. We see that the mag
nitude of the rotation of the curves varies inversely as the 
square root of the element of area normal to the curves. Since 
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by (3.24), the shear ofthe congruence vanishes, along a curve 
t5A a: (t51 f, where t51 is a characteristic length in the "screen" 
normal to nQ erected by observer uf'. Hence by (4.33), 

D 
-=;--(&1 t51 ) = 0 , 
dp 

(4.36) 

which corresponds directly with (4.18). 
For the special case of a spacelike motion, 'li' = 0 by 

(3.11) and therefore t5A is conserved along a flux tube. Equa
tions (4.32), (4.33), and (4.36) all reduce to 

D&I = 0 . (4.37) 
dp 

The magnitude of the rotation of the curves of an isometric 
spacelike congruence is therefore conserved along the con
gruence and hence &I can be taken as a measure of the 
strength of a flux tube formed by curves of the congruence. 

The results obtained here for rotation have a direct ana
logy with results in Newtonian theory, which can be derived 
by starting from the propagation equations 1 5 

• .!£' &I aP = p! ppn[J,.,r 1 • (4.39) 
n 

Theorem 4.4 (with Latin indices replaced by Greek indices) 
and Theorem 4.5 remain valid in three-dimensional Euclid
ean space. 

v. FLUID SPACE-TIMES 

Let u
Q 

(uQ ua = - 1) be the four-velocity field of a self
gravitating fluid. The unit vector tangent to several impor
tant spacelike vector fields satisfies the property nQ u

Q 
= O. 

Examples are the unit vector tangent to vortex lines in a 
rotational fluid, where the local vorticity vector is defined by 

(5.1) 

and the unit vector tangent to electric and magnetic field 
lines in an electrically conducting fluid, where the electric 
and magnetic field four-vectors are defined, respectively, in 
terms of the skew electromagnetic field tensor Fab by 

E a = FQbub , HQ = !1JQbcdUb Fcd . (5.2) 

In the remainder of this paper we will be concerned exclu
sively with fluid space-times and with spacelike conformal 
motions with symmetry vector parallel to nQ, where nQ satis
fies the condition na uQ = O. 

When nQua = 0, condition (2.3) is satisfied by ua and an 
observer wa = uQ comoving with the fluid can be employed 
at anyone point of the spacelike congruence generated by n°. 
[Having chosen a comoving observer at one point, comoving 
observers can be employed all along a curve of this con
gruence if and only if the curve is a material curve in the 
fluid; this is the necessary and sufficient condition for ua to 
satisfy the Greenberg transport law for uf' (see Ref. 15).] We 
rewrite in terms of ua the necessary and sufficient conditions 
for a fluid space-time to admit a spacelike conformal motion. 
The kinematical quantities of the fluid and in particular the 
fluid vorticity wQ are thereby introduced through the covar
iant derivative UQ;b of ua. 
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An overhead dot denotes covariant differentiation along 
a fluid particle world-line and hab = gab + UQ Ub (see Ref. 
30). 

Theorem 5.1: If nQ ua = 0, then a fluid space-time admits 
a spacelike conformal motion with symmetry vector snQ 
(nanQ = + I, s> 0) if and only if at any given point, 

(i) .Y ab = 0 , (5.3) 

• 
(ii) na = - (logS),a + !'li'na , (5.4) 

(iii) uaha=-!'li', (5.5) 

• (iv) wQ = (wtnt)na + !1JQbcd (h ~ht - ub)ucnd , (5.6) 

where .Y ab and 'li' are, respectively, the shear and expansion 
of the spacelike congruence generated by nQ and as measured 
by an observer with four-velocity uQ

, and wa is the local vorti
city vector of the fluid. The conformal factor t/I satisfies 

t/I=s'li'/2. (5.7) 

Proof: Consider any given point P on a curve of the 
spacelike congruence generated by n°. Since nQua = 0, con
dition (2.3) is satisfied by wQ = uQ and therefore a comoving 
observer uQ can be employed at P. Having chosen a comov
ing observer at P, in general it will not be possible to employ 
a comoving observer at a neighboring point of the curve 
since wQ must satisfy the Greenberg transport law; we write 

Wa=Ua+A
Q

, Aa(P)=O, (5.8) 

where to satisfy (2.3), AQA a + 2UaA Q = 0 and AanQ = O. In 
general, at a neighboring point, A Qi=0 and 

( DA a) =1 Q(P)i=O. (5.9) 
dp p 

We can proceed using either the results of Theorem 3.2 
or Theorem 3.3. It is of interest to consider both approaches. 

(a) Application o/Theorem 3.2: Suppose that the condi
tions (3.7)-(3.10) of Theorem 3.2 are satisfied. The derivatives 
of wa do not occur in (3.7)-(3.10) and therefore at the given 
point P, wQ can simply be replaced by ua in (3.7)-(3.10). Con
ditions (5.3)-(5.5) are obtained immediately from (3.7)-(3.9), 
where now .Y Qb and 'li' are the shear and expansion of the 
congruence as measured by observer ua

• With wa = uQ
, (3.10) 

becomes 

p!(hb + uCnc;b) = 0, (5.10) 

where p! =g! + uQub - nanb. Equation (5.10) may be re
written as 

• 
h !hb + uCnc.a + (uChc)uQ - (uCnc)na = O. (5.11) 

But since ncuc = 0 we have 

• 
uCnC;Q = - 2ncu[c;a 1 - uQ , 

and since 

(5.12) 

(5.13) 

where Oca = O(ca) is the (rate of) expansion tensor and 
Wca = W[ca 1 is the vorticity tensor, (5.12) may be rewritten as 

• uCnc;a = - 2ncwca - (uChc)ua - ua . 
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On substituting from (5.14) into (5.11), we obtain 

• • 
2ncwca = h !hb - Ua - (uCnc)na . 

But23.24 

(5.15) 

(5.16) 

and therefore by operating on (5.15) with !1trs'usnt> (5.6) is 
obtained. 28 

The steps are reversible, and therefore conversely condi
tions (5.3H5.6) imply (3.7H3.1O) with the particular choice 

(b) Application o/Theorem 3.3: Suppose that the condi
tions (3.24H3.26) of Theorem 3.3 are satisfied. The deriva
tives ofwa do not occur in (3.24) and (3.25) and therefore (5.3) 
and (5.4) are obtained immediately from (3.24) and (3.25) by 
setting wa = ua

• On substituting (5.8) into (3.26) we obtain at 
P, 

• • 
ua +Aa +ubnb;a =!~ua' (5.17) 

where ~ is the expansion of the congruence as measured by 
• ua

• To obtain A a at P, we substitute (5.8) into the Greenberg 
transport law in the form (2.25): 

• •• A a( P) = h !hb - Ua - (ubnb)na . (5.18) 

• [From Appendix A, A a( P) = 0 if and only if na is the unit 

tangent vector to a material curve in the fluid.] Using (5.18), 
(5.17) at P assumes the form 

• 
h !hb + ubnb;a - (ubnb)na = !~ua . (5.19) 

On contracting (5.19) in turn with ua and h ~ we obtain (5.5) 
for ~ and (5.11). Equation (5.6) then follows from (5.11) as in 
part (a). 

Again, the steps are reversible, and therefore conversely 
(5.3) and (5.4) imply (3.24) and (3.25) with the choice wa = ua

, 

and (5.5) and (5.6) together with the Greenberg transport law 
imply (3.26) evaluated at P. D 

Theorem 5.1 can be established without appeal to the 
Greenberg transport law as demonstrated in proof (a) above, 
since the statement of Theorem 3.2 does not contain deriva
tives of wa• In proof (b), the Greenberg transport law was 
essentially applied twice, since it was used originally to de
rive (3.26), and its effect cancels. 

The three conditions (5.3H5.5) were derived by Prasad 
and Sinha,14 but the fourth condition they left as (5.11) in
stead of expressing it in terms of the fluid vorticity vector as 
in (5.6). They stated their theorem in terms of the unit tan
gent vector na to a magnetic field line, but the results apply to 
any spacelike vector field with na ua = o. 

Unlike (5.3) and (5.4), which depend only on the proper
ties of the spacelike congruence generated by n°, (5.5) and 
(5.6) depend on the kinematical quantities of the timelike 
congruence generated by ua

, such as its aceleration 
ua(uaha = - naua) and vorticity wa. The expansion ~ and 
the acceleration ua of the two congruences are related 
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through (5.5), while (5.6) is expressed in terms of the timelike 
congruence only. 

When the statement of Theorem 5.1 is compared with 
the statements of Theorems 3.1 and 3.4, it is clear that condi
tions (5.5) and (5.6) have no analog either for a timelike con
formal motion or for a conformal motion in three-dimen
sional Euclidean space; (5.5) and (5.6) describe properties 
that apply only to spacelike conformal Killing vectors and 
these properties are purely relativistic. For instance, it fol
lows from (5.5) [and (5.7)] that a spacelike conformal Killing 
vector parallel to na (naua = 0) is a proper conformal Killing 
vectorifand only ifna ua,=O, a result which does not have an 
immediate analog either for a timelike conformal Killing 
vector, or in Newtonian theory. Results derived from (5.6) 
will be considered in Sec. V A below. 

Theorem 5.1 may be applied in two ways which we will 
consider in turn: it can be used in a fluid space-time either to 
derive general properties of spacelike conformal motions or 
to establish the existence of spacelike conformal motions. 
We will consider the former application first and we will 
establish a connection between spacelike conformal motions 
of space-time and material curves in the fluid. As an example 
of the latter application we will then consider spacelike con
formal Killing vectors parallel to the fluid vorticity vector 
wa

• 

A. Material curves 

A material curve in a fluid is a curve which consists at all 
times of the same fluid particles and therefore it moves with 
the fluid as the fluid evolves. That timelike conformal Kill
ing vectors lead to physically significant material curves in 
fluid space-times is well established: if a rotational fluid 
space-time admits a timelike conformal motion parallel to 
ua, then the vortex lines are material lines in the fluid. To 
prove this, we consider (3.5) with va = ua and contract it with 
ua to give () /3 = (log 7]),a ua. Hence (3.5) can now be ex
pressed as 

ua = _ (log(1/7])),b h ba • (5.20) 

Thus 1/7] is an acceleration potential and it follows, with the 
aid of the vorticity propagation equation, that the vortex 
lines are "frozen-in" to the fluid.24 This result is due to a 
property of the flow and is not due to a physical property of 
the fluid. Although the spacelike analog of (3.5) is (5.4), (5.4) 
is not used to derive the corresponding result for a spacelike 
conformal motion; this is obtained from condition (5.6) 

Theorem 5.2: Suppose a fluid space-time admits a space
like conformal motion with symmetry vector parallel to na, 
where nana = + 1 and naua = O. 

(i) If the fluid is irrotational (w = 0), then the integral 
curves of na must be material curves in the fluid. 

(ii) If the vorticity of the fluid is nonzero (w ,=0), then the 
integral curves of na are material curves in the fluid if and 
only if they are vortex lines. 

Proof Since na ua = 0 and space-time admits a confor
mal Killing vector parallel to n°, (5.6) must be satisfied: 

• wa = (w,n')na + !7]abcd(h ~h, - ub)ucnd . (5.21) 
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(i) li) = O. When li)a = 0, (5.21) reduces to 

(5.22) 

and by operating on (5.22) with 'T/afrsu'n' we obtain28 

(5.23) 

But, from Appendix B, (5.23) is the necessary and sufficient 
condition for na to be the unit tangent vector to a material 
curve in the fluid. 

(ii) li)#0. Suppose first that na is the unit tangent vector 
to a material curve in the fluid. Then na must satisfy the 
propagation Eq. (5.23), and on substituting (5.23) into (5.21) 
we obtain 

li)a = (li),n')na . (5.24) 

Thus since li) #0, it follows that na = ± li)a lli) and hence na 

is the unit tangent vector to the vortex lines in the fluid. 
Conversely, suppose that na = ± li)alli). Then (5.21) re

duces to (5.22) which, as in part (i), implies (5.23); thus the 
vortex lines are material lines in the fluid. 0 

Theorem 5.2 is a direct consequence of condition (5.6), 
which has no analog in Newtonian theory. The results are 
therefore purely relativistic. They do not depend on the na
ture ofthe fluid, but are a property of the flow. Expressed in 
terms of spacelike congurences, Theorem 5.2 states that if a 
fluid space-time admits a spacelike conformal motion paral
lel to na

, then the congruence generated by na must consist of 
material curves if li) = 0 and therefore move with the fluid, 
while if li) # 0 the congruence is a vortex congruence if and 
only if it consists of material curves. 

We illustrate Theorem 5.2 by two well-known universe 
models, the Friedman-Robertson-Walker (FRW) models 
(li) = 0) and the GOdel model (li) #0).41-45 The spacelike sym
metry vectors are Killing vectors. 

1. FRW models 

The line element is 

di2 = _ dxrr + R 2(XO) (dx l' + dx2' + dx3') , 
(1 + lkr)2 

k = 0, ± 1 , (5.25) 

where r = Xl' + x 2
' + x 3

'. The nonzero Christoffel sym
bols are (no summation over repeated indices) 

r~a = RR 1(1 + lkr)2, r':.o = r~ = R IR , 

r pfl = kxa/2(1 + lkr), (5.26) 

ria =r~ = -kxa/2(1 +lkr), 

where a and f3 take the values 1,2,3. Also 

(5.27) 

The metric (5.25) admits six spacelike Killing vectors46
; 

sa = (1 + lkx l
' -lkx2' -lkx3')8~ 

(I) 

+ !kxIX215~ + !kxlx 315; , 

sa = x215~ - xll5~ ; 

(5.28) 

(5.29) 
(4) 
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sa, S a and S a, S a are obtained from (5.28) and (5.29), respec-
(2) (3) (5) (6) 

tively, by cyclically permuting the indices 1,2,3. Since 

So = 0 for i = 1,2,'00,6 we have 
('1 

Saua=O, i= 1,2'00.,6. 
(I) 

(5.30) 

Hence, by Theorem 5.2 (i), since li) = 0 and S a is a spacelike 
(I) 

Killing vector satisfying S a ua = 0, it follows that the inte
('1 

gral curves of S a must be material curves in the fluid, 
('1 

i = 1,2'00.,6. 
We now check that this is indeed the case by showing by 

a direct calculation that 

• • h i:lib - Ua + (nbub)na = 0, (5.31) 

where na is the unit spacelike vector parallel to anyone of the 
six Killing vectors sa; 

na = sall.SbS b)1/2. (5.32) 

We find from (5.25), (5.28), and (5.29) that 

l.Sas a)1/2 = R (xO)f(xa) (5.33) 

for some f(xa
), and it is easily verified with the aid of (5.26) 

that 
• • 

lia = 0 , ua = (R I R )na . (5.34) 

It follows immediately from (5.34) that (5.31) is satisfied. 

2. GtJdel model 

The line element is 

di2 = - dxrr _ 2eax' dxo dx2 + dx l' _ ! e2ax
' dx2' + dx3' , 

(5.35) 

where a is a nonzero constant. The nonzero Christoffel sym
bols are 

rgl = r~o = a, r~2 = r~1 = (aI2) eax' , (5.36) 

r ~2 = r 10 = (aI2) eax', r 12 = (aI2) e2ax' , (5.37) 

r~1 =r~o = _ae- ax', (5.38) 

and 

ua = I5g, ua = 0, (Tab = 0, (J = 0, 

li)a = (alY2)8;, li)a;b = 0 . (5.39) 

The metric (5.35) admits the five Killing vectors 

sa -l5a 
- 0' (5.40) 

(0) 

sa = 15~ - ax215~ , (5.41) 
(I) 

sa -l5a - 2' (5.42) 
(2) 

Sa=l5; , 
(3) 

(5.43) 
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The sa, S a, and S a are timelike. The S a is timelike, null, or 
(0) (2) (4) (I) 

spacelike depending on the values of a, xl, and x2
; also 

(5.45) 

The S a is spacelike and satisfies S a ua = O. 
(3) (3) 

Let na = 83 = Sa. Then the unit vector na is a spacelike 
(3) 

Killing vector satisfying naua = 0, and we also have by (5.39) 
that wa = (a/V2)na. From Theorem 5.2 (ii), we have the fol
lowing. 

(a) Since the unit tangent vector na to the vortex lines is a 
spacelike Killing vector, the vortex lines must be material 
lines in the fluid. Clearly, in the comoving coordinate system 
used, this is indeed the case [and can be verified by direct 

• calculation by showing that ha = ua = 0, since r 30 = 0, 
which implies that (5.31) is satisfied]. 

(b) By first noting that 83 is the unit tangent vector to a 
material curve and also a spacelike Killing vector, we can 
deduce that the local vorticity vector wa must be in the direc
tion 83, From (5.45), the only other spacelike Killing vector 
S a (for certain values of a, Xl, and x2

) does not satisfy Sa ua 

(I) (I) 

= 0 everywhere, as required by Theorem 5.2. 
The Godel model can also be used to illustrate the re

sults of Sec. IV on rigid and isometric spacelike congruences. 
Since W a.b = 0 by (5.39), it follows from (2.17) and (2.18) that 
for the 'vortex congruence, 'iff = 0 and Y ab = O. [From 

(2.16), fYt ab also vanishes.] Hence by (4.6), .!f Pab = 0 and 
n 

therefore the vortex congruence in the Gooel universe is rig-

id, which was verified by Ciubotariu6 by calculating .!f Pab 
n 

directly. Since in the Godel model, wa/w is a Killing vector, 
the vortex congruence is also isometric. 

B. Conformal Killing vectors parallel to the vorticity 
vector 

Theorem 5.1 can be used alternatively to aid in the con
struction of spacelike conformal Killing vectors and to test if 
a given spacelike vector is a conformal Killing vector of 
space-time. We will illustrate this by considering conformal 
Killing vectors parallel to the vorticity vector wa

• The fourth 
condition (5.6) of Theorem 5.1 depends on wa, which clearly 
plays a special role in the theory of spacelike conformal mo
tions. In order to apply Theorem 5.1 expressions for the ex
pansion and shear of the corresponding spacelike con
gruence, as measured by a comoving observer, are required. 
For the vortex congruence, these quantities are known. The 
expansion 'iff(w), shear Yab(w), and rotation fYt ab(W) (the ro
tation will also be required) of a vortex congruence as mea
sured by an observer with four-velocity ua are given byls 

'iff(w) = (1/w)(2wncuC - nbubr;s(w"/w) - Habnanb) , (5.46) 

Yab(w) = (1/w)p~ pt(7J(c rs'ud)r;su, + Hcd ) 

+ (1/2w)(n'u,c;d(Wcd /w) + HcdnCnd)Pab' (5.47) 
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fYt ab(W) = (1/w)p~ p~ 7J[c "'Udlr;su, 

+ (1/2w)p~ p~7Jc/'HO,s - qs)u, , (5.48) 

where na = wa / w, qa in the energy flux relative to ua, and Hab 
is the magnetic part of the Weyl tensor with respect to the 
fluid flow. Equations (5.46H5.48) can be derived from first 
principles by starting from the Ricci identity for ua

, express
ing the Riemann curvature tensor in terms ofthe Weyl ten
sor and the Ricci tensor, and using the Einstein field equa
tions; it can be verified that this gives lS 

wa;b = gab (Wc UC) + Hab + !7Jab st(~O,s - q.)U, 

+ 7Ja "'Ubr;sU, - Wa(OUb + 2ub) + Ua(WCUC;b) 

+ Ub (UaWC;c + Ua;CWC - cOa) . (5.49) 

By using definitions (2.16H2.18), where pab is given by (2.4) 
with wa = ua and na = wa /w, (5.46H5.48) may be obtained . 

• Equation (5.49) for wa;b will be required later to evaluate na 

(see Ref. 47). 
As an indication of the kind of result that may be ob

tained, we note that Theorem 3.1 has been used to show that 
certain fluid space-times admit timelike conformal mo
tions.3 For instance, in a shear-free perfect fluid with baro
tropic equation of state P = p( p,), p, + P#-O (p is the iso
tropic pressure and p, is the total energy density of the fluid 
as measured by ua

), if (p - ! p,)' = 0, then (1/ r)ua is a time
like conformal Killing vector, where48 

r=exp({P ~). 
Jpo p, + P 

(5.50) 

Also, in the FRW models, R (XO)ua is a timelike conformal 
Killing vectocl for any equation of state, where R (XO) is the 
"scale factor" defined by (5.25); in the FRW models, when 
P = p( P, ) and (p - ~ p,)' = 0, it can be verified that 
R (XO) = a/r(xO), where a is a constant. We will see that simi
lar results can be established for spacelike conformal Killing 
vectors if ua is replaced by wa 

/ w. 
Equations (5.46) and (5.47) show that the expansion 

'iff (w) and shear Y ab (w) of a vortex congruence depend expli
citly on Uab and Hab . The simplest case to consider therefore 
is shear-free flow in fluid space-times with vanishing mag
netic Weyl tensor. This has been considered recently, for 
perfect fluid space-times, by Collins.22 We will give an alter
native derivation, based on Theorem 5.1, of some ofthe re
sults of Collins on conformal Killing vectors parallel to wa

• 

These results can be summarized briefly as follows. Consider 
a shear-free perfect fluid with equation of state P = p( p,) 
satisfying p, + p#-O and such thatHab = O. Collins demon
strated that rotating shear-free solutions with Hab = 0 exist 
irrespective of the relative orientation of wa and ua

• (He also 
proved that for such solutions, since wa#-O, the rate of ex
pansion 0 must vanish.) If wa is orthogaonal to ua

, or if 
ua = 0, then wa/w is a Killing vector of space-time and 
P = P, + 2A, where A is the cosmological constant, while if 
Wa ua #- 0, then space-time admits a proper conformal Killing 
vector parallel to wa

; this conformal Killing vector is ho
mothetic if and only if P = p, + 2A. (The relation between 
these results and those of McIntosh49,so on homothetic mo-
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tions was discussed by Collins and will be commented on 
later in this section.) 

In the following theorem we first establish the proper
ties ofthe vortex congruence needed to apply Theorem 5.1. 

Theorem 5.3: Consider a rotating shear-free perfect flu
id with B"b = 0 and equation of state P = P(IL), IL + P=I=O. 
Einstein's field equations are assumed to be satisfied. 

(a) Irrespective of the relative orientation of (j)" ands u", 

ff((j)) = 2n"u", (5.51) 

.Y "b((j)) = 0, (5.52) 

f/I "b((j)) = 0, (5.53) 

(5.54) 

where n" = (j)"/(j) and ff((j)), .Y"b((j)), and f/I "b((j)) are the ex
pansion, shear, and rotation of the vortex congruence as 
measured by a comoving observer with four-velocity u". 

(b) (j)"U"=I=O. 
(i) There exists a proper conformal Killing vector paral

lel to (j)" irrespective of the relative orientation of (j)" and U" 
(excluding (j)" orthogonal to u"). 

(ii) If (j)" and U" are parallel, then (lIr)((j)" / (j)) is a proper 
conformal Killing vector where r is defined by (5.50). 

(iii) The conformal Killing vector is homothetic if and 
only if P = IL + 2A. 

(c) (j)" u" = O. If either (j)" is orthogonal to u" or u" = 0, 
then (j)" / (j) is a Killing vector and P = IL + 2A. 

Proof (a) When O'"b = 0 and B"b = 0, (5.46) and (5.47) 
reduce to ff((j)) = 2n"u" and .Y"b((j)) = 0, respectively. Now, 
under the stated assumptions, when (j)"=I=O, the rate of ex
pansion () must vanish.22 Since also if' = 0 for a perfect fluid, 
(5.48) reduces to f/I "b((j)) = O. Further, with n" = (j)"/(j) we 
have 

•• • n" = (j)" / (j) - ((j) / (j) )n" . (5.55) 

But on setting B"b = 0, O'"b = 0, q" = 0, and () = 0 (see Ref. 
22) in (5.49), it follows that 

(j),,;b =g"b((j)c UC) - 2w"ub + u,,((j)cUc;b) 

+ Ub (u,,(j)c;c + u,,;c(j)c - wa) , 

and hence that 

• (j)" = - (j)(nbub)n" , 

(5.56) 

(5.57) 

(5.58) 

• On substituting (5.57) and (5.58) into (5.55), we obtain n" = O. 
Unlike (5.51) and (5.52), (5.53) and (5.54) depend on Ein

stein's field equations.47 

(b) (j)"ua=l=O. (i) We check that the necessary and suffi
cient conditions, (5.3) to (5.6), of Theorem 5.1 are satisfied. 
Throughout na = (j)a/(j). 

Since by (5.51) and (5.52), ff = 2n"u"and.Y"b = 0, (5.5) 
and (5.3) are satisfied. Further, for a perfect fluid with equa
tion of state P = p( IL) satisfying IL + P =1= 0, it follows from 
the momentum conservation equation that r defined by 
(5.50) is an acceleration potentia124

: 
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u" = - h !(log r),b , (5.59) 

and hence that the vorticity propagation equation23,24 

h a wb = u". (j)b _ (}(j)" + 11JabcdU U b ,b 2 b c;d (5.60) 

may be rewritten as 

• • h :nb = U" + (Ubnb)na. (5.61) 

Condition (5.6) with na = (j)a/(j) is therefore satisfied. [From 
(5.61), the vortex lines are material lines and all observers 
employed along the congruence will be comoving if a comov
ing observer is employed at some initial point.] 

• It remains to consider condition (5.4), which, since n" 
= 0, reduces to proving that there always exists a solution S 

to the equation 

(5.62) 

To verify this, we define Aa = !ffna and we show that 
A [a;b J = 0; we have 

(5.63) 

Consider first na;b evaluated for a comoving observer 
uf = ua. Since by (5.52) and (5.53), .Yab = 0 = f/I "b for a 

• 
comoving observer, and na = 0 by (5.54), (2.23) reduces to 

na;b = !ffp"b - n"ub - ua(utnt;b) - uaub(utnt) . (5.64) 

Now, 

(5.65) 

• and since also n" = 0 and uan" = -!ff, the propagation 

equation (5.61) reduces to 

(5.66) 

Further, Utnt;b = - ntUt;b = (ntut)ub and therefore (5.64) be
comes 

na;b = !ff( g"b - n"nb) ; (5.67) 

hence n[a;b 1= O. To evaluate (5.63), ff,a is also required. 
Consider the Ricci identity for na

, 

n,,;bc - na;cb = Rt"bcnt , (5.68) 

and raise index a and contract with c; this givesS 
1 

nC;bc - nC;cb = Rtbnt . (5.69) 

But it follows directly from (2.17) with w" = u" and (5.51) 
that 

nC;c = ~ff , (5.70) 

and using (5.67) for nC;b we also have, with the aid of (5.54) 
and (5.70), 

• 
nC;bc = !ff,b - !Iff + ~ff2)nb . (5.71) 

Equation (5.69) therefore becomes 

• 
ff,b + !Iff + ~ff2)nb = - Rtbnt . (5.72) 

Also, applying Einstein's field equations23,24 
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Rab = Tab - !Tgab + Agab , 

where for a perfect fluid 

Tab =p,UaUb +phab , 

we find that 

Rtbnt = !(p, - p + 2A)nb . 

On substituting from (5.75) into (5.72) we obtain 

(5.73) 

(5.74) 

(5.75) 

• 2 ff.b = - !(ff + ~ff )nb + Mp - p, - 2A)nb . (5.76) 

Thus n[a ff.b 1 = 0 and since also n[a;b 1 = 0, it follows from 
(5.63) that A[a;b 1 = O. Hence there must exist a function (J 
such that Aa = (J.a = (log 5 ).a' where 5 = e¢>. Since 
Aa = !ffna a solution to Eq. (5.62) for 5 therefore always 
exists, and condition (5.4) is satisfied. 

The conformal Killing vector is a proper conformal 
Killing vector since by (5.7), '" = sff /2 and 
ff = (2/ w)w a ua ::/= 0 for the case under consideration. 

(ii) When wa is parallel to ua
, the solution of (5.62) for 5 

assumes a simple form. For suppose that 

(5.77) 

for some scalar a. Then contracting (5.77) with na gives 
a = naua =~?f by (5.51) and therefore from (5.77), 
ua = ~?fna' Equation (5.62) for 5 therefore becomes 

(logS).a = ua • (5.78) 

But by (5.59), 

ua = - (log r).a - ua (log r)' ; 

we show that (log r)' = O. From (5.50), 

. d 
(logr)' =~...1!..., 

p, + p dp, 

(5.79) 

(5.80) 

and from the energy conservation equation for a perfect flu
id, we have 

(5.81) 

Since () = 0 (see Ref. 22), it follows that fJ- = 0 and therefore 
by (5.80) that (log r)' = O. On substituting (5.79) with 
(log r)' = 0 into (5.78), we obtain 

(log sr).a = 0 , (5.82) 

and therefore 5 = {3/r, where {3 is a constant. Thus 
(lIr)(wa/w) is a conformal Killing vector. 

(iii) To determine when the conformal Killing vector is 
homothetic, consider "'.a. From (5.7), '" = s?f /2 and hence 
with the aid of (5.62) we have 

"'.a = (s/2)(?f.a + ~?f2na)' (5.83) 

On substituting from (5.76) for ?f.a into (5.83), we obtain52 

• 
"'.a = - (5 /4)(?f + ~?f2)na + (5 /4)(p - p, - 2A )na . 

(5.84) 

• To evaluate ?f + ~?f2 we contract (5.76) with nb
; this gives 

(5.85) 

and on substituting (5.85) into (5.84) we obtain 
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"'.a = (5 /6)(p - p, - 2A )na . (5.86) 

Thus "'.a = 0, and the conformal Killing vector is homothe
tic, if and only if p = p, + 2A. It is a proper homothetic 
Killing vector because'" = s?f /2::/=0 when waua::/=O by 
(5.51). 

(c) waua = O. To show that wa/w is a Killing vector we 
first note that when waua = 0, ?f = 0 by (5.51). Conditions 
(5.3) and (5.5) with ff = 0 and (5.6) are satisfied as in part (b). 
Condition (5.4) reduces to (log 5 ).a = 0, which requires that 
5 = const. We also have", = s?f /2 = O. Hence wa/w is a 
Killing vector. Finally, since ?f = 0 = "', we see from either 
(5.76), (5.85), or (5.86) that p = p, + 2A. 0 

When ua = 0, we obtain the G6de1 solution generalized 
to include pressure. 22 We have observed that wa 

/ w is a Kill
ing vector in the G6de1 model. The foregoing results also 
serve to illustrate Theorem 3.7 in which necessarily ?f fI( = 0 
for the congruence generated by a spacelike conformal Kill-

• 
ing vector when na = O. Equation (5.85) is the propagation 
equation for the expansion ff along the congruence in the 
problem considered above, and it played a central role in 
determining the necessary and sufficient condition for a 
spacelike conformal motion to be homothetic. The general 
expression for the propagation equation for ?f has been de
rived 15 and it may be useful when considering more compli
cated problems of this kind. 

As noted by Collins,22 the results of Theorem 5.3 agree 
with those of McIntosh49

•
50 on homothetic motions, who 

showed that in a perfect fluid if there is a proper homothetic 
Killing vector 5 a orthogonal to ua then necessarily 
p = p, + 2A. (McIntosh set A = 0 but did not restrict consi
deration to the special case Sa ua = 0.) If in a perfect fluid, 
5 a is a conformal Killing vector satisfying Sa ua = 0, and if 
we define Fab = S[a;b 1 and Ja = Fab;b, then it can be veri
fied that 

"'.a =!( p - p, - 2A)Sa - i Ja , (5.87) 

and hence "'.a = 0 if and only if 

r = ~(p - p, - 2A)sa . (5.88) 

Thus Ja is parallel to sa or vanishes, and in either case 
McIntosh showed further that 

(5.89) 

Hence if 5 a is a proper homothetic Killing vector (Sa ua = 0), 
then it is necessary that r = 0 and therefore by (5.88), nec
essary that p = p, + 2A. In Theorem 5.3, r = 0 since 
Fab = 0 (see Ref. 22). The condition r = 0 is not in general 
sufficient to insure that ",::/=0; since '" = s?f /2 we require 
?f ::/=0, i.e., by (5.5), Saua::/=O. 

The explicit dependence of ?f(w) and Yab(w) onuab and 
Hab shows that Uab andHab will in general play an important 
role in determining if a fluid space-time admits a conformal 
Killing vector parallel to wa

• Condition (5.5) with (5.46) and 
condition (5.3) with (5.47) place the following restrictions on 
Uab and Hab in any fluid space-time that admits a conformal 
Killing vector parallel to wa

: 

a bC+H a b_O W U ab;c W ab W W - , 

c d( rst +H )-0 PaPb 1J(c Ud)r;sU t cd - , 
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where pab = g-'b + uaub _ (wa / W )(wb / w). Both conditions 
are identically satisfied for the simple case considered in this 
subsection in which O'ab = 0 and Hab = O. We see that the 
symmetry property of vanishing shear .Y ab of the space like 
vortex congruence imposes a condition on the shear O'ab of 
the timelike congruence of fluid particle world lines. If 

• further na = 0, then it follows from Theorem 3.7 that for a 
proper conformal Killing vector parallel to wa, it is necessary 
that ~ab(W) = 0, and therefore from (5.48) that 

2p~ P~'IJ[c ,stO'dl,;su, + p~ P~'lJcdst(jO.s - qs)u, = O. (5.92) 

There is no Newtonian analog of H ab . For a vortex con
gruence in three-dimensional Euclidean space we have, cor
responding to (5.46) to (5.48) (see Ref. 15), 

~(w) = - (l/w3)W PO'PA.1"WA.7", 

.Y aP(w) = (l/w)p! pG'IJ(A Y1"O'ILIY.1" 

+ (l/2w3
)(w1"O'TV,A WVA) PaP' 

~ a,8(w) = (l/w)p~ PP'IJ[ v
YILO'1"ly.IL 

(5.93) 

(5.94) 

+ (l/3w) p~ PP'IJvrIL(J'IL ' (5.95) 

which can be derived by first establishing the following iden
tity which corresponds to (5.49) (see Ref. 15): 

- 1 1"n + A1" (5 96) wa.P - 3'IJa,8 U.1" 'lJa O'PA.1"· . 

We have, in place of Theorem 5.3, the following theorem. 
Theorem 5.4: In three-dimensional Euclidean space, if 

the fluid is shear-free, Le., if O'ap = 0, then wa is a Killing 
vector. 

Proof: It follows immediately from (5.96) that if O'aP = 0 
then w(a,JJI = O. Alternatively, the result can be established 
by considering conditions (3.30) and (3.31) of Theorem 3.4. 
When 0'a,8 = 0, it follows from (5.93), (5.94), and (5.96) that 

• 
~ = 0, .Y a,8 = 0, and na = - (log w).a; (3.30) is therefore 
satisfied and (3.31) reduces to 

(log(t /w)).a = 0, (5.97) 

which requires that 5 = pw, where Pis a constant. Since also 
'" = s~ /2 = 0, it follows that wa is a Killing vector. 0 

The foregoing result did not require 0 = O. If further 
0=0 then the flow is rigid and Wa is a constant by (5.96). 
Killing's equation w(a.PI is trivially satisfied. 

Condition (3.30) with (5.94) places the following restric
tion on the shear of a fluid which admits a conformal Killing 
vector parallel to wa

: 

2 p! pG'lJv. y1" 0' ILIY.1" + (l/ ( 2 )(w1" 0' TV.A WVA) PaP = 0 . (5.98) 

Unlike (5.91), to which it corresponds, (5.98) is identically 
satisfied in any shear-free fluid. Equation (5.90) has no ana
log in Newtonian theory because it is derived from the purely 
relativistic condition (5.5). 

VI. MATERIAL CURVES IN ROTATIONAL FLUIDS 

We have seen that vortex lines which are material curves 
play an important role in the theory of spacelike conformal 
motions. We conclude by examining the restrictions im
posed on the flow of a thermodynamical perfect fluid by the 
requirement that the vortex lines are "frozen-in" to the fluid, 
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and then to illustrate Theorem 5.2 (ii) we consider a rota
tional electrically conducting fluid with vanishing electric 
field; in such a fluid Maxwell's equations require the mag
netic field lines to be material curves.24 

A. Rotational thermodynamical perfect fluid 

To investigate the restriction imposed on the flow by the 
requirement that vortex lines be material curves, we consider 
again the vorticity propagation equation23,24 

h :til = Ua;bwb - Owa + !'lJabcdUbUc;d . (6.1) 

On defining na = wa 
/ w, it follows that 

• • h a hb = ua _ (n u' )na + (1/2w) pa'TI'bcdu U b t t·, b Cjd' (6.2) 

where 

(6.3) 

But from Appendix A, the necessary and sufficient condi
tion for na (na ua = 0) to be the unit tangent vector field to a 
material curve is that it satisfy the propagation equation 

• • h :hb = ua - (n,u/)n° ; (6.4) 

hence vortex lines are material lines in the fluid if and only if 

° lbed' 0 (6 5) P,'IJ Ubuc;d = . . 

The kinematical condition (6.5) applies to all fluids. Dynam
ics is introduced through the momentum conservation equa
tion for uc • 

We restrict consideration to a thermodynamical perfect 
fluid.3.20.25 We assume that there exists an equation of state 
e = e(p,l/p), where e is the specific internal energy density 
and p is the particle rest-mass density, measured by ua

; we 
have p, = p( 1 + e), where p, is the total energy density mea
sured by uO

• The temperature T(p,l/p) and the specific en
tropy S(p,l/p) can then be defined by the Gibbs equation 

TdS=de+pd(l/p), (6.6) 

which may be rewritten as 

dp = pdf - pT dS , (6.7) 

where f= 1 + e + pip = (p, + p)/p is the index ofthe flu
id.25 [The remaining assumption that rest mass is conserved, 
which implies (pua);a = 0, will not be required.] With the aid 
of (6.7) the momentum conservation equation for a perfect 
fluid, 

Uo = - [l/(p, + p)]h ~ P.b , 

may be rewritten as 

Uo = - h ~(logf).b + (T /f)h ~S.b . 

Thus 

'IJ'bedUb UC;d = 2((T /flS - (logf) ')w' 

+ 'IJ'bedubS.c(T /f).d 

and since n' = w' /w we have 

Pa'TIlbedU U = p0'TI'bedU h PS h q (T/'I) 
I" b Cod I" b c .p d .q • 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

Thus by (6.5), vortex lines are material lines in a thermodyn
amical perfect fluid if and only if 

D. P. Mason and M. Tsamparlis 2895 



                                                                                                                                    

P
a1'ltbcdu h PS h q (T 1,/) = 0 . 
t·/ b c ,p d ,q (6.12) 

There are three cases to consider. 
Case (i). h~S.b=O andlor h~(TI/).b=O: Condition 

(6.12) is clearly satisfied. Further, there always exists an ac
celeration potential. For by (6.9), if h ~S,b = 0 then lis an 
acceleration potential, while if h ~(T I/),b = 0 then 
/ exp( - TS 1/) is an acceleration potential. It is well estab
lished24 that the existence of an acceleration potential is a 
sufficient, but not necessary, condition for vortex lines to be 
"frozen-in" to the fluid. 

Case (ii). h ~S.b#O and h ~(Tlj).b#O but parallel: 
Condition (6.12) is again satisfied. 

Case (iii). h ~S.b#O and h ~ (T 1/ J.b#O and not paral
lel: Condition (6.12) is satisfied if and only if 

S,ana = 0 and (T I/),ana = 0, where na = maim. (6.13) 

To establish this result, suppose first that (6.12) is satisfied; 
then 

1'I
tbcdU h PS h q(T 1,/) = ant ./ b c ,p d ,q , (6.14) 

forsomescalara:;i:O andnt = mt 1m. On contracting (6.14) in 
tum with h ~S,r and h ~(T I/),r, (6.13) is derived. Conversely, 
suppose that (6.13) is satisfied. At anyone point expand 
h ~S,b and h ~ (T I/),b in terms of a local orthonormal tetrad 
consisting of ua

, n°, ~, and sa, where ~ and ~ are mutually 
orthogonal unit vectors lying on the "screen" erected by ob
server ua at the given point. By (6.13), h ~S,b and h ~(T I/),b 
have components only in the directions ~ and ~ and there
fore 

",tbcdubh !S,ph ~(T I/),q = p",tbcdubrcsd , (6.15) 

for some scalar p. But ",tbcdubrcsd is parallel to nt and there
fore contracting (6.15) with p~ gives (6.12). 

In case (iii) the vortex lines are material lines if and only 
if Sand T 1/ are constant along a given vortex line, i.e., if 
and only if the vortex lines lie along the intersection of the 
two-dimensional surfaces S = const and T 1/ = const. If 
h ~S,b and h ~(T I/),b are parallel [case (ii)), then these two
dimensional surfaces coincide. The vortex lines do not neces
sarily lie on these surfaces in this case. It is only in case (i) that 
an acceleration potential necessarily exists. 

In Newtonian theory, the propagation equation for the 
vorticity vector ma in a self-gravitating fluid is23 

tlJa = va,(Jm P - ()ma + !",afJYap,y , (6.16) 

where va denotes the velocity field of the fluid particles and 
aa describes the combined effects of gravitational and iner
tial forces. It is found using (AW) of Appendix A that vortex 
lines are material lines if and only if 

P
a1'lTpYa = 0 T'/ (J.y , (6.17) 

where p~ = h ~ - nanT and na = maim. For a perfect fluid, 
the momentum conservation equation may be written as23 

aa = - (1/p)p,a . (6.18) 

The Gibbs equation is valid in Newtonian theory, and corre
sponding to (6.12), the following necessary and sufficient 
condition for vortex lines to be material lines in a thermo
dynamical perfect fluid is obtained: 
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P
a1'lTpyS T = O. (6.19) 
T'/ ,13 ,Y 

If S,a and T,a are both nonzero and nonparallel, then vortex 
lines are "frozen-in" to a perfect fluid if and only if they lie 
along the intersection of the surfaces S = const and 
T = const. The factor 1// multiplying Tin (6.12) is a relativ
istic effect due to the increase in the effective inertial-mass 
density from the Newtonian value p to p. + p. 

B. Magnetic field lines In a rotational fluid 

Finally we discuss an example which illustrates 
Theorem 5.2 (ii). Consider a congruence of magnetic field 
lines in an electrically conducting fluid with nonzero vorti
city. The electric and magnetic field four-vectors, E a and 
Ha, measured by an observer with four-velocity ua are de
fined by (5.2); both E a and Ha are spacelike vectors since 
Eaua = Haua = O. We assume that (i)Ea = 0, (ii)ma:;i:O, and 
(iii) space-time admits a spacelike conformal Killing vector 
field parallel to H a. Physically the approximation of vanish
ing electric field can occur in a fluid for the idealized limit of 
infinite electric conductivity even when the anisotropy of the 
electric conductivity due to the magnetic field is taken into 
account.53 

When Ea = 0, it is a direct consequence of Maxwell's 
equations that the magnetic field lines are materiallines24

,s4 

and hence since ma:;i: 0 and space-time admits a spacelike 
conformal motion with symmetry vector parallel to Ha, it 
follows from Theorem 5.2 (ii) that the magnetic field lines 
must coincide with the vortex lines; thus 

na = HalH = maim. (6.20) 

This result was derived previously for the special case in 
which there exists a spacelike Killing vector field parallel to 
Ha (see Ref. 55). The property that the vortex and magnetic 
field lines coincide is a purely relativistic effect, the results of 
Theorem 5.2 having no direct analog in Newtonian theory. 

Since the magnetic field lines are material lines, the vor
tex lines must also be "frozen-in" to the fluid. Unlike the 
magnetic field lines, which are material lines due to a phys
ical property of the fluid (E a = 0), the vortex lines are mate
rial lines due to a property of the flow. The flow must satisfy 
condition (6.5). If the fluid is a thermodynamical perfect flu
id with uniform magnetic permeability A and if the magnetic 
field is described by the Minkowski energy-momentum ten
sor with E a = 0, then the momentum conservation equation 
may be expressed asS6 

ita = - h ~ (log/),b + ; h ~S,b + ~ ",abcdubfcHd , 

(6.21) 

where fa is the conduction current. (fa = h b Jb, where Jb 
is the four-current density vector.) If fa is parallel to Ha 
then ",abcdubfcHd = 0 and the magnetic field is force-free; 
condition (6.5) reduces to (6.12) discussed in Sec. VI A. In 
general fa will not be parallel to H a and (6.5) with (6.21) will 
be complicated. We will not consider condition (6.5) further 
here, but it must be assumed that the flow is such that (6.5) is 
satisfied. 

We now show that certain quantities are conserved 
along the magnetic fieldlvortex lines. 
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Theorem 6.1: If a fluid space-time admits a spacelike 
conformal motion with symmetry vector parallel to n°, 
where 

n° = HO/H = CtJ°/CtJ, (6.22) 

and if EO = 0, then 

(i) ~(~2) =0 
dp H ' 

(6.23) 

(ii) ~(~)=o, 
dp CtJ 

(6.24) 

(iii) ~(!:C)=o 
dp H ' 

(6.25) 

where p denotes arc length measured along a magnetic 
field/vortex line and ~ is the magnitude of the rotation of 
the spacelike congruence generated by n° as measured by a 
comoving observer with four-velocity uo. 

Proof: (i) From definition (2.17), 

'C = pobno;b , (6.26) 

where for a comoving observer, pOb = g"b + uOub _ nOnb. 
With n° = HO/H, (6.26) becomes 

* 'C = (l/H)h obHo;b - H /H. (6.27) 

But from Maxwell's equations, since EO = 0 (see Ref. 24), 

HO;bh: = 0 . (6.28) 

Using also (4.34) for 'C, (6.27) assumes the form 

D 
-=;--(H8A) = O. (6.29) 
dp 

But since space-time admits a conformal Killing vector par
allel to n°, we have, by (4.33), 

!!...(~28A ) = 0 . (6.30) 
dp 

Equation (6.23) follows immediately from (6.29) and (6.30). 
(ii) Definition (6.26) with n° = CtJ°/CtJ becomes 

* 'C = (l/CtJ)h obCtJo;b - (CtJ/CtJ) . (6.31) 

But23•24 

(6.32) 

and by (5.5), CtJauo = ~CtJ'C. Equation (6.31) therefore be
comes 

• !'C = - CtJ/CtJ , 

and hence with the aid of (4.34) for 'C we obtain 

~ (CtJ28A ) = o. 
dp 

(6.33) 

(6.34) 

Unlike (6.29), the conformal symmetry property was used in 
the derivation of(6.34). Equation (6.24) follows directly from 
(6.30) and (6.34). 

(iii) Equation (6.25) is obtained from (6.23) and (6.24). 0 
An identity of the form (6.25) was derived by PrasadlO 

without assuming the conformal symmetry property but as
suming instead that the magnetic field and fluid vorticity are 
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aligned, that O'obW = 0 and (H" /H) = 0, and that the 
shear .Y ob of the congruence of magnetic field/vortex lines 
vanishes. 

In Theorem 6.1, the nature of the fluid was not specified, 
except for the requirement that ~ = O. If the fluid is a ther
modynamical perfect fluid then ~ , H, CtJ can all be related to 
f, the index of the fluid. 

Theorem 6.2: Suppose a fluid space-time admits a space
like conformal motion with symmetry vector parallel to n° , 
where na is given by (6.22), and that ~ = o. Iffurther UO is 
given by (6.21) and 

S.on° = 0, (6.35) 

then 

(i) ~(~) =0 
dp f ' 

(6.36) 

(ii) ~(H) =0 
dp [2 ' 

(6.37) 

(iii) ~ (;) =0, (6.38) 

where ~ is the rotation of the spacelike congruence generat
ed by nO as measured by UO • 

Proof: (i) By (5.5), 

(6.39) 

and using (6.21) for UO together with the assumption S.on° 
= 0, we obtain 

'C = - 2(logf)*. (6.40) 

On relating 'C to 8A through (4.34) we find that 

~ (j28A ) = O. (6.41) 
dp 

But by (4.33), 

~ (~28A ) = 0, (6.42) 
dp 

and (6.36) follows immediately from (6.41) and (6.42). 
(ii) and (iii). Equations (6.37) and (6.38) follow directly 

from (6.23), (6.24), and (6.36). 0 
The assumption S.o n° = 0 of (6.35) is consistent with 

(6.13) which would apply through the "frozen-in" condition 
(6.5) if, for instance, the magnetic field were force-free. If the 
stronger assumption, S constant everywhere, is made, thenf 
is directly proportional to r defined by (5.50). To see this, we 
note that when S is constant everywhere, the Gibbs equation 
(6.7) reduces to dp =p df and hence sincef= (Jl + p)/p, 
(5.50) becomes 

r = exp ( rf df ) = f , (6.43) 
Ufo f fo 

wherefo is a constant. In place ofEqs. (6.36H6.38) we there
fore have for an isentropic thermodynamical perfect fluid 
[equivalently, a perfect fluid with barotropic equation of 
state p = p( Jl)] 

~(~) =0, (6.44a) 
dp r 

~ (~) = 0, (6.44b) 
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~ (~) =0. (6.44c) 

Equations (6.23), (6.24), (6.36), and (6.44a) were derived 
from a comoving observer at anyone point. But since the 
magnetic field/vortex lines are material lines in the fluid, all 
other observers employed along the congruence will also be 
comoving if a comoving observer is employed at any point, 15 
and hence these four equations are valid along the length of 
the congruence; f!l(2/B, fJ( /(i), fJ( /f, and fJ( /r are therefore 
conserved along the congruence and anyone may be taken as 
a measure of the strength of a flux tube formed by curves of 
the congruence. Also from (6.25), (6.38), and (6.44c), we have 
along a magnetic field line 

(i)2 / B = const, 

(i)// = const, 

(i)/r = const. 

(6.45a) 

(6.45b) 

(6.45c) 

All three results (6.45aH6.45c) were derived assuming that 
space-time admits a conformal Killing vector parallel to Ir 
and that E' = 0: otherwise (6.45a) is independent of the 
physical nature of the fluid, (6.45b) applies to a thermodyna
mical perfect fluid satisfying (6.35), and (6.45c) to a perfect 
fluid with equation of state p = p( p). These three results in 
general relativity are similar in nature to Ferraro's law of 
isorotation26 in nonrelativistic magnetohydrodynamics in 
which under certain circumstances the angular velocity of 
rotation of an electrically conducting fluid about an axis of 
symmetry is constant along a magnetic field line. Other ana
logs in general relativity of Ferraro's law ofisorotation have 
been considered. 10,55,57,58 

VII. CONCLUDING REMARKS 

As with a timelike conformal motion, we have seen that 
the properties of a spacelike conformal motion with symme
try vector parallel to a spacelike unit vector field na can 
usefully be studied in terms of quantities such as the expan
sion, shear, and rotation of the spacelike congruence gener
ated by na. The essential properties of this spacelike con
gruence, which apply in both general relativity and 
Newtonian theory, are vanishing shear and a rotation which 
varies inversely as the square root of cross-sectional area 
along a flux tube formed by curves of the congruence. Purely 
relativistic effects are also important, especially in relation to 
material curves in a fluid space-time: if na ua = 0, then in an 
irrotational fluid the curves of the congruence generated by 
na must be material curves, while if the vorticity of the fluid 
is nonzero then the curves are material curves if and only if 
the congruence is a vortex congruence. 

We have considered here applications of our results to 
fluid space-times only. For instance, we have not investigat
ed applications to matter symmetries in the general relativis
tic kinetic theory of gases. The concept of a matter symmetry 
was introduced by Berezdivin and Sachs59,60: roughly, a 
matter symmetry will exist if there exists a vector field on 
eight-dimensional one-particle phase space that leaves the 
distribution function of matter unchanged. Berezdivin and 
Sachs established elementary properties and showed that a 
surface forming matter symmetry for a collision-free gas 
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gives rise to a motion on space-time. The idea of a matter 
symmetry may be extended through the work ofIwai61 and 
Oliver and Davis62; the latter two authors include theorems 
relating to conformal Kiling vectors. Oliver and Davis also 
considered two generalizations of the definition of matter 
symmetries in order to relate symmetry properties more gen
eral than motions to matter symmetries. There are many 
questions concerned with the relation between symmetries 
in one-particle phase space expressed as matter symmetries 
and symmetries in space-time that have not yet been settled. 

Spacelike symmetries have been studied in connection 
with the Cauchy initial value problem.3,63-65 If an initial 
spacelike hypersurface is endowed with a symmetry proper
ty, future spacelike hypersurfaces compatible with Ein
stein's equations do not necessarily preserve the symmetry. 
Berger65 has derived the constraints imposed on initial data 
in a spacelike hypersurface due to the presence in space-time 
of a conformal Killing vector. For the special cases of a mo
tion and a homothetic motion it can be shown that these 
constraints are preserved by the Einstein evolution equa
tions in free space. For a proper conformal Killing vector 
this in general is not the case. Additional restrictions on the 
spacelike hypersurface have to be satisfied and in general 
these restrictions prevent a proper conformal Killing vector 
in spacelike initial data from being a space-time proper con
formal Killing vector. 

The level of symmetry considered in this paper, that of a 
conformal motion, represents a condition on the first deriva
tives of the metric tensor gab' This compares with, for in
stance, the affine collineation, which places a restriction on 
the second derivatives of gab' and the Ricci and curvature 
collineations, which place restrictions on the third deriva
tives of the metric tensor, which cannot in general be re
duced to conditions on the first derivative (Oliver and Da
vies3). Also in the symmetry property inclusion diagram,21 
the Riemann curvature tensor does not appear at the level of 
symmetry of a conformal motion. Hence Einstein'S equa
tions (and the energy and momentum conservation equa
tions) were not required in the derivation of many of our 
results, which are therefore essentially kinematical in na
ture. For instance, material curves result as a consequence of 
a restriction on the flow due to the conformal symmetry 
property and not due to the physical nature of the fluid. 
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APPENDIX A: MATERIAL CURVES 

This appendix is concerned with the equation governing 
the propagation along a fluid particle world line of the unit 
tangent vector to a material curve in a fluid. 16 

Theorem A.l: Let na denote the unit tangent vector to a 
spacelike curve in a fluid space-time such that na ua = 0, 
where ua is the unit four-velocity of the fluid. Then the curve 
is a material curve in the fluid if and only if na satisfies the 
propagation equation 

• • h :;,b = ua _ (nbub)na , (AI) 

where h: =gb + uaub. 
Proof: Consider a spacelike curve ~ with unit tangent 

vector na (na ua = 0). 
(i) Suppose first that ~ is a material curve in the fluid. 

Then any two neighboring fluid particles initially on ~ al
ways lie on ~ and hence the vector linking these particles 
always lies in the instantaneous direction of the unit tangent 
vector, na 

, to ~ at the particles. If ~l is the distance as mea
sured by ua between the particles at any instant, then the 
vector ~lna links at all times these two particles and since 
also na ua = 0, ~lna lies in the rest space of ua and is there
fore a relative position vector. But a relative position vector, 
X~, satisfies the equation23 

h aX' b a Xb. b l=U;b 1> 

hence 

h :(~lnb). = ua ;b(~lnb). 

Contracting (A3) with na gives 

(A2) 

(A3) 

(A4) 

and on substituting from (A4) for (~l)' /~linto (A3) we obtain 
(AI). 

(ii) Conversely, suppose that (AI) is satisfied. Define 

(AS) 

where integration is performed along a fluid particle world 
line from some arbitrarily chosen space section S of space
time, 7" is proper time measured along a fluid particle world 
line from S, and {ya 1 (a = 1,2,3) are the coordinates of a 
fluid particle in S. Then 

and (AI) may be rewritten as 

h :(Anb). = ua ;b(Anb). 

(A6) 

(A7) 

But since na ua = 0, EAna for any small constant E lies in the 
rest space of ua and will link two neighboring fluid particles 
at 7" = 0. Hence there exists a relative position vector X~ 
such that at 7" = 0, X ~ = EAna. Define C" = X ~ - EAna ; 
then at 7" = ° we have C" = 0, and also by multiplying (A 7) 
by E and subtracting from (A2), we have for, 7">0, 

h :tb = ua .bCb. (AS) 

Hence C" = 0, and X~ = EA.na, for all 7">0. Thus if EAna 

links two neighboring fluid particles initially it does so at all 
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later times. The same fluid particles therefore always lie on 
~ as the fluid evolves, and hence ~ is a material curve in the 
fluid. 0 

Since it was assumed in Theorem Al that na ua = 0, we 
• • 

have nbub = - Ubnb and Eq. (AI) may be written equiv-

alentlyas 

• • h :;,b = ua + (ubnb)na. (A9) 

For comparison we state the corresponding theorem in 
Newtonian theory. 

Theorem A.2: Let na denote the unit tangent vector to a 
curve in a fluid and denote by va the velocity field of the fluid 
particles. Then the curve is a material curve in the fluid if and 
only if na satisfies the propagation equation 

• • ;,a = va _ (npvP)na, (AW) 

where the overhead dot denotes the convective time deriva
~ 0 

APPENDIX B: PROPAGATION EQUATION FOR 
ROTATION 

In this appendix an outline is given of the derivation of 
the equation governing the propagation of f/( ab along a 
curve of a spacelike congruence. Further details, as well as 
the propagation equations for ~ and Y ab , are given by 
Tsamparlis and Mason. IS 

Theorem B.l: Let na be the unit tangent vector field to 
the curves of a spacelike congruence. The propagation equa
tion for f/( ab may be expressed in the following two equiva
lent forms: 

• • 
(i) p~ p:(f/( cd - n[c;d 1 + 2w'nt;[cnd 1) 

- 2yc[af/( b lc + ~ f/( ab = 0, (Bl) 

• 
(ii) .?nf/(ab =p~ p:(n[c;d 1- 2w'nt;[cnd 1)' (B2) 

Proof: The Ricci identity for na is 

(B3) 

On contracting (B3) with nC and noting that 

• 
na;cbnc = na;b - na;cnc;b, (B4) 

we obtain 

• 
(na;b)* = na;b - na;cnc;b + R,abcn'nc. (BS) 

Define 

Aab = p~ p:nC;d = f/( ab + ~~ Pab + Yab' (B6) 

On substituting (2.23) [with (B6)] into (BS), projecting on 
indices a and b with p~ p~ and using the Greenberg transport 
law in the form (2.12), we obtain (renaming the free indices) 

• 
p~ p:A cd = -AacA cb + p~ P:R'Cd.n'n· 

(B7) 
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The propagation equation for f/I ab is the skew part of IB7). 
[The propagation equation for ff is the trace of IB7) and the 
propagation equation for Y ab is the symmetric trace-free 
part of (B7).] 

Ii) The skew part of IB7) is 

• c d al A c A + c dR t s 
Pa Pb;;/( cd = - [b alc Pa Pb t[cdls n n 

• + p~ pt(n[c;d 1- 2wtnt;[cnd I)' (BS) 

Since 

AC[bAalc = fff/l ab -2yc[af/lblc' 

and 

(BS) reduces to (BI). 

IB9) 

(BIO) 

(ii) Equation (B2) is derived from (BI) by showing, with 
the aid of the Greenberg transport law (2.24), that 
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In a recent paper a unique solution of the field equations of theory A, describing the outer field of 
the sun, has been obtained for each value of the coupling constant W. Here, this solution is studied 
in detail for any possible value of W (horizons, singularities, ... ) and the Birkhofftheorem is 
proved in the framework of theory A. 

I. INTRODUCTION 

The scalar-tetradic theory A (T A) is a generalization of 
Moller's theory of gravitation (MT).I,2 In order to explain 
the interest in T A, let us mention the following facts. 

(i) MT is a theory of gravitation giving satisfactory re
sults in its applications to cosmology and gravitational radi
ation,3,4 which has been proved to be formally identicalS to 
the teleparallellimit of the guage theory formulated by Hehl 
et al.6 

(ii) In TA, there is a scalar field playing the role of the 
gravitational constant just as in the theory proposed by 
Brans and Oicke7 (BOT). This fact could be important in 
cosmology and astrophysics, where the small variations of 
the scalar field (gravitational constant) could lead to new 
results. It has suggested numerous investigations in 
BOT,8-1O which can be extended to TA. 

(iii) An energy-momentum complex leading to localized 
gravitational energy 1 1 has been defined in T A.I 

(iv) Some satisfactory results in connection with cosmol
ogy and the gravitational radiation problem have been ob
tained in theory A (see Ref. 12); in particular the intergalac
tic energy assumption is not necessary to solve the problem 
of the missing matter of the universe. 

(v) The PPN limit ofT A appears to be identical to that of 
general relativity (OR) for any nonvanishing value of the 
coupling constant W of T A. 13 

Because of these considerations, we think TA is interest
ing and, consequently, we are developing this theory in a 
series of papers. This one deals with both (1) the Birkhoff 
theorem in the framework of TA and (2) the existence of 
horizons and singularities in the case of the three solutions of 
the equations ofT A, called 1, 2, and 3 in a previous paper, 13 
which are the unique solutions compatible with the PPN 
limit ofT A 1ft = r = 1). In Ref. 13 we proved that solution 1 
corresponds to W < 0 or W> 2, solution 2 to 0 < W < 2, and 
solution 3 to W = 2; therefore, we have a unique solution 
corresponding to a fixed value of W. 

The Birkhoff theorem guarantees that the outer field of 
any spherical source is static and it does not depend on its 
inner structure, but only on its Newtonian mass. 

The horizons and the singularities will be important in 
discussions both of (a) the occurrence of black holes, and (b) 
the explanation of the present experimental data about the 
binary x-ray sources. 

We shall now describe briefly this work. T A is summar
ized in Sec. II. In the next section we describe the spherically 
symmetric case by using Schwarzchild coordinates. The 
Birkhofftheorm is proved in Sec. IV. The curvature ofsolu
tions 1,2, and 3 is computed in Sec. V, getting a singularity in 
the case of the solution 1. In Sec. VI we study the radial free 
fall of a test particle in the space-time described by the above 
solutions. In Sec. VII we use the complex defined in T A to 
calculate the gravitational energy localized outside a spheri
cal star of Newtonian mass m and radius R. Finally, in Sec. 
VIII we summarize our main conclusions. 

II. THE THEORY A 

The gravitational field is described by a tetrad field h" 
and a scalar field ~ with the dimensions of the inverse of the 
gravitational constant G. 

The barred indices denote different vectors of the tetrad 
and the nonbarred ones are common tensorial indices. All 
the indices run from 1 to 4. 

The partial derivative of arbitrary A with respect to the 
r coordinate will be denoted by A 'j and the ordinary covar
iant derivative (Christoffel symbols) by A;j. 

The vectors hI, h7,' and h3 are assumed to be real and h. 
imaginary, in this way the metric 

(1) 

has Lorentz signature, and the symbols of connection 

r j
jk = h ~h"),k (2) 

are nonsymmetric; then, the tensor S ~k = !(F j jk - r j kj) 
allows us to define the vector r j = S" j" • 

As has been proved,1 the equations of motion ofT A are 
the following: 

Til;) =0, (3) 

where Til is the energy momentum tensor. These equations 
are a consequence of the field equations. They are formally 
identical to those of OR, MT, and BOT. 

The field equations ofTA can be written as follows (see 
Ref. 12): 

~(Gil +lHil)-(w/~)[~'j~'i -!gil~'k~,k] +~.Jj 

+ ~'irj - ~'1Ir gil - ~'11 (S}j1l + Sil1l) = 81TTil , (4) 

• 
A. [~Fil +~,.(5jSj -S;'j -Sjj)] 
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+ ;,Irj - ;,jri + ;,sSS i} = 0, (5) 

R-.1H; - 4r i
;i + 2W;-l;,i;i - W;-2;,i;,1 = 0, (6) 

Gi} being the Einstein tensor, R the scalar curvature,.1 and 

W arbitrary dimensionless constants, and ;,n = g"m ;,m . 
The tensors Fi} and Hi} are also involved in the field equa
tions ofMT, 

Gi} +.1 Hi} = 811"Ti}' Fi} = 0, (7) 

and their explicit form (see Ref. 12), will not be necessary 
here. 

III. THE SPHERICALLY SYMMETRIC CASE 

The isotropic coordinates used in a previous paperl are 
not adequate to prove the Birkhoff theorem. We will use 
Schwarzschild coordinates. In these coordinates we will 
consider the following tetrad: 

hII = ell cos (/> sin B, hI2 = r cos (/> cos B, 

hI3 = - r sin (/> sin B, 

hil = ell cos B, hi2 = - r sin B, hi3 = 0, 

h31 = ell sin B sin (/>, h32 = r sin (/> cos B, 

h33 = r sin B cos (/>, 

hI4 = hi4 = h34 = h41 = h42 = h43 = 0, hi,4 = iea 

(8) 

(whose explicit form in isotropic coordinates has been al
ready presented I). Since we treat the nonstatic case, the func
tions a and {3 depend on rand t. 

The line element has the form 

dS 2 = _ e2a dt 2 + e2{J dr + r(sin2 B d(/> 2 + dB 2) (9) 

and the tensor S ~k has the following nonvanishing compo
nents: 

2S 2
12 = - 2S

2
21 = r-l(eIl - 1) = 2S

3
13 = - 2S

3
31, 

2S
4

41 = - 2S\4 = a', 2S 114 = - 2S 141 = p, (10) 

where an overdot denotes a derivative with respect to the 
coordinate t and a prime denotes a derivative with respect to 
r. 

As a consesquence of a paper by Schweizer et al. 14 it 
follows that the tensors Fi} andHi} involved in the equations 
ofMT (and TA) vanish in the case of the above tetrad [take 
into account the form of the tetrad (8) and the metric (9) in 
the isotropic coordinates X, Y, Z, t]. This fact also can be 
proved by a simple but lengthy calculation based on Eqs. (9) 
and (10) and the definitions of Hi} and Fi} (see Ref. 12). 

It is worthwhile to notice that; is a function of rand t. 
The components of the Einstein tensor corresponding to 

the metric (9) are given in numerous references. IS 

IV. THE BIRKHOFF THEOREM 

By using the data of Sec. III and the field equations of 
T A presented in Sec. II, we easily obtain the equations de
scribing the evolution of a spherically symmetric source. 

In the presence of matter as well as in the vacuum, the 
six equations (5) reduce to 

¢=o, (11) 
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therefore, in the spherical case, the scalar; only depends on 
the variable r. 

Taking into account Eq. (11) and by writing; = eY , Eqs. 
(4) become 

e- 2a(j3/r) = -(411"/;)Ti, (12) 

r-2 + e- 2{J [ - (W /2)y'2 + 2r- I y'(eIl - 1) 

+ (2{3'/r) - r- 2
] = - (811"/; )T!, (13) 

- r- 2 + e-2{J[ - (W /2)y'2 + 2r- Ia' + r-2] = (811"/; )TL 

X raw + a,2 - a'{3' + (a' -{3')r- 1 

+ (W /2)y,2 - y'{(eIl - l)r- 1 - a'}] = (811"/; )Ti, 

and Eqs. (6) and (11) lead to 

- r- 2 _ 2e- 2a(jJ +p2 _ aP) + e- 2{3 

x{W[y" + y'(a' -{3' + 2r- 1 

+ y' /2)] + 2a lt + 2a,2 

- 2a'P' + 3r-2 + 6a'r- 1 
- 4/3'r- 1 

- 2e1lr- 2(l + a'r)} = 0. 

(14) 

(15) 

(16) 

The last equation can be obtained from Eqs. (11 H 15) due to 
the existence ofthe identies T i};j = 0. 

In the vacuum spherically symmetric case (T i) = 0), we 
obtain the following results: (i) Eq. (12) becomes 

P = 0, (17) 

hence, thefunction{3onlydependsonr(as; );and(ii)Eq. (14) 
can be written in the form 

a' = (1/2r) (e2{J - 1) + Wry'2. (18) 

The right-hand side of the last equation only depends on 
r; therefore, an integration will give the following functional 
form of the solution: 

a = aIr) + f(t), (19) 

fIt ) being an arbitrary function. Then, a simple redefinition 
of the time coordinate leads to a static tetrad generating a 
static spherically symmetric metric, and Eqs. (13), (18), (15), 
and (16) reduce to the corresponding equations of the static 
spherically symmetric case. Thus, we conclude that the out
er field (hq,;) of a spherically symmetric nonstatic source is 
always a static spherically symmetric field, which proves the 
Birkhoff theorem in the framework of T A. 

In spite of the complicated form of the field equations of 
T A, the Birkhoff theorem holds as well as in GR. 

V. SINGULARITIES 

Since solutions 1,2, and 3 have been proved to be very 
satisfactoryl3 due to their agreement with present solar sys
tem data, we will study these solutions in detail. In this sec
tion we compute the curvature with the essential aim of 
studying the existence of singularities. 

We have the line element (isotropic coordinates) 

dS 2 = - ~ dt 2 + e2{J (dr + r dB 2 + r sin2 B d(/> 2), 
(20) 

and we define the one-forms 
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Wi = eP dr, W 2 = reP dO, 

W 3 = r sin OeP dtP, W 4 = ea dt, 

then the two-forms of curvature arel5 

~j = - ~i = H (WI A W2), 

~~ = -~~ =H(WI AW3), 

~5 = - ~~ = P( W 2 A W 3
), 

~! = -~1 = U(WIAW4), 

~; = -~; = V(W2AW4), 

~! = -~~ = V(W3AW4), 

where 

H = - (1/r)e- lP (t1' + r,8 H), 

P= - (1/r)e- lP(2,8' + r,8,2), 

U = - e- 2{J(a" + a,2 - a',8'), 

V= - (1/r)e- lPa'(l + r,8'), 

and the symbol A denotes the exterior product. 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

Now, we compute the quantities H, P, U, and V for 
solutions 1,2, and 3. 

Solution 1. W < 0 or W> 2: This solution is defined by 

a = (1/8 )[In(l -..1 ) -In(l +..1 )], (27) 

,8 = [(1/82) - (1/8)]10 (1 -..1 ) 

+ [(1/82) + (1/8)]ln (1 +..1 ), (28) 

with 

8 = [( W - 2)1W] 112, (29) 

..1 = m8!2r. (30) 

Taking into account Eqs. (23)-(30), we easily get 

H = (X /2)[..1 2 - (2.J /8) + 1], (31) 

P=X[(..1 2/8 2)_(..1/8) + 1_..12] [(..1/8)-1], (32) 

U = - X [(..1 /8) - 1 j2, (33) 

V = (X /2)[ 1 -..1 2 + 2(..1 /8)2 - 2(..1 /8 )], (34) 

where 
X= (- 2m/~)(1-..1 )[(218)-(218

2)-2] 

X(l +..1 )[(-218)-(218
2
)-2]. (35) 

We see that the functions H, P, U, and V tend to 00 as r 
tends to m8/2; hence, the curvature becomes singular at this 
value of r, which will be denoted by r s. 

Furthermore, from Eqs. (27) and (28), it follows that the 
metric is not well behaved at rs. 

Here rs does not define a horizon (as the Schwarzschild 
radius in GR) but a true physical singularity. An infalling 
observer feels infinite tidal forces at rs. This solution must be 
discarded if a sphere of fluid with a realistic equation of state 
can reach the singular radius in a finite time in accordance 
with the equations ofTA. 

Solution 1 tends to the Schwarzschild solution as I WI 
tends to 00 (rs tends to the Schwarzchild radius); in this limit 
the singularity at rs is removed and the functions H, P, U, 
and V take finite values at r = ml2 (as occurs in the 
Schwarzschild horizon). 

The singular radius is small except when W is close to 

2904 J. Math. Phys., Vol. 26, No. 11, November 1985 

zero; therefore, the small values of I W I must be discarded at 
all. 

Solution 2. 0 < W < 2: In this case we have 

a = 1J [ - 1T + 2 tan - I ~ ], (36) 

,8 = 1J[1T - 2 tan-I ~] -1J2In(1 + ~ -2), (37) 

where 

1J = [W /(2 - WlP12, 

~= 21Jr/ m, 

(38) 

(39) 

and the function y = tan - I x takes values in the interval 
[0,1T/2]. 

We easily obtain 

H= y{~2[(m/r)-1] + n, (40) 

P= y[~2 _ 41J~ - (m/r) (1 + 1J2) + 2(1 + 21J2)], 

(41) 

U = - 21JrY [(41J/m) - (~/m) - (1J/r)], (42) 

V= - Y[l +~2+21J2_21J~], (43) 

where 

y = (41J2/mr)~ -4'1'(1 + ~2)(21/2-2)e-21/["'-2tan-I']. 
(44) 

The functions H, P, U, and V take finite values for any 
value of r, except for r = 0; therefore, in the case of solution 
2, the curvature does not have any singularity at r¥=O what
ever the value of the constant W (0 < W < 2) may be. Else
where we have seen that in the case of this solution there are 
no horizons. 13 

Solution 3. W = 2: the functions a and,8 have the follow
ingform: 

a= -m/r, 

,8 = (m/r) - (m2/4r). 

(45) 

(46) 

These expressions can be obtained from Eqs. (36) and 
(37) in the limit W-+2 (1J-+00), which proves that, in this 
limit, solution 2 tends to solution 3. 

We easily find 

H=.1[l-(m/r)], (47) 

P =.1 [ - 2 + (2m/r) - (m2/r) + (m3 /4~)], (48) 

U =.1 [ - 2 + (2m/r) - (m2/2r)], (49) 

. V =.1 [1- (m/r) + (m2/2r)], (50) 

where 

.1 = - (m/~)e-2(m/r)+(m212"'). (51) 

From Eqs. (47)-(51) we conclude that, in the case of so
lution 3, the curvature is not singular for any nonvanishing 
value of r. Furthermore, we already know that, in this case, 
no horizons exist. 13 

So far we have studied the singularities of solutions 1,2, 
and 3. 

Since solutions 1,2, and 3 do not have any horizon of the 
Schwarzschild type, the black holes described in GR are not 
possible in T A and, consequently, the experimental data 
about binary x-ray sources require an explanation in accor
dance with this fact. 
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VI. THE RADIAL FREE FALL OF A TEST PARTICLE 

In this section we will study the radial free fall of a point 
test particle in the static spherically symmetric space-time 
described by solutions 1,2, and 3. We will compare our re
sults with those of OR (Schwarzschild case). 

The proper time of the infalling observers is denoted by 
r. 

We shall calculate the following quantities: (1) the radial 
acceleration (d 2r/ dr)o at an arbitrary point r = ro, where the 
velocity vanishes, and (2) the radial velocity of a point test 
particle, which starts from a point r = ro with vanishing ve
locity. 

The radial acceleration (d 2r / dr)o describes the intensity 
of the gravitational field and the knowledge of the radial 
velocity allows us to determine the interval of proper time 
elapsed to reach the radius r starting from r = ro with 
(dr/dr)r= ro = O. In this manner, we can study whether some 
special radius (as the singular radius rs of solution 1) is 
reached in a finite time. 

From the equations of the geodesics of the metric (20), 
we easily get 

(~;t = -a'e- 2fJ
, (52) 

~= - [e2(ao -a)_I]1I2e - P, (53) 
dr 

where ao = a(ro)' These expressions will be studied in the 
three cases corresponding to solutions 1,2, and 3. 

Solution 1: From Eqs. (27), (28), (52), and (53) 
we get 

(~;t = - ::8: (1 -.:i ) - (2115')+ (2/15) - ! 

X (1 +.:i ) - (2115') - (2115) - 1, (54) 

dr 
-= 
dr 

(55) 

As follows from Eq. (54), the modulus of the radial ac
celeration increases when r decreases, tending to the corre
sponding Schwarzschild aceleration as 1 W 1-00 (8-1). 

Furthermore, in the limit r_r s, the radial acceleration 
tends to infinity in such a way that, when W is negative 
(positive), the order of this infinite is smaller (greater) than 
the order of the infinite corresponding to the Schwarzschild 
metric in the limit r_m/2. 

The radial velocity given by Eq. (55) does not vanish at 
any point; therefore, a free infalling particle reaches the sin
gular radius rs in a finite time. However, the pressure inside 
a fluid sphere could stop the fall before the radius r s is 
reached; especially when the radial acceleration of the free 
fall increases more slowly than in OR (W < 0). 

Solution 2: By using Eqs. (36), (37), (52), and (53) we 
obtain 

(d 2r) = _ 41lm [m2(1 + ~ 2W"" -! 
dr 0 
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(56) 

dr 
-= 
dr 
The modulus of the radial acceleration given by Eq. (56) 

increases when r decreases, tending to 00 as r tends to zero, 
and the radial velocity defined by Eq. (57) does not vanish at 
any point; therefore, any radius is reached in a finite time (in 
the free fall). 

The space-time described by solution 2 has neither hori
zons nor singularities; hence, the black holes are not possi
ble, and, consequently, new concepts are necessary in order 
to explain the present observational evidences about binary 
x-ray sources. More study about this question is necessary. 
Now, it is worthwhile to notice that, in a similar space-time 
(Yilmaz exponential metric with a = - m/r andf3 = m/r), 
Clapp!6 defined a new concept, the "gray hole," which could 
be useful in order to explain the above evidence (see Ref. 17). 

Solution 3: Equations (45), (46), (52), and (53) lead to 

(
d 2r) = -!!!.e - (2mlr) + (m'/2r') 

dr 0 r ' (58) 

:~ = _ [e2ao + (2m/r) _ 1] 1I2e - (mlr) + (m'/4r'). (59) 

These expressions can be also obtained from Eqs. (56) 
and (57) in the limit 1]-00 (W-2, W <2). The qualitative 
behavior of the radial acceleration and the radial velocity 
given by Eqs. (58) and (59), respectively, is the same as in the 
case of solution 2. So, any radius is reached in a finite time. 

VII. THE ENERGY LOCALIZED OUTSIDE A SPHERICAL 
SOURCE 

An energy-momentum complex leading to localized 
gravitational energy was defined! in the framework of theory 
A. After some easy manipulations, this complex can be writ
ten in terms of r ~k and S ~k' Its explicit form is the follow
ing: 

1'5 = (1/817) ( - g)!/2(A 5 + t 5), (60) 

where 

t i =rs .(sn i+sni_Si n)_2rnri. +2rirn. 
] nJ S S s nJ nJ 

and 
A5 = -1 H5 + W~-2[~,i~J -(1/2)c55~,k~,k] 

_~-![~,ilj 

+ ~,jri - ~,nrn85 - ¢'"(S/n + S~n) - 81TT5]. 

Th 1 1
· .. .. (62) 

e energy oca lzed mSlde a reglOn V IS defined by 

Hy = - _1_J 1'4 dX! dX 2 dX 3 

8 
4 , 

17 y 
(63) 

and this energy does not depend on the spatial coordinates 
used in the evaluation of the integral.!'!! Taking into account 
this fact and the Birkhofftheorem, we see that the evaluation 
of the energy localized outside a spherical source does not 
require the consideration of its evolutive state and its micro
scopic structure, but only the use of the outer field described 
by one of solutions 1, 2, and 3. 

In isotropic coordinates, we can use Eqs. (20) and (60)
(63) and the nonvanishing components of r ~k and S ~k given 
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in a previous paper! to find the following expression giving 
the total energy localized outside a spherical source with 
Newtonian mass m and radius R (outer energy): 

H = - ~ r+ '" re1a + (3 ) 

2JR 

X [ - ~ y'2 - 2,B'y' +,8'2 + 2a',8']dr. (64) 

In the case of solutions 1 and 2, taking into account Eqs. 
(27), (28), (36), and (37), the last formula can be written as 
follows: 

H=~r+"'(1 + m
2 

)-12+')m
2

{1 +(1 +S-Ij!?: 
2JR 4Sr r r 

_ ((1 :;s) )~2}dr, (65) 

where 

S= W/(2- W), W:;i:2 and W:;i:O. 

In the case of solution 3, by using Eqs. (45) and (46), we 
get the following expression giving the outer energy: 

H=~i+"'e-Im'/4r")m2(1 + m _ m
2)dr. (66) 

2R r r 2r 
This equation can be also derived from Eq, (65) in the 

limit I W 1-2 (/s 1-00). 
Although other complexes can be defined in T A besides 

the complex (60), we have chosen this one in order to define 
H due to the following facts: (1) it leads to localized gravita
tional energy, and (2) it has given satisfactory results in its 
applications to the treatment of the gravitational radiation 
problem. 12 However, in spite of the satisfactory properties of 
this complex, the outer energy defined from it does not have 
any phyiscal significance directly derived from its definition. 

An integration of Eq. (65) gives 

o 

GEOMETRIZED UNITS 

M=10 1.1=-4.00 

H(R) = (m/2)[(m/R) - 2J [1 + (m2/4SR 2)J -I-~ + m, 
(67) 

and taking the limit of the right-hand side of Eq. (67) as 
I W 1_2 (Is 1-00), we get the following solution ofEq. (66): 

H(R) = (m/2)[(m/R) - 2Je- 1m'/4R'). (68) 

In the limit I W 1-00 (Schwarzschild case), Eq. (67) re
duces to 

(69) 

This formula was already derived by Shah 18 by using the 
M!611er complex ll and the Schwarzschild solution in the 
framework of GR. 

Taking into account Eq. (69), we see that when the 
Schwarzschild radius (r = m/2) is reached, all the energy is 
localized outside the source (H = m), i.e., the internal energy 
m - H vanishes. On account of this fact, Shah 18 writes, 
"The energy considerations lead to a new interpretation of 
the event horizon." 

Similarly, from Eqs. (67) and (68), it follows that the 
internal energy m - H (R ) vanishes at R = m/2 for any posi
tive value of W (solutions 1,2, and 3) and it does not vanish at 
any point of its interval of definition for W < 0 (solution 1). 
See Figs. 1-3. In theory A, the radius defined by the condi
tionH = m will be called the "energetic radius" re (re = m/ 
2). Obviously, this radius is characterized by the same condi
tion as the Schwarzschild radius in the Shah interpretation; 
however, in theory A, neither horizons nor singularities exist 
at re , and, consequently, the energetic radius can be reached 
in a physically consistent manner. 

In accordance with the results obtained in Sec. VI, the 
radius re (as well as any finite radius) will be reached in a 
finite time by a freely infalling particle; however, in the case 
of a spherical star with a realistic equation of state, the effect 
ofthe pressure can be important in order to stop the fall. If, 

OUTER ENERGV = M 0:+-______________ -+ ______________________________________________ __ 
~ 

o 
o 
N 

o 
o+--r~r-,_~--r_~~--.__.~r_,-~ __ ~~~~~-r~~~~~~~~~~~ 
Q. 00 200 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 

u. • RADIUS 

FIG. 1. Outer energy as a function of the isotropic radius R, for W = - 4 and M = 10. 
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::J .. 
O~ .. 

0 .. 
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.. 
~ 
'"0.00 2.00 4.00 6.00 

GEOMETRIZED UNITS 

M=10 W=1. 00 

FOR R .. 3.23 OUTER EliERGY = M 

8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 
RADIUS 

FIG. 2. Outer energy as a function of the isotropic radius R, for W = 1 and M = 10. 

in the realistic case, either the energetic radius or another 
close radius are reached in a finite time, then, taking into 
account the similar definitions of the Schwarzschild and en
ergetic radius (H = m), it is reasonable to hope the internal 
structure of a spherical star whose radius is close to the ener
getic one (in T A) will be similar to the internal structure of a 
object whose radius is close to the Schwarzschild one (in 
GR). Then, if the mass of the star is large enough, we will 
hope that it reaches the energetic radius in a finite time (as 
occurs with the Schwarzschild radius in GR) forming a 

small dense physically admissible object, which could belong 
to some binary x-ray source. However, these suggestions 
only can be confirmed or rejected by way of a direct study of 
the gravitational infalling of a realistic perfect fluid sphere. 

4.00 6.00 8.00 

GEOMETRIZED UNITS 

M=10 W=2.S0 

The internal energy m - H can be split as follows: 

m -H=mo+Ei +Hi, (70) 

mo being the rest mass energy, Ei the nongravitational inter
nal energy, and Hi the gravitational energy localized inside 
the spherical source. Since Hi and Ei cannot be calculated 

FOR R =3.81 OUTER ENERGV .. M 

10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 
RADIUS 

FIG. 3. Outer energy as a function of the isotropic radius R, for W = 2.50 and M = 10. 
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without considering the internal structure of the source, we 
cannot relateH (or m - H) with any physical magnitude [as 
the binding energy m - mo or the gravitational potential en
ergy HI + H (see Ref. 15)] by only considering the outer 
field. Thus, we cannot derive definitive conclusions from the 
study of the curve H = H(R) displayed in Figs. 1-3. Al
though these figures correspond to fixed values of m and W, 
Fig. 1 gives the qualitative behavior of H = H (R ) for arbi
trary m and W < 0, Fig. 2 for any value of m and 0 < W < 2, 
and Fig. 3 for arbitrary m and W> 2. In any of these figures 
we get a maximum corresponding to a radius rM and in the 
particular case of Fig. 1 we get a vertical asymptote at rs. 
Taking into account the above considerations, we cannot 
interpret the maximum and the asymptote in a definitive 
manner, but it is reasonable to hope that these elements will 
have a physical interpretation when the internal structure of 
the object generating the outer field is taken into account. 

In this paper we are only concerned with the informa
tion and the prospects obtained from the study of the outer 
field of a spherical star. These prospects will be studied in 
some future papers (in progress). 

VIII. CONCLUSIONS 

We have proved the Birkhofftheorem in the scalar-te
tradic theory A; thus, all vacuum spherically symmetric 
fields are static. 

We have also obtained a physical singularity at rs #0 in 
the case of solution 1, whereas solutions 2 and 3 have been 
proved to be free of singularities. 

The metric of solution 1 is well defined except at the 
singular radius r s, while the metrics of solutions 2 and 3 are 
well defined at any radius r # O. Therefore, there are no event 
horizons in the physical vacuum static spherically symmet
ric solutions of the field equations of T A. 

As a consequence of the above results, we have discard
ed the values of Was being much too close to zero because 
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they lead to large singular radii, and we have concluded that 
the black holes are not possible in T A. 

Finally, the following prospects are motivated by the 
arguments presented in this paper. 

(i) It would be interesting to study the gravitational in
falling of a spherical star (by using an adequate equation of 
state and suitable boundary conditions) in order to discuss 
both (1) the validity of solution 1 for any value of W (singular 
radius), and (2) the physical significance of the energetic radi
us, the maximum of the curves H = H (R ), and the vertical 
asymptote displayed in Fig. 1. 

(ii) It would be worthwhile to study the possible exten
sion of the concept of a "gray hole" (or another similar con
cept) to T A, and its possible incidence in the explanation of 
the observational evidences about binary x-ray sources. 
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Starting with a spinor structure over a space-time, to which a more fundamental character is 
ascribed than to the vector structure, an affine-metric geometry of the space-time is defined. The 
VII) bundle of electromagnetism appears naturally in this approach. A "sublocal" action of the 
VII) on the spinor structure is found. Any field of time like directions creates a "field" of magnetic 
monopoles. 

I. INTRODUCTION 

From the early days of general relativity, models of a 
unified field theory of gravitation and electromagnetism 
have been proposed. The trouble with Einstein's relativistic 
theory of the nonsymmetric field gp.v as well as with Weyl's 
theory of the uniform change of scale are very well known. 1 

In these an attempt was made to introduce the electromag
netic interaction by a change of the geometry of space-time 
itself. In the currently accepted theories, a good model for 
classical electromagnetism is provided by a connection on a 
principal VII) bundle over a space-time M. However, we 
must consider this VII) bundle as an abstractly given princi
ple bundle. 

In this paper we shall show that the electromagnetic 
interaction appears quite naturally when we start with a 
spinor structure of the space-time manifold. In this case, 
spinor fields can be treated as fundamental quantities, and 
geometrical properties ofthe universe can be determined by 
the geometry of the spinor structure. The key point is that a 
spinor connection, which in the most general case produces 
the Einstein, or the Einstein-Cartan model of space-time, 
has the SLI2,QxVI1) group as its holonomy group. This is 
demonstrated in the Appendix. A simple method to handle 
spinor connections, developed in the Appendix, is applied 
there as well to classify vector connections as to consider the 
most general case, when connections on half-spinor spaces 
are unrelated. 

This paper is organized as follows. 
In Sec. II a simple derivation of the known2 result of 

Ehlers, Pirani, and Schild is presented. We demonstrate also 
that exactly the same structure of space-time is implied by 
"observations" of free falls of classical spinning particles. 
This follows from the fact that a spinor connection produces 
a vector connection. In the physically most interesting case 
of the Einstein lor the Einstein-Cartan) model of the uni
verse, the holonomy bundle of a spinor connection is the 
Whitney sum of two principal bundles: the SLl2,q bundle 
and the VII) bundle. The former is considered3 as the under
lying structure for the gravitational gauge, and the latter we 
sh~ regard as the underlying structure for the electromag
netic gauge. Such a strong relation between the existence of a 
spinor structure M and the possibility of introducing the 
electromagnetic gauge seems physically justified, as all ex-

8) Present address: Institut fUr Theoretische Physik. Technischen Universi
tilt Clausthan, 3392 Clausthal-Zellerfeld, Federal Republic of Germany. 

perimental data indicate that spin can be detected only by 
means of electromagnetic fields. 

The natural way we have obtained the underlying struc
ture of the electromagnetic gauge is in agreement with the 
spirit of investigations of Einstein and Weyl who wanted to 
relate the electromagnetic interaction with geometrical 
properties of space-time. The only difference is that the vec
tor structure over M is replaced here by the spinor structure 
to which we ascribe a more fundamental character. 

In Sec. III it is demonstrated that the interpretation of 
the VII) bundle, obtained in Sec. II as the underlying struc
ture for electromagnetism, implies a "sublocal" action of 
this VII) on the spinor structure, that is to a VII) fibering 
~ - W + of spinor space ~ over the upper part of the light 
cone. This leads in a straightforward way to the Hopf fiber
ingS3 -S2, realized as~ /R + - W+/R+, at any point of 
space-time. Now any timelike direction at a point of space
time determines a map i: PW + - W +, hence produces a 
natural connection, which on a physical ground is identified 
as a potential of a magnetic pole.4

•
5 It should be noted that 

this pole is placed in the affine tangent space Am M, m EM, 
at a point different than 10,0,0,0). 

There are a few possible physical interpretations of this 
formal result. We mention two of them. 

11) The timelike direction, which plays a crucial role in 
our construction, can be determined by a physical timelike 
vector field. Any such a field could then create a cloud of 
magnetic poles. If this vector field were the field of Weinberg 
mesons, we would obtain a kind of "geometrical coupling" 
between weak and electromagnetic interactions. 

12) The timelike direction could be related to an observer 
placed at the considered point of space-time. Thus any ob
server "dresses" the abstract Hopffibering in a concrete nu
merical potential of a magnetic pole. 

The magnetic pole is placed at 11,0,0,0) in the affine tan
gent spaceAm M, m EM. The appearance of the monopole at 
the point of Am M different than m EM could explain why 
magnetic monopoles cannot be observed. 

II. SPINOR CONNECTION AND ELECTROMAGNETIC 
GAUGE 

Let us assume that space-time is a smooth, connected, 
paracompact, Hausdorff four-dimensional manifold M. One 
can define vector and tensor fields on M, because the notion 
of tangent space at each point m of Mis natural. However, to 
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differentiate a vector field, an affine structure (that is, a lin
ear connection) is needed. 

Ehlers, Pirani, and Schild proposed2 to characterize the 
geometry of space-time by means of observations of paths of 
light rays and of structureless massive test particles.6 The 
paths of light rays determine a light cone at each point. It is 
well known that the most general group that (beyond singu
larities) leaves invariant the light cone is the conformal 
group. The observations of the paths of structureless massive 
test particles determine the affine structure r on space-time. 
In the most general case, r has the affine group A(4,R) as the 
holonomy group of its affine connection. Because the inho
mogeneous Weyl group is the largest subgroup of A(4,R) 
contained in the conformal group, we obtain that the light 
rays together with free falls of structureless particles define 
the Weyl-Cartan space as the most general geometrical 
framework for space-time. 

On the other hand, the assumption of the existence of 
global spinor fields implies the existence, at any point m of 
M, of the two-dimensional spinor space I (m) with SL(2,C} as 
the symmetry group. The resulting vector bundle 
E = umeMI (m) determines7 some principal SL(2,C} bundle 
over M. The last bundle can be viewed as a bundle of spinor 
frames over M. Making use of the known isomorphism 

x:.X(m)® H:I(m) - TmM (2.1) 

between the Hermitian part of the tensor product 
I(m) ®:I(m) and thetangentspaceatm eM, wegetthe.!fo 
bundle of linear frames, which in tum determines the Lor
entzian metric structure g of the space-time. 

Thus the geometrical structure of the space-time has to 
be the affine-metric8 (F,g) one, with the most general Weyl
Cartan affine structure. In this case we deal with some spe
cial kind ofnonmetricity, which causes a uniform change of 
scale in parallel transformed frames: 

Free falls of 
structureles8 
particles 

Affine structure 
with "'(4, R ) aroup 
as trI.. holonomy 

aroup 

Liaht paths 

Conformal 
structure 

Lorentzian 
metric 
structure g 

The existence of global spinor fields on the general 
space-time manifold M has much stronger consequences 
than would be suggested by the above considerations. To 
study them we shall assume throughout the remaining part 
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of this paper the existence of the spinor bundle as the starting 
point. In other words we assume the following facts. 

(1) Space-time is a smooth, connected, paracompact 
four-manifold M. 

(2) There exists a two-dimensional complex vector bun
dle E over M equipped with a skew-symmetric inner product 
which we shall call € structure, where 

€= (- ~ ~). 
It means that the principal GL(2,C} bundle SOL(2,C), which is 
equivalent to the vector bundle E10 (see Ref. 9), is reducible to 
the SL(2,C} subbundle. This reduced principal bundle S SL(2,C) 

can be viewed as a bundle of "canonical" spinor frames ofE. 
(3) There exists an isomorphism X between the Hermi

tian part of the tensor product E ® E and the tangent bundle 
TM, i.e., Vm eM, 

Xm:I(m)®H:I(m)- Tm M, 

where I (m) is the fiber of Eat m eM. 
Assumptions (2) and (3) imply a metric structure on M, 

i.e., determine a principal bundle Sf 0 of orthonormal frames 
over M. Besides, we obtain immediately that the just-consid
ered-in-(2) principal bundle SSL(2,C) is exactly the prolonga
tion of the bundle Sfo in the Milnor-Lichnerowicz sense. 
For this reason we shall make some calculation in the Ap
pendix in this more traditional approach (of Milnor-Lich
nerowicz). 

Of course we can make assumptions (2) and (3) only 
when the second Stiefel-Whitney class W2 eH 2(M;Z2) is 
equal to zero. The vanishing of W2 is the property of the 
manifold M itself and not a metric structure on M. Hence for 
any four-manifold which admits Lorentz structure (i.e., 
which Euler class is equal to zero) and for which W2 = 0 we 
can take a concrete two-dimensional complex vector bundle 
E with properties (2) and (3) instead of a concrete metric 
structure g on M. 

Now, to make our considerations more clear, let us con
sider an affine-metric structure of M again. The metric g is 
equivalent to the bundle of orthonormal frames Sf 0 over M. 
It means that the principal GL(4,R ) bundle SOL(4,R)' which is 
equivalent9 to the tangent bundle TM, is reducible to the 
Lorentz group or that TM can be given as associated bundle 
to Sfo ; TM = Sfo [R 4]. Now we introduce, in addition to 
the metric structure g on M, an affine structure F (i.e., inde-

pendently of the Levi-Civita connection ~O"} a linear con

nection F). In a general case with trace and traceless parts of 
nonmetricity8 we obtain the whole SOL(4,R) bundle as the 
holonomy bundle. 

Our case of a spinor bundle E is exactly the same situa
tion. The two-dimensional complex vector bundle E over M 
is equivalent to some principal GL(2,C} bundle SOL(2,C) over 
M. The skew inner product on E, i.e., € structure is equiva
lent to the reduction of SOL(2,C) to the spin bundle SSL(2,C). 

Hence E can be written as E = S ~~a,C). But again, in addi
tion to the € structure on E (which by X produces a metric 
structure g on M), we can introduce a general connection on 
E (which by X produces an affine structure r on M), Similar
ly as above, the most general connection that can be intro-
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duced on E has the SGL(2,C) bundle as its holonomy bundle. 
Because of this (usingx ), we can produce a linear connection 
ron M only with the Weyl group as its holonomy group. 

We shall assume the existence of spinor connections act
ing on the half-spinor spaces and interrelated by the complex 
conjugation [see (A 11 HA 13 )]. A spinor connection could be 
imagined as a result of "spin observations" offree falls of the 
classical spinning test particle. 

The assumption that spinor structure of space-time is of 
a primary nature allows us to deduce the geometrical proper
ties of space-time from the geometry of spinor structure. 

Indeed, for every spinor connection on E = Um E MI (m), 
the isomorphism X [see (2.1), (AI), and (A2)] determines a 
vector connection (an affine structure r) on the space-time 
M. As we can see in the Appendix, the most general spinor 
connection produces the Weyl-Cartan vector connection. 
We conclude that the most general geometrical structure of 
space-time determined by the "observations" of classical 
free spin fields is the Weyl-Cartan affine-metric structure 
(r ,g). This structure is exactly the same as the one obtained 
from observations of light paths, free structureless particles, 
and from the existence of global spinor fields. So, we have 

Spinor Spinor 
structure + connection ---+ 

Weyl-Cartan 

affine-metric 

space-time (r ,g) 

Let us notice that the Einstein (or Einstein-Cartan) 
model of space-time can be obtained from a spinor connec
tion with the holonomy group equal to SL(2,qxU(I) (see 
the Appendix). The appearance of U( 1) is caused by the sim
ple fact that if we transform the space I (m) by an element 
a(m) e U(I) before applying the isomorphism X we obtain 
exactly the same result as when we apply the isomorphism X 
alone. It means that the diagram 

I(m)®H:I(m) a. I(m)®H:I(m) ----x--- Tm M / X 

is commutative [the action of a e U(I) is given by (A4) and 
(AS)]. Obviously, we can choose different a(m) e U(I) in dif
ferent points of the space-time M, but we must multiply all 
elements of I (m) by the same a(m). 

The holonomy bundle of the spinor connection may be 
treated as a Whitney sum of two principal bundles: an 
SL(2,q bundle and a U(I) bundle. The former is considered 
as an underlying structure for the gravitational gauge, and 
the latter we shall regard as the underlying structure for the 
electromagnetic gauge. Such a strong relation between the 
existence of spinor structure on M and the possibility of in
troducing the electromagnetic gauge seems physically justi
fied as all experimental data indicate that spin can be detect
ed only by means of electromagnetic fields. 

III. MAGNETIC MONOPOLES 

It has been shown in the Appendix that the holonomy 
group of a spinor connection, which determines the Einstein 
model of space-time, is the direct product of the groups 
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SL(2,q and U(I). So the spinor holonomy bundle is the 
Whitney sum of two principal bundles: the SL(2,q bundle 
and the U( 1) bundle. This latter will be treated as an underly
ing structure of the electromagnetic gauge. As we have seen, 
this U(I) principal bundle appears naturally, because the re
lation between the Hermitian part of I (m) ®:I (m) and T m M, 
as given by X, does not change as we mUltiply all spinors of 
I (m) by the same element a(m) ofU(I). 

Now let us restrict our attention to the diagonal part!!; 
of I (m) ® H:I (m). Obviously, !» c:::::..I (m). So we have 

j x 
I (m)3u ---+u ® u*---+xeW+(m), (3.1) 

where W +(m) denotes the upper part of the light cone of 
T m M. Because X I Ii' is invariant under the "sublocal" (that is 
dependent on xeW +) transformations a(x) e U(I), it is easy 
to see that the space I (m) has a structure of the U( 1) principal 
bundle over W + (m) with projection 1T': I (m) ---+ W + equal to 

1T' = XiIi' oj'. (3.2) 

Indeed, let {eO,el ,e2,e3J be the orthonormal frame of 
T m M defined as in the Appendix, and let 

{p,uJ = {(~) , (~)} 
be the corresponding canonical spinor frame of I (m). Also, 
let 

~ = eo + e3 = X(2u®u*), 7J = eo - e3 = X(2u®u*). (3.3) 

The vectors ~ and 7J belong to W + C T m M. Now let 

U'I'/ C W + denote the image of spinors e~) for Z I =1=0, and let 

U, C W + denote the image of spinors e~) for Z2 =1=0, under 

the projection 1T'. 

It is easy to see from (A2) that each spinor 

u = e~) eI(m) 

determines a light vector x e W + with components 
(XO,XI,x2,x3) in the base {eO,el>e2,e3J of T mM given by 

J../ Xo + ~3 X2 - ix l ) = (:IZI ZI~2). (3.4) 
2 \x2 - IXI Xo - X3 \zIZ2 ZzZ2 

We see that U,uU'I'/ = W +, and that local trivializations of 
the U( 1) bundle I (m) over W + are given by local cross sec
tions 

(3.5) 

(3.6) 

(3.7) 
h'l'/ :U'I'/ ---+ 1T'-I(U'I'/)CI (m). 

For x e U,nU'I'/' we have 

h'l'/(x) = h,(x)(x2 - ixl)/~X~ + xi, (3.8) 

so the transition function g'l'/' (x) belongs to U( 1). 
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Now let us consider the projective space of null direc
tions PW + and the injective map i:PW + _ W +' defined by 
a section of W + by the spacelike hyperplane Xo = 1. The map 
i allows us to obtain immediately the induced V( 1) bundle 
i*(I (m)) over the space of null directions. 

It is easy to see that the bundle space of i*(I (m)) is 

formed by the set of spinors C:) E I (m) with the property 

Iz,1 2 + IZ212 = 1. (3.9) 

Thus i* (I (m)) can be viewed as the three-dimensional sphere 
S3' The group V( 1) acts on S3 by 

C:)a = C::)' for a E V( 1), (3.10) 

hence we obtain the Hopf fiber bundle 

S3 -S2' (3.11) 

The base space of this bundle is the set of null vectors which 
form a sphere S2 with center at the point (1,0,0,0) with re
spect to m. (Coordinates of these vectors satisfy the relation 
xi +xi +x~ = 1.) 

The bundle space of the Hopffibering i*(I) lies inI (m). 
The Bacry-Kihlberg'O isomporphism provides a parametri
zation of this bundle space by means of the Euler angles 
(rp,fJ,,,,). Indeed, a general element A ofSL(2,C) can be repre
sented as 

A = e - itpL12e - iiJLlle - irfJL12ipLole - it,(Lo, + L")e - it,(L02 - L23), 

(3.12) 

where Lo" L02' L03 are boosts, i.e., generators of proper Lor
entz transformations, while L 23, L3" L'2 are operators of 
angular momentum, i.e., generators ofSV(2). 

Now, if we take into account that I (m)~SL(2,C)/'tt', 

where'tt' is a two-dimensional group parametrized by t, and 
t2 (the Crumeyrolle groUp)," we obtain the parametrization 

ofspinors u = C:) EI(m): 

z, = ePI2e(il2)(rfJ+tp) cos (fJ 12), 

Z2 = ePI2e(il2)(rfJ - tp) sin (fJ 12), 

where 

(3.13) 

(3.14) 

For a spinor belonging to the considered bundle space S3 we 
have 

z, = eiI2(", + rp) cos (fJ 12), 
(3.15) 

Z2 = e(i/2)('" - rp) sin (fJ 12). 

This is the needed parametrization by the Euler angles. Thus 
the natural connection carried by the Hopf fibering may be 
conveniently expressed in terms oftheEuler angles. Because 
the Riemannian line element on the sphere S3 is given by 

d1 2 = di, dz, + di2 dZ2 

= HdfJ 2 + sin2 fJ drp 2 + (d'" + cos fJ drp )2], (3.16) 

we see that the form 

a = !(d", + cos fJ drp ) (3.17) 
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defines a connection on S3 considered as a circle bundle over 

S2' 
It is known, that the natural connection carried by the 

Hopf fibering i*(I ):S3 - S2 describes the magnetic mono
pole.4 The singularities of the potential of the magnetic pole 
are due to the nontrivial character of the bundleS3 -82, The 
curvature F of the connection a, F = ! sin fJ drp 1\ dfJ, ex
tended to the Minkowski space A m M is the "electromagnet
ic field" of a magnetic pole of strength q = !, placed at the 
point (1,0,0,0). 

Let us set 

V, = U,nS2, V1/ = U1/nS2, (3.18) 

where U, and U7J were defined earlier. The corresponding 
local sections are 

Rdx) = h,1 v,(x) 

= ~ 1 ~X3 CX2 + iX,:/(1 +X) 

( 
cos(fJ 12) ) 

= e - itp sin (fJ 12) (3.19) 

(where fJ =l=1r, or equivalently x3 =1= - 1), and 

R1/(x) = h1/IV1/(x) 

= ~ 1 ~ X3 (!X2 - ix,Y(I - Xo)) 

= (e
itp 

cos(fJ 12)) (3.20) 
sin(fJ 12) 

(where fJ =1=0 or equivalently x3 =1= - 1). The potential A in 
the gauge R, is 

(A), = R *(a) = - !(1 - cos fJ)drp (3.21) 

and its essential component with respect to an orthonormal 
affine frame (p;eO,e"e2,e3 ) of the space-time manifold M 
[p = (1,0,0,0) in (0;eO,e"e2,e3)] is 

(Atp), = (1 - cos fJ )/2r sin fJ). (3.22) 

For the gauge R1/ we obtain similarly 

(A )1/ = !(1 + cos fJ )drp 

and 

(Atp)1/ = (1 + cos fJ )/(2r sin fJ). 

(3.23) 

(3,24) 

It is known that formulas (3.22) and (3.24) describe the field if 
it is a magnetic monopole. 

Let us summarize the surprising picture we have just 
obtained. 

The fundamental character we have ascribed to the 
spinor structure on the space-time manifold M has produced 
the additional V( 1) bundle over M. The appearance of this 
bundle is caused by the natural possibility of multiplying 
spinors of I (m) by the same phase factor without influencing 
the relation between pairs of spinors and vectors described 
by xof(2.1), (AI), and (A2). ThusthetransformationsofV(I) 
act locally on the spinor structure E. If we limit the domain 
of X to get only light vectors [see (3.1)] we may multiply 
spinors of I (m) by different phase factors without any 
change of the mentioned relation given by X. Thus we obtain 
a "sublocal" action of V( 1) on E. Now any field of timelike 
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directions determines maps i:PW + - W +' at each point 
m EM, which leads in a straightforward way to the Hopf 
fibering i*(I ). 

If we identify the U( 1) bundle on M with the underlying 
structure for electromagnetism, then we can understand the 
"sublocal" action ofU(I) as well the resulting Hopffibering 
as a "substructure" of the electromagnetic interaction. This 
seems to suggest the interpretation offieldsAq:> of (3.22) and 
(3.24) as the field of magnetic monopole placed in AmM at 
(1,0,0,0) with respect to m. The appearance ofthe monopole 
at the point of Am M different than m EM could explain why 
magnetic monopoles cannot be observed. 
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APPENDIX: SPINOR CONNECTION 

Let Mbe a four-dimensional pseudo-Riemannian mani
fold admitting a spinor structure. To differentiate vector 
fields one needs a connection. It is known, that a linear vec
tor connection r on M defines a spinor connection only if 
this linear connection is a metric one. It has been shown that 
a unique spinor connection is determined by the requirement 
that it should be compatible with the spinor inner product. 

On the other hand, two-component spinors (half-spin
ors) may be used to form vectors. Hence we can start with a 
spinor connection, and then produce a vector connection 
from it. A detailed description of this subject can be found in 
the papers of Luehr and others. 12 

Here we shall treat this problem in a slightly different 
way. Owing to this we can (1) classify in a very simple man
ner those vector connections which are determined by spinor 
connection, and (2) consider the most general case, when 
connections on the involved half-spinor spaces are unrelat
ed. 

To begin with, let us recall some known facts. The iso
morphism 

(AI) 

is given by 

eo = X(p®p* + u®u*), el = (l/i)X(u®p* -p®u*), 
(A2) 

e2 = X(u®p* + P ® u*), e3 = X(P ®p* - u® u*), 

where eO,el ,e2,e3 is an orthonormal frame of the Minkowski 
space E, and {p,u}, {p* ,u*} are the canonical spinor bases of 
I and~, respectively. 

Any vector x E E can be uniquely described by a Hermi
tian matrix x: 

(A3) 

An element S of GL(2,q acts in different ways on the spaces 
Iand~: 
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su = Au, for u E I, 

su* =Au, for u E~, 

according to 

(su)* = su*. 

(A4) 

(AS) 

(Here A is a nonsingular complex matrix 2 X 2.) When we 
transform I and ~ by s E GL(2,q, then the appropriate 
transformation of x E E is given by 

x-x' =AxA + = (x')+. (A6) 

Now let us see what happens when the space I is trans
formed by Sl E GL(2,q and ~ is transformed by 
S2 E GL(2,q. We obtain 

(A7) 

so transformations S I of I and S2 of ~ determine the map 

l.,s,:E _ E C (AS) 

of the Minkowski space E into its complexification E' . It is 
easy to see that I.,s, defines a linear transformation of the 
Minkowski space iff A 1M 2+ is a Hermitian matrix. Taking 
into account that 

AlxA 2+ =AlxA t(A n-IA 2+' (A9) 

it is easy to calculate that ths condition is equivalent to 

A2 = (~ ~)AI' (AW) 

with a ER'\ {OJ = R *. 
Coming back to our main subject, let us assume that the 

connection acting on complex conjugate spinors 
E = U m E M~ (m) (even half-spinors) is given by the complex 
conjugate of the spinor connection acting on 
E = UmE MI (m) (odd half-spinors) 

Vx~= Vxt/!, (All) 

where X is a vector field on M,t/! is an odd half-spinor field, 
and ~ is the corresponding even half-spinor field. 

Let us fix l3 a global section ro(m) of the bundle of ortho
normal frames over space-time M. It allows us to determine 
uniquely spinor spaces I (m) and ~ (m) at each point m EM, 
and global fields of their canonical spinor frames Y(m) and 
Y*(m) [of course (Y(m))* = Y*(m), where * is the anti
isomorphism *: I - I]. 

Let us take some path 'TAB eM, A,B E M. The parallel 
displacement of the canonical spinor frame Y(A ) to the 
point B along 'TAB gives the spinor frame Y.,. (B ). In the gen
eral case, 

Y.,.(B) = Y(B) 'S, with sEGL(2,q. (A12) 

The assumption (A 11) is equivalent to the fact that the paral
lel displacement along 'TAB Joms the spinor 
Y*(A ) = (Y(A ))* with the spinor frame 

Y~(B) = Y*(B) . s, (Al3) 

and S is the same as in (A12). [We recall (AI) and (AS).] 
We can determine in a usual manner the spinor holon

omy bundle through Y(A ) as the set of spinor frames of E, 
which can be joined with Y(A ) by a parallel displacement 
along any piecewise differential curve of the class C«> in M. 
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Because spinors are combined to form vectors by (A 1) 
and (A2), every spinor frame Y r at B e M determines a lin
ear frame rIB ). Thus we see that the parallel displacement of 
the spinor frame Y(A ) along TAB determines a parallel dis
placement of the orthonormal frame To(A ) along TAB' Taking 
into account (AI2), (A13), and (A6) we see that this displace
ment defines a linear frame T r at B, 

Tr(B) = To(B) .g, (AI4) 

with a linear transformation g. 
The group GL(2,q is the direct product of 

SL(2,q X U( I) XR +, hence we see from (A6) that in the most 
general case of spinor connection with GL(2,q as the holon
omy group, the elementg of(AI4) has to belong to the Weyl 
group. This means, that the most general spinor connection 
produces a vector connection, which holonomy group can be 
at most equal to the Weyl group. 

Moreover, we see that when s of (AI2) and (AI3) is an 
element of SL(2,C) X U( I) then the parallel displacement of 
the orthogonal frame To(A ) is determined by the transforma
tion g = K{A. ) e 2'0 [cf. (AI4)], where A. is the element of 
SL(2,q corresponding to s and K is the covering map of 
SL(2,q onto 2'0' Thus we obtain that a spinor connection 
with the holonomy group equal to SL(2,qxU(I) produces 
the Einstein (torsionless) or the Einstein-Cartan structure of 
space-time. 

This approach allows us to consider the case of spinor 
connections of E and:I when the assumption (A 11) is reject
ed. Now the parallel displacement of Y(A) and 
Y·(A) = (Y(A))· along TAB determines spinor frames 
Y r (B) and Y~(B ), but Y~(B ) ~ (Y rIB )) •. Thus, instead of 
relations (A12) and (A13) we obtain 

Yr(B)=Y(B).s, 

with s,s' e GL(2,q, s~s'. (AIS) 

Y~(B) = Y·(B) .s', 
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Ifwe make use (as previously) of the isomorphism X [see (A 1) 
and (A2)] to produce a vector connection, we see [from (AS) 
and (AlO)] that it proves possible only if 

s'=as, withaeR·. (AI6) 

The holonomy group of this connection will be equal to the 
Weyl group in the general case. Ifthe condition (AI6) is not 
satisfied, then it is easy to check from (AI), (A2), and (AIS) 
that the "parallel displacement" along TAB induced by the 
spinor connections transfers real vectors into complex ones. 
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The spatially homogeneous and anisotropic Bianchi type-VIo cosmological dust solution for the 
modified Brans-Dicke theory is presented. Some properties of the model are discussed. 

I. INTRODUCTION 

As a consequence of great discoveries in the field of as
trophysics, cosmology, and elementary particles, several 
scalar-tensor theories of gravitation have been proposed 
which result in a time variability of the gravitational con
stant in conformity with Mach's principle. Amongst the var
ious modifications of the general theory of relativity, the sca
lar-tensor theory of Brans-Dickel (BD) is most widely 
accepted. It has also been found that the cosmological con
stant A in Einstein's theory, which arises from spontaneous 
symmetry breaking, is not a constant. 

The investigation of particle physics within the context 
of the BD Lagrangian has stimulated the study of the cosmo
logical term with a modified BD Lagrangian in cosmology 
and elementary particle physics. Further, Bergmann2 and 
Wagoner have suggested that the cosmological term should 
be a function of a scalar field t/J. Endo and Fukui4 have ob
tained the Brans-Dicke field equations modified by A (t/J). 
Recently, Banerjee and SantosS have obtained cosmological 
dust solutions for a Bianchi type-I homogeneous space in 
this modified scalar-tensor theory. Since Bianchi type-I 
models are a very special set of spatially homogeneous mod
els, it is of considerable interest to consider the more general 
Bianchi type-VIo space-times to study the large-scale dy
namics of the universe. 6 

In this paper the field equations for dust in the Brans
Dicke modified theory in a Bianchi type-VIo homogeneous 
space are discussed and a particular solution is obtained rep
resenting a spatially homogeneous cosmological model ad
mitting anisotropic expansions. Some properties of the mod
el are discussed. 

II. FIELD EQUATIONS 

The field equations for the modified Brans-Dicke the
ory with the introduction of A (t/J) obtained by Endo and Fu
kui ares 

Gij + gijA = - (k /t/J)Tij - (liJ/t/J2)(t/J, it/J,j - ljIijt/J,ar) 

- (llt/J)(t/J;ij -gijD¢), (1) 

_ A + t/J aA = ~ T _ 2m + 3 Dt/J. (2) 
at/J 2t/J 2t/J 

Here Tij is the energy-momentum tensor for matter alone 
and we consider the distributions for dust 

Tij =pV; Jj, (3) 

wherep is the mass density and vt is the four-velocity. We 
assume the coordinates to be comoving so that 

yl = y2 = y3 = 0, y4 = 1. (4) 

It has been further assumed that the matter and scalar 
fields are related through 

Dt/J = kp.T /(2m + 3), (5) 

where the constant p. shows how much this theory including 
A (t/J ) deviates from that of Brans-Dicke and as usualliJ is the 
coupling constant. Substituting (5) into (2) we obtain 

aA D¢ 
A -t/J at/J =a7' (6) 

where a is a constant defined by 

a = [(2w + 3)/2](1Ip. - 1). (7) 

If A is a function of t/J only, we conclude from (6) that 
Dt/J = I(t/J ). Following Banerjee and SantosS we further as
sume that the functional relation I(t/J) is of the form 
I(t/J ) = mt/Jn , where m and n are arbitrary constants. Then 
Eq. (6) reduces to 

t/J aA -A = -amt/Jn-l. (8) 
at/J 

From (8) the solution for A is as follows: 

A = [am/(2 - n)]t/J n-l + Dlt/J, n=/=2, 

and 

A = - am In t/J + D2t/J, n = 2, 

DI and D2 being integration constants. 

III. SOLUTION OF FIELD EQUATIONS 

(9) 

The line element for the spatially homogeneous Bianchi 
type-VIo can be written as 

ds2 = -dt 2 +A 2(t)dx2 +B 2(t)e- 2qX dy2 + C 2(t)e2QX dr, 
(10) 

where A, B, and C are cosmic scale functions, and q is a 
nonzero constant. We number the coordinatesx,y, z, and t as 
1,2,3, and 4, respectively. The nonzero components of the 
field equations (1) for (9) are 

G I = B44 C44 + B4C4 + L 
1 B + C BC A2 

= -A _~(t/J4)2 +~ t/J4 + Dt/J 
2 t/J A t/J t/J' 

(11) 

(12) 
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G~ = A44 + B44 + A4B4 _.!L. 
A B AB A2 

= -A _~(r/J4) +.£i. r/J4 + Or/J 
2 r/J C r/J r/J' 

(13) 

G4 = A4B4 + B4C4 + A4C4 _.!L. 
4 AB BC AC A2 

= _ A +.!::.. p + ~(r/J4)2 + r/J44 + Or/J 
r/J 2 r/J r/J r/J' 

(14) 

Gt = - q( ~ - ~ ). (15) 

where the subscript 4 denotes ordinary differentiation with 
respect to t. 

Equation (15) readily gives 

B=liC, (16) 

Ii being an integration constant. Without loss of any genera
lity we take Ii = 1. From the conservation equation T {j = 0, 
we obtain 

P4 = -p(A.lA + 2B.lB), 

which leads, after integration, to 

p = e/AB2, 

(17) 

(18) 

wheree is an integration constant. From (5), (6), (8), and (18) 
we obtain 

lIAB2= -(m/d)r/J n, 
where 

d = kp,e/(2w + 3). 

(19) 

From (18) and (19) the density can be written in terms of the 
scalar field 

(20) 

In order to treat Eqs. (11)-( 14) we introduce new variables a, 
{3, and Tby 

(21) 

and differentiation with respect to T is denoted by a prime. 
Then Eq. (19) gives 

ea + 2P = -(d/m)r/J- n. (22) 

From (22) it follows that 

3{3'2 + 2n{3'(r/J '/r/J) + q2e4fJ 

= ( ad 2 + ked )r/J - (n + I) + DId 2 r/J - (2n - I) 
m(2-n) m m2 

- (~ + n)( ~' r (27) 

Subtraction of (25) from (26) gives 

3{3" + 3{3'(r/J '/r/J) + 2q2e4P = (nd 2/mj¢J -(n+ I). (28) 

Eliminating {3" from (25) and (28) we obtain 

3{3' + 2n{3 '(r/J '/r/J) - !q2e4fJ 

= (_ ad
2 

+'!!":"_.3.. nd
2

)r/J -(n+ I) 
m(2-n) m 3 m 

- D~~2 r/J -(2n-l{ ~ + n)(~' r (29) 

Subtracting (29) from (27) we get 

.±. q2e4fJ = ( 2ad 2 + ked +.3.. nd 2 _ .!!..:..)r/J - (II + I) 
3 m(2 - n) m 3 m m 

+ 2DI~2 r/J -(2n-l). 
m 

(30) 

As the general solution of the above equations is rather diffi
cult we consider the caseDI = O. Then, (30) can be written in 
the form 

q2e4fJ = Pr/J - (n + I), 

where 

P = 1.( 2ad 2 + ked +.3.. nd 2 _ .!!..:..). 
4 m(2 - n) m 3 m m 

Differentiation of (31) gives 

{3' = - [In + 1)14](r/J'/r/J) 

and 

{3" = (n + l)d
2 

r/J-(n+ I) + n + 1 (r/J')2. 
4m 4 r/J 

Equation (28) is satisfied if 

k = [d /2c(2 - n)](n2 - 3n + 4a - 2). 

Substituting (32) and (33) into (29) we obtain 

(31) 

(32) 

(33) 

(34) 

e- a = - (m/d)t/Jne2P• 

We can express Or/J = mr/Jn by 

r/J" = - (d 2/m)r/J-n. 

(23) (r/J'/r/J)2 = (lIQ2)r/J-(n+I), (35) 

where 

(24) Q2 = m(3 + 8a1 + 14n - 5n2)/2(7 - 5n)d2. 

Substituting (21)-(24) into Eqs. (11)-(14) we obtain 

- {3" + 3{3,2 + (2n - 1~ '(r/J'/r/J) - q2e4fJ 

= (_ ad
2 

+.!!..:.. _ nd
2

)t/J_(n+ I) 
m(2-n) m m 

_ D~~2 r/J-(2n-I)_(~ +n)(~Y. (25) 

2{3" + 3{3,2 + (2n + 2~ '(r/J'/r/J) + q2e4fJ 

= (_ ad
2 

+ .!!..:..)r/J-(II+ I) _ D Id
2 

r/J-(2n-l) 
m(2-n) m m2 

- (~ + n)(~Y. (26) 

2916 J. Math. Phys., Vol. 26, No. 11, November 1985 

The general solution of (35) is 

r/J = [(n + l)(T + E)/2Q ]2I(n+ I), (36) 

where E is an integration constant and may be chosen such 
that at T = 0 one has r/J = O. From (23), (31), and (36) we 
finally have the solution for a and {3 as follows: 

e2a= !(~)Tn+1~~+E)r2(n-I)/(II+I), (37) 

e4fJ=!....[(n+ I)(T+E)]-2. (38) 
q2 2Q 

The cosmological term given (8) with (36) is 

A = [am/(2 - n)]r/J,,-I. (39) 
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The density can be written as a function of the cosmological 
term 

p = - (mc/d)([(2 - n)/am]A r/(n -I). (40) 

We can also express a and P in terms of tP as 

ea= !(~rtP -(n-I), e4fJ= ;tP -(n+I). (41) 

IV. DISCUSSIONS 

In the last section we have obtained a cosmological dust 
solution of modified Brans-Dicke field equations in a Bian
chi type-VIo homogeneous space. From (36) it is easily seen 
that tP is an increasing function of T if n < 0 and a decreasing 
function if n > O. The later case is physically unrealistic. The 
spatial volume V = AB 2 is given by 

2917 J. Math. Phys., Vol. 26, No. 11, November 1985 

(42) 

If we consider an expanding universe, V is increasing with 
time which in view of(36) and (42) fixes the value ofn always 
less than zero. So in the case n < 0 and the epoch r/>-O we 
have V -0 and p- 00. In course of time the model expands 
and has infinite volume V ~ 00 and p-o as ~ 00 • 
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OM. P. Ryan and L. C. Shepley, Homogeneous Relativistic Cosmologies 
(Princeton U. P., Princeton, NJ, 1975). 
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Global existence and asymptotic behavior for the discrete velocity models of 
the Boltzmann equation 
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By using fixed point techniques, some theorems which supply local and global existence, 
uniqueness, and asymptotic behavior of the solution of a general discrete velocity model of the 
Boltzmann equation in three dimensions are given. 

I. INTRODUCTION 

The solution of the Cauchy problem for the discrete ve
locity models of the Boltzmann equation exists, globally in 
time, when the initial values satisfy a suitable "smallness" 
condition. This result, obtained by Illner,1 holds for initial 
densities which depend on one or more spatial variables, and 
for whatever discrete velocity model. 

Recently the author, with the aid of a fixed point proper
ty of the collisional integral, obtained at first for the 2r-veloc
ities plane regular model,2 then for the full Broadwell mod
el,3 sufficient conditions both on the global existence and on 
the asymptotic stability of the solution. 

In this paper, with a proper use of the methods of Ref. 3, 
we give, for a general discrete velocity model, results both on 
the local and global existence, and on the asymptotic behav
ior of the solution. 

More in detail, in Sec. III we will prove a local existence 
theorem, which points out the existence of an upper time
dependent bound in the local evolution of the gas densities. 
In fact, we find that for bounded initial values, there is at 
least an interval of time in which the dominant process in the 
gas is the free flow. 

In Sec. IV, we investigate the possibility to extend the 
result of Sec. III, in order to obtain the existence, globally in 
time, of the solution. If the initial data are "small" in a suit
able LI norm, we deduce that the free flow dominates the 
evolution of the densities for all times. With our analysis, the 
asymptotic behavior of the solution is found, together with 
the global existence. 

We think that our method of proof clarifies the rule of 
the collisional integral in the evolution of the densities; in 
fact, the main Lemma points out that the gain part of this 
integral, thanks to the geometry of the collisions, remains 
opportunely bounded if so are the initial data. 

It has to be noted that our results are in accord with 
those of Hamdache,4 who, independently of the author and 
generalizing a result of Ta.rta.r to the three-dimensional 
case, obtained results on the asymptotic behavior of the glo
bal solution. 

Finally, it is worth mentioning that the analysis of the 
existence and uniqueness of the solution, globally in time, for 
the initial value problem, and of its asymptotic behavior, is 
relevant in order to supply a physicomathematical valida
tion of the discrete velocity Boltzmann equation as a math
ematical model in molecular gas dynamics. 

II. THE DISCRETE VELOCITY MODEL 

The formulation of the initial value problem for a dis
crete velocity model of the Boltzmann equation is the follow
ing: 

(2.1) 
J;(x, 0) = qJj(x), i = 1,2, ... ,p, 

where {vj }, i = 1,2, ... ,p is the set of the admissible veloc
ities, and [(x, t) = (fl(x, t ),.t;(x, t), ... ,/pIx, t)} is the p 
vector whose ith componentJ;(x, t) represents the density of 
the gas with velocity V/ in the position x and at time t. Both 
vectors x and v j are referred to an inertial frame of reference 
S. 

In system (2.1) Gj and L j are defined in the following 
fashion: 

G/(J,f)(x, t) =~ L A ~mfk(X, t)fm(x, t), 
-- 2 i . k• m 

Lj([)(x, t) = ~ ~ A 7t fj(x, t), (2.2) 
2 i.t'm 

i,j, k, m = 1, 2, ... ,p. 

The quantities A 7j are non-negative constants, connected 
with the probability that two particles with velocities Vj and 
vJ collide and are scattered after the collision with velocities 
v k and v m • As usual, theA 7j obey the reversibility hypothe
sis A 7t = A ~m' and the physical consistency A 2m = A ~k 
=A ~m =A{!m = O. 

Thanks to classical results, ifthe initial values qJj(x) are 
non-negative, i = 1,2, ... ,p, the solution f*(x, t) of the 
Cauchy problem (2.1) has non-negative components in its 
interval of existence. 

Keeping this property in mind, in what follows we will 
look for a solution of the modified problem 

aJ; -a + Vj ' VxJ; = Gj(J,f), 
t - -

(2.3) 
J;(x, 0) = qJj(x), i = 1,2, ... ,p, 

whose solution fIx, t), when it exists, trivially satisfies the 
conditionsJ;(x, i »f;(x, t), i = 1,2, ... ,po The analysis of 
system (2.3) will be based on the concept of mild solution. 

For every T> 0, let Cb (R3
) be the space of all bounded 

continuous functions on R3
, and let Cb (R

3
) be the space of all 
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functions fECb(R3) that go to zero as x goes to infinity. 
With obvious notations, let us introduce, in analogy 

with Ref. 3, the Banach space 

BT = {Cb([O, T] E9R3)IP, (2.4) 

equipped with the supremum norm 

11[11 = max sup It;(x, t)l· 
- Iq Ix, t)eft'. [0. TJ 

(2.S) 

At this point the definition of mild solution can be proposed. 
Definition: LetfeBT' Then/is said to be a mild solution 

of the Cauchy prohlem (2.3) ifior all xeR3 and te[O, T] the 
equations 

h(x + Vlt, t) = <PI(X) + fGI([..[)(X + VIS, sjds, 

i = 1,2, ... ,p 

are satisfied. 

III. LOCAL EXISTENCE 

We will prove in this section some results on the local 
existence of the solutions for the Cauchy problem (2.3). 
These results are quite different from the previous one. In 
fact, we obtain some particular bounds for the local solution, 
depending on the point (x, t), derived a priori from the given 
initial values, in such a way as the local existence can imply 
the global existence. 

In the following, as specified in the Introduction, we will 
prove that for bounded initial data there is a time in which 
the dominant process in the evolution of the densities should 
be the free flow. To this purpose, let us define on DT the 
operator A by components, as 

(A.[)I(x + Vit, t) = f GI([..[)(x + VIS, sjds, 

(3.1) 
i= 1,2, ... ,po 

By virtue of Definition (2.2) it is routine to verify thatA maps 
DT inDT· 

Let a(s): R + -+ R + be a nonincreasing bounded func-
tion for which 

* a((v'2/2ls) a =sup < 00, 
.;>0 a(s) 

and let us define 

A, (t, a) = a* max '} A ~m 
Iq J.t;:,. 

xfa(inf{iVI -vkl, IVi -vmll·sjds. (3.2) 

Finally, for given constant K> 0, let us consider the follow
ing closed convex subsets of BT: 

NT(Ka) = l[eBT; Ocift(x, + Vlt, t) 

<Ka(lxi); i = 1,2, ... ,pl. 

At this point, the following result can be proposed. 

(3.3) 

Lemma: Let/eNT(Ka). ThenA/eNT (A,(T 12, a)K2a). 
Proof: Let.[eNT(Ka). Then -
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(A.[)I(x + Vit, t) 

1 it = - L A ~ ifk /m )(x + VIS, sjds 
2 J.k,m 0 

1 it < _K2 ') A ~ a(lx + (VI - vklsl) 
2 J.t"m 0 

xa(lx + (VI - vmlslJds. 

Thanks to the property of physical consistency, we have con
tribution to the sum only wheni;fI;6k ;fm, that is, when VI 
;fVk and at the same time Vi ;fvm' 

Moreover, by virtue of the geometry of the collision, two 
particles with velocities V I and vJ are scattered into V k and V m 
in such a way that the two vectors VI - Vk and VI - Vm are 
orthogonal. This simple property plays a fundamental role, 
since the problem is at this point reduced to majorized quan
tities as 

fa(lx + wl)a(lx + vslJds, 

where lui, Ivi > 0 and U' V = O. 
Since the above integral is invariant with respect to a 

change of the reference frame S, we can evaluate it with 
respect to the frame S I, defined by the orthogonal triad i, j, k 
such that 

(3.4) 

With respect to S I, let us consider the vector 
x = xi + Y j + zk. At first, let us suppose that x> 0 and 
y>O. Then 

and 

Ix + wf = (x + (lul/v'2ls)2 + (y + (lul/v'2ls)2 + r 
>! (x + y + v'2luls)2 

Ix + vsl2 = (x + (lvl/v'2ls)2 + (y - (lvl/v'2ls)2 + r 
>! Ix12. 

Since a(s) is not increasing, it follows that 

a(lx + usl)a(lx + vsi)<a* •. a(lxl)a(l(x + y)/v'2 + lulsl). 

If now x < 0 and y < 0, we obtain 

a(lx + usi)<a(l(lxl + 1Yi)/v'2 - lulsl), 

a(lx + vsi)<a*a(lxi), 

and, if x> 0 andy < 0 

a(lx + usi)<a*a(lxl), 

a(lx + vsi)<a(l(x + 1Yi)/v'2) + Ivlsl)· 

In the last case, that is, for x < 0 and y > 0, 

a(lx + usl)<a*a(lxi), 

a(lx + vsi)<a(I(lxl + Y)/v'2 -lvlsi). 

Now, since a(s) is not increasing, the following inequalities 
are easily derived: 
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rt ('12 
Jo a(i Ixl + lulsl)ds<2 Jo a(luls)ds, 

(' ('12 
Jo a(i Ix - ulsl)ds<2 Jo a(luls)ds. 

Thanks to (3.5), if t< T, 

fa(IXI + lusl)a(lx + vsl)ds 

<a*a( I x I) sup 
lul.lvl 

x {fa(IIXI; Iyl ± lulsl)dS; 

fa(IIXI; Iyl ± Ivlsl)dS} 

<a*a(lxI)2 sup { (/2a (iuls)ds; (/2a (iV IS)dS} 
lul.lvl Jo Jo 

<a*a(ixl). 2· ITl2a (inf( lu l, Ivl)· s)ds. 

Let us retake into account the components of At 
(A[)i(X + vJ, t) 

<~K2 L A:lm 
2 j.k.m 

x fa(lx + (Vi - vdsl)a(lx + (Vi - vm)sl)ds 

<a(lxl). a*K2 L A:lm 
j.k.m 

(/2 
X Jo a(inf{ IVi - Vk I; IVi - Vm I js)ds, 

so that, in virtue of Definition (3.2), for i.;;;p 

(A[)i(X + vJ, t )<A (T /2, a) . K 2. a(lxl), 

(3.5) 

and, since trivially (A/)i(X + vJ, t );;;00, i = 1,2, ... ,p, we 
conclude that -

D 

With the aid of the Lemma, a theorem on the existence 
and unicity of the local mild solution of the Cauchy problem 
(2.3) is immediately derived. 

Let us define, given non-negative initial data qJi(X) 
ECb(Rf, i.;;;p, the following: 

tP(s) = max sup qJi(X). 
i<,p Ixl >s 

(3.6) 

From Definition (3.6) it follows that tP(s) is a bounded nonin
creasing function which maps R + in R + . 

Let us suppose that the following condition is verified: 

1 < tP* = sup tP((~/2)s) < 00, 

s;.o tP(s) 
(3.7) 

and let To be the time for which 

A (T 012, tP) = * . (3.8) 
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Theorem 3.1: Let 0<qJi(X)ECb (R3
), i.;;;p, and let tP* < 00. 

Then the Cauchy problem (2.3) has a unique non-negative 
mild solution/Ix, t ) in the interval [0, To], with To defined by 
(3.8). Moreover in this interval, for every xER3 

O«(x, t )<2<P(lx - vJ I), i = 1,2, ... ,po (3.9) 

Proof: Let us introduce on BTo the operator V whose 
components are defined by 

(v[Ux, t) = qJAx - vit) + (A[Ux, t), i = 1,2, ... ,po 

Thanks to the hypotheses made on the initial values, if/EBr , 
then V/EBr . - 0 

Now let/ENr (2<P). Recalling the result of the Lemma, 
whenK = 2, we obtain thatA[EN To (A (T 012, tP)4<P), and, since 
To is defined through (3.8), A[ENTo(tP). Therefore, since the 
vector with components qJI(X - vlt), qJ2(X - V2t), ... , 
qJp(x - vpt) is a vector of NTo(tP), V[ENTo(2<P). Finally, let 
.[. ~EN To (2<P). Then 

1(V[)i(X + vJ, t) - (V~)i(X + vJ, t)1 

< I (A[Ux + vJ, t) - (A~)i(X + vJ, t)1 

1", "it <- £... A fm IfJm - gkgm I(x + vis,s)ds 
2 j.k.m 0 

<~ L A :1m (' Il[ - ~1I(fm + gk )(X + vis,s)ds 
2 j. k. m Jo 

<II[ - ~II' ~ L A:lm (' 2{tP(lx + (Vi - Vm)sl) 
2 j. k. m Jo 

+ tP(lx + (Vi - vk)sl)jds 

<II[ - ~II' L A:lm f {tP(llxl -IVi - Vm lsi) 
j.k,m 0 

+tP(llxl-lvi -vklsl)jds. 

An application of inequalities (3.5) gives 

ftP(llx l - IVi - Vk Isl)ds + ftP(llx l - IVi - Vk Isl)ds 

<4f12tP(inf{ IVi - Vk I; IVi - Vm I js)ds, 

so that 

L A:lm f {tP(llxl -IVi - Vk lsi) 
i,k,m 0 

+tP(llxl-lvi -vmlsl)jds 

<4 ~ax L A:lm (oI
2
tP(inf{ IVi - Vk I; IVi - Vm I js)ds 

,<,p j.k. m Jo 
= 4'A (T0I2), tP)· tP°- I < 1. 

Taking the supremum over xER3 and tE[O, To] we obtain 
finally 

II V[ - V~II < II[ - ~II· 

Thanks to the contraction mapping principle, the result fol
lows. Since the solution lies in Nr.!2tP), we have also proved 
inequality (3.9). D 

Remark: Let us briefly comment on condition (3.7). It 
seems that Theorem 3.1 does not give answers if tP* = 1 or 
tP* = 00. 

In the first case, we have only to restrict the interval of 
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existence. for example. by choosing TI so that A(TII 
2.~) =~. In this way. the operator Vis a contraction in NT, 
(2?). In the second case. typical of initial data that vanish 
outside of a finite volume. we have only to consider a bound
ed nonincreasing function ~1(s»~(s) for which~; < 00. and 
then apply the contraction principle on N To (2?I)' 

IV. GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR 

From Theorem 3.1 follows a global existence theorem, if 
the initial values are "small" in a suitable sense. We have in 
fact the following. 

Theorem 4.1: Let 0<IPI(x)eCb(R3
), i<.p. and let~· < 00. 

Ifin addition ~(s)eLI(R+). andA (00. ~)<1, the Cauchy prob
lem (2.3) has a unique non-negative global mild solution 
[(x. I). Moreover. for every xeR3 and t > 0 

O.q;(x.I)<2?(lx-v;tll. i=I.2 •...• p. (4.1) 

Proot The result is a simple consequence of the fact that. 
for ~I(R+) with the LI norm of ~ opportunely small. 
A (t. ~)<i for all t>O. 0 

Let us examine now briefly the asymptotic behavior of 
the global solution of the Cauchy problem (2.1). 

From inequality (4.1) follows the asymptotic decay to 
zero of the solution of the Cauchy problem (2.3), and there
fore the asymptotic decay to zero of the solution of the 
Cauchy problem (2.1). In fact. since under the hypothesis of 
Theorem 4.1. ~(s)eCb(R+). from (4.1) we deduce 

lim /;(x. t)< lim 2?(lx - viI Il = O. 
t_ co t_ 00 

Moreover. let tl < t2. Then 

Ift(x + Vl t2, (2) - /;(x + ViII' tIll 

i" < IGI([,[) - /;LI([)l(x + ViS. s)ds. 
" 
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Now, proceeding as in the Lemma, 

[' GI([,[)(x + VIS, s)ds<~(lxl)A ((/2 - t l )/2, ~) 
and 

[ /;L ([)(x + VIS,S) 
" 

<2?(lx lli" ~ A tm~(llxl-lvi - vJlsl)ds 
'd.t"m 

<~(lxl)AI((/2 - (1)/2, ~), 

where 

AI(t.~) = .m~ ~ f'A ~j~(lvl - vJls)ds. 
'''p. '#-J J. t"mJo 

Therefore 

Ift(x + vJ2' (2 ) - /;(X + VJI' (1)1 
<~(lxl){A ((t2 - tl)/2,~) + Al (t2 - t1/2, ~)J. 

Since the function ~(s) is bounded, and both A (t, ~), AI(t,~) 
are continuous with respect to t, the existence of 

lim/;(x + Vit, I), i = 1,2, ... ,p follows. 
,~ 00 
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We present a proof of skeleton inequalities for ferromagnetic lattice spin systems with potential 
V(91 2) = (0/2l9' 2 + 1::-= 2 {A2n/(2n)1} 91 2n (0 real, A2n >0) generalizing the Brydges-Frohlich
Sokal and Bovier-Felder methods. As an application ofthe inequalities, we prove that, for 
sufficiently soft systems in d > 4 dimensions, critical exponents r, a , and ~4 take their mean-field 
values (i.e., r = 1, a = 0, and ~4 = ~). 

I. INTRODUCTION 

Recently, Brydges, Frohlich, and Sokal) introduced a 
new set of quite interesting inequalities called skeleton in
equalities into lattice 914 systems. Making full use of these 
inequalities, they have succeeded in a simple and elegant 
construction of (weakly coupled) nontrivial Atp4

3 and Atp42 

continuum field theories.2
,3 This, with the result of 91 4 d tri

viality (d> 4) due to Aizenman and Frohlich,4-9 are the two 
outstanding achievements in the rigorous analysis of lattice 
field theories by the random-walk methods. 

I 

Let us briefly review Brydges-Frohlich-Sokal skeleton 
inequalities. We first describe the notion of skeleton expan
sion. Consider the 2p-point function of a lattice tp4 system: 

fUAEA dtp"(91,,, tp"2 ... tp"2p)exp{ P:",yJ"ytp"tpy -1:"((a/2l9',, 2 + (A /41l9'" 4)} 

fUAEA dtp" exp{!1:x,yJ"ytp"tpy - 1:"((a/2l9',, 2 + (A /4!)tp" 4)} 

If one expands the term exp{ - (A /4!)tp" 4} in a formal Taylor series, the 2p-point function can be formally expressed in terms 
of an infinite series of the Gaussian propagators G"y (0) = <91"tpy)..t = 0' This is nothing but the well-known formal perturbation 
expansion. For example, the four-point function is represented graphically as 

y x Q 
+..!.. 

2 w z 
: + (five similar terms)] 

y x 
+ (three permutations) + XX 

w z 

where a line stands for a Gaussian propagator G"y (0), and a 
dot is a shorthand for a summation over the lattice sites, for 
example, 

xX' = "VG (O)G (O)G (O)G (0) 
~xu yu zu wu· 

Z W u 

: + (two permutations) + ... ] 

+!x 0 Y]_A,3["'J+"" 

Using the similar formal series for the two-point func
tion 

one can rewrite the 2p-point function in terms of the (non
Gaussian) two-point functions. If one takes into account the 
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topologies and coefficients of the graphs carefully, one will 
observe that this expression for the 2p-point function is rep
resented as a series of skeleton graphs, i.e., graphs without 
self-energy part, with exactly the same combinatorial coeffi
cients as those in the formal perturbation expansion: 

(rpxrpyrpzrpw) 

: - : +:! 1: +:X : 
-A:X: 
+ ~t x:x : + (two permutations)] 

_A 3 [ ••• ]+ .... 

We call such an expression ofthe 2p-point function a skele
ton expansion. 

Skeleton inequalities provide us with a rigorous version 
of the perturbation theory in the following sense. Consider a 
partial summation, up to some order ( - At, of the skeleton 
expansion for the 2p-point function. Then this quantity gives 
a rigorous upper (resp. lower) bound for the 2p-point func
tion if the order n is an even (resp. odd) integer. See Eqs. 
(3.9)-(3.11) for the precise forms of the inequalities. 

Brydges, Frohlich, and Sokal proved the skeleton in
equalities for the four-point function by construction up to 
second order. I A complete proof of the inequalities for the rp 4 

system to all orders in A was given by Bovier and Felder, 10 

who devised an elegant argument relying on the asymptoti
city of the formal perturbation expansion. 

In the present paper, we will push their idea further and 
study general continuous spin systems with potential of the 
form 

V ( 2) ax 2 ~ A2n.x 2n , 0 
x rpx = -::<Px + ~ -- rpx , /l.2m:>· 

2 n=2 (2n)! 

We can again define skeleton expansion in the same way as in 
the rp4 system, and prove the skeleton inequalities for the 2p
point functions. 

In Sec. II, which is the main part of the present paper, 
we carry out to the full extent the ideas of Bovier and Felder, 
and prove these generalized skeleton inequalities. We first 
prove the existence of alternating upper and lower bounds 
expressed as summations over the graphs. Each term in the 
summations is a product of some coefficient and graph am
plitude, which is written in terms of the two-point functions. 
The crucial point is that these coefficients are independent of 
the system parameters. Then, making full use of this inde
pendence, we determine the explicit forms of the bounds, 
which actually coincide with partial summations of the skel
eton expansion. 

The difference in our method as opposed to the original 
method of Bovier and Felder is in the first step of the proof. 
Bovier and Felder exhibited that the summations over 
graphs extend only to the skeleton graphs. We here omit this 

2923 J. Math. Phys .• Vol. 26. No. 11. November 1985 

procedure, and leave everything to the second step, which 
gives us sufficient information. 

In Sec. III, we discuss some applications of these in
equalities to the statistical mechanical theory of spin sys
tems. II We prove that in a "sufficiently soft" system ("soft" 
in the sense that the system is weakly coupled), the critical 
exponents r, a, and.d 4 are exactly identical with those values 
predicted by the mean-field theory, provided that the dimen
sionality of the lattice is greater than 4. 

II. PROOF OF SKELETON INEQUALITIES 

A. Preliminaries and main result 

First we describe our model systems. Let A be an arbi
trary finite lattice. To each site xeA , we associate a spin vari
able rpxeR, with a priori measure 

dvx(rpx)=exp( - Vx(rpx 2))drpx. (2.1) 

We consider a potential Vx (rpx 2) of order 2Mx (Mx :>2), 

(2.2) 

where ax is real, g2n,x :>0, and g2M
x
.x > O. Constants Mx, ax, 

and g2n,x can be site dependent, while the expansion param
eter A is a site-independent positive constant. 

Thermal expectation of our system is defined asl2 

( .. . }=Z -J lJdvx(rpx)(" ')e-A", (2.3) 

where Z is the normalization factor (partition function), and 
K is the Hamiltonian 

1 
K= --IJxyrpxrpy, 

2 x,y 

with 

JXY = Jyx:>O, Jxx = O. 

(2.4) 

Next we recall some useful formulas from the random
walk representation theory. 1.13.14 The following "integration 
by parts formula" plays a central role: 

(rpxF(!rp}» = I I J"fdv.,(t).,q'(t)( aF) . (2.5) 
yeA .,:x_y arpy t 

The second sum ranges over all random walks, 

m=(m(O),m( 1 ), ... ,m(n)), m(i)eA, , 
starting at x = m(O) and ending at y = m(n). Here J" stands 
for the product 

J"==J ""'0)«>(1/.,(1)""'2)' • ·J.,(n - 1)""'n)' 
The integrations over "local times" {tx }XeA are performed 
with measures 

dv.,(t )= II dvn(x . .,) (tx ), 
xeA 

where 

{

8(SJdS (n = 0), 

dvn(s)== O(S) $"-1 ds (n:>I), 
(n -I)! 

(2.6) 

(2.6') 

and n(x,m) is the number of times that m visits the site x. Zt 
and ( .. '}t are defined by replacing each Vx(rpx 2) in (2.3) by 
Vx(rpx 2 + 2tx ), i.e., 
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and 

.,q'(t) Z,IZ. 

This representation provides us with convenient expres
sions for correlation functions of the system. If we define 
unsymmetrized 2p-point functions F2P bylo 

F2p (X I,yI;X2,y2;"';Xp ,yp) 

- ~,:~y, C{r/~)fJII dV~i(t;).,q'C~t), (2.7) 

(/= 1.2 ••..• p) 

then 2p-point functions can be written as 

(fPX/PX2' • ' fPx2) 

(2.8) 
1T 

where the summation runs over all the pairings of the 2p
pointsxl ,x2 , ... , x2p ' In particular, two-point functions have 
a simple expression: 

(fPxfPy) = ~~/~J dv~(t).,q'(t). 
Finally, we describe some graphical concepts. A graph 

G consists of a set of external points G e' sets of internal points 
of order 2n G;.2,. (n = 2,3, .. . ,M), and a set of lines GI • We 
suppose that the set Ge is ordered. Moreover, each line is 
connecting two of the (external or internal) points in such a 
way that (i) only one line attaches to each external point, and 
(ii) 2n different lines attach to each internal point of order 2n. 
The graph G is nothing but the graph which appears in the 
formal perturbation expansion in the .1l:~= 2g2,.fP 2" theory. 
We denote by f§ 2p the set of all graphs with 2p external 
points. 

A graph G is called a skeleton graph if no internal point 
of G is separated from the external points by cutting arbi
trary one or two internal lines of G (in other words, if G 
contains no "self-energy parts"). 

With a graph Gef§ 2p' and 2p sites XI ,X2 , ... ,x2p of the 
lattice, we associate its amplitude .PI(A)( G )(Xt ,x2 •... ,x2p1 written 
in terms ofthe two-point functions ofthe system. Substitute 
siteYq of the lattice A for each point q in G; or Ge • (For the 
external points qeGe , we fix Yq = xq , where q = 1,2, ... ,2p.) 
Then the amplitude is defined as 

.PI(A)(Gk"t ,x2 •... ,x2p1== L (rrg(order of q).y.) 
y.eA qeG, 

(all qeG,) 

(2.9) 

where II and 12 denote endpoints of a line I. 
Now we can state our main theorem using the following 

shorthand notation due to Bovier and Felder. 10 

Definition 2.1: Givenf(.1 ) and {fk (A. )} k = 0.1 •... as func
tions of A., we write 

N 

f(.1 )SL(-A. )%(,1) 

2924 J. Math. Phys .• Vol. 26, No. 11, November 1985 

if 

2" 

f(A.)< L (-A. )'Yd.1) 
k=O 

and 
2m+1 

f(A.» L (- A. )%(A. ) 
k=O 

hold for all A. > 0 and all non-negative integers n and m satis
fying 2n <N and 2m + 1 <N. We write 

if the above relations hold for all N>O. 
Theorem 2.2: For our models defined by Eqs.(2.1 H2.4), 

we have the following alternating bounds: 

(fPx,fPx2' • ' fPx2) 

SL(-A.)k L Cpert(G).PI(A)(G)(Xt .... ,x2P)' (2.10) 
GeY.,lk l 

where Y 2p (k) is the set of all skeleton graphs with k-intemal 
points that arise in the formal perturbation expansion of the 
2p-point function, and Cpert (G) is the corresponding non
negative combinatorial factor in the perturbation expansion. 

The proof of this theorem is given in the following two 
subsections. In Sec. II B, we prove the existence ofthe alter
nating bounds of the form of (2.10), where, however, the 
coefficients Cpert(G) are replaced by (unknown) universal 
constants C(k)(G) and the summations extend also to non
skeleton graphs Gef§ 2p' Then in Sec. II C, using the asymp
toticity of the formal perturbation series (for a suitable 
choice of the parameters), we determine the unknown coeffi
cients C (k)( G), and get the theorem. 

Remarks: P) As is noted in Refs. 1, 10, and 14, the skele
ton inequalities are also valid for the two-component sys
temslS

•
16 described by the potential (2.2) with fPx 2 replaced 

by l'flx 12. 
(2) The skeleton inequalities are also valid in the infinite 

volume limit, as long as the summation on the right-hand 
side has a well-defined limit. This is often the case if the 
system is in the high-temperature region. 

B. Existence of alternating bounds 

Here we will prove the existence of alternating bounds 
for 2p-point functions. 

Proposition 2.3: For our models defined by Eqs. (2.1)
(2.4), the relation 

SL(- A. )k L C(k)(G ).PI(A )(G )(X, ..... X2p) 
GeSl'2p 

(2.11) 

holds. Here C(k)(G) are some non-negative constants de
pending on the graph G, and being independent of the pa
rameters Xl ,x2 , .. ·,x2p' A, ax' g2,..x' A., Mx ' and JXY ' More
over, C(k)(G) are nonvanishing only for a finite number of 
G 's for fixed values of k. 
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Proof: We will prove the following three relations for all 
values of N. Then the second relation (2.13) with the formula 
(2.8) proves the proposition. 

Relation 1: 

(fPxfPy) t - (fPxfPy) 
N 

SI( -A )kI I I C1(k)(I,{m;},{n;}; G) 

x I 
x,EA 

(i= 1 •...• 1) 

1>1 m;,n;>t GeP2(1 + l:nj) 

(i=I .... ,1) 

(2.12) 

On the right-hand side ofEq. (2.12), the k = 0 term is absent. 
Relation 2: 

F2P (x l ,yI;"';Xp'Yp) 

Relation 3: 

(fPxfPy;fPz 2m) 

(2.13) 

= (fPxfPyfPz 2m) - (fPxfPy) (fPz 2m) 

(2.14) 

2m 

Here CI(k), C2(k), and C3(k) are non-negative constants de-
pending only on G (and integers I,m/,n/). We give the proof 
by an induction in N, using three key identities (which are the 
simple consequences of the definitions and random-walk 
representation) and a simple lemma described below. We 
start with Relation 1 for N = 0 and proceed to Relation 2 for 
N = 0, Relation 3 for N = 0, Relation 1 for N = 1, and so on, 
as is indicated in Fig. 1. 

Key 1: 

(fPxfPy) t - (fPxfPy) 

N=2 

N= 1 

N=O 

REl. 

KEY 

~.~. r 
~ I 2 I 3 

2 3 1 

FIG. 1. How to carry out the indue
tiveproof. 
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Key 2: 

F2p (XI ,yl ; ... ;xp,yp) 

(i=I •...• p-l) 

(2.16) 

Key 3: 

(fPxfPy;fPz 2m) 

= 2m(2m - 1 )1!F2m + 2 (X,z;y,z;Z,z; ... ;Z,z) 

+ (2m -1)l! "'~z J"" ••• J"'m f J,i:1 dV",,(t i) 

(i=I •...• m) 

(2.17) 

Lemma 2.4 (Bovier and Felder 10): Let 

N 

f(A )s I( - A )'1dA ), 

N 

fdA )S I( - A )1k/(A ). 

Then 
N 

f(A )SI( -A )khk(A), 

with 

hk(A. )= I hm(A). 
/+m=k 

Since our inductive proof is a natural extension of those 
given by Brydges, Frohlich, and Sokal l and by Bovier and 
Felder, 10 we only sketch the outlines of each step. 

Proof of Relation 1 for N=O: This can be proved con
structively by the monotonicity inequality 

(fPxfPy) t" (fPxfPy), 

which is a consequence of the first key identity (2.15) and the 
Griffiths II inequality. 16-18 

Proof of Relation 2 for N. given Relation 1 for N and all 
Relationsfor N-1, N-2, ... : This is done by an induction in 
2p (number of points). For p = 1, the trivial bound 

N 

(fPxfPy)sI( -A )kfk(A), 

withfo = (fPxfPy)./n = 0 (n> 1) establishes the relation. 
To prove the relation for 2p (given the relations for 2p-2, 

2p - 4, ... ), insert Relation 1 for N into the right-hand side of 
the second key identity (2.16). For the term originating from 
(fPxfPy), we can use the assumed Relation 2 about F2p _ 2 for 
N to get the desired alternating bound. As for the remaining 
terms, a tedious calculation using the "path splitting for
mula l 

.. reduces the quantity to a combination of F2q's and 
two-point functions. Substituting the assumed alternating 
bounds (up to order N - 1) for F2q 's and rearranging the 
inequalities by Lemma 2.4, we obtain alternating bounds. 
We can then check that the resulting bounds are of the right 
form (e.g., the factor g2n.x appears corresponding to each 
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internal point x of order 2n), and consequently obtain the 
desired relation. l9 

Proof of Relation 3 for N, given Relations 1 and 2 for N, 
and all Relations for N-J, N-2, ... : This can be done in 
exactly the same way as the previous step, once we take ad
vantage of the third key identity (2.17). 

Proof of Relation 1 for N + 1, given all relations for N, 
N -1, ... : Observe that on the right-hand side of the first key 
identity (2.15), the zeroth-order term in ( - A. ) does not exist. 
This fact enables us to lift the relations of order N to those of 
order N + 1. 

Since the relations are independent of the specific values 
of the system parameters, Relation 3 for N is valid for the 
quantity 

«(fJx;CPy;(fJz 2m) at> 

with 

__ ~ g2n+2d2t)\+kCd2n)! 
g2n= ~ 

k=O (2n + 2k)! 

playing the role of g2n' Substituting this relation into the 
right-hand side of the first key identity (2.15), we obtain 
(N + l)-th-order bounds for «(fJx(fJy), - «(fJx(fJy) in terms of 
the two-point functions «(fJu(fJv)at. But, if we apply Relation 
1 for N, these unusual two-point functions can be bounded 
alternatingly by the usual two-point functions. We obtain 
the desired relation by Lemma 2.4. • 

C. Skeleton Inequalities 

Here we will refine the argument given in the previous 
subsection and show that all the coefficients in the alternat
ing bounds (2.11) are exactly equal to those which appear in 
the skeleton expansion. 

Proposition 2.5: Coefficients C (k I( G) in Eq. (2.11) satisfy 

C(kl(G) = {Cpert(G), if GeY2p(kl, 
0, otherwise. . 

(2.18) 

Proof: Since the coefficients C(kl(G) are universal (i.e., 
independent ofallthe parameters, {JXY j, A, {x;}, {ax j, and 
{g211.X j), we only have to determine C(kl(G) for some conve
niently chosen lattice system. Here we let the parameters ax 
be sufficiently large so that the system with A. = 0 (the Gaus
sian model) is well defined. 

Existence of the Gaussian model, together with the 
Griffiths II inequality, implies the following bound for 2p
point functions: 

O..;(mx mx •• '(fJx )..;const l < 00, (2.19) 
T l' 2 2p 

where the const l is independent of A. and {Xi j. This bound, 
applied to the ( - A. )N + 1 term on the right-hand side of Eq. 
(2.11), immediately leads to the following estimate: 

I «(fJxI' • '(fJx2) 

_ ~ (_A.)k ~ C(kl(G).J!f(AI(G) I 
~ ~ (XI .···,x2p l 

k=O GeP2p 
<A. N + 1 const2 • (2.20) 

On the other hand, we can prove the asymptoticity of 
the formal perturbation series of 2p-point functions, using 
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the Schwinger-Dyson equation (as a generator of the series) 
and the bound (2.19). Partial resummations of the series yield 
the following lemma. 

Lemma 2.6: In our model, for all N>O, 

I «(fJxI' • '(fJx2) 

- f ( - A. )k L Cpert (G ).J!f(A I( G )('>:1 .... ,x>pl I 
k=O GeY2p1k) 

<A. N + 1 const3 (2.21) 

hold. Here Y 2p (k I is the set of all skeleton graphs with k 
vertices and 2p-external points that appear in the perturba
tion expansion of the 2p-point function. (For completeness, 
we will prove this lemma at the end ofthis section.) 

Combining Eqs. (2.20) and (2.21), we obtain our basic 
estimate 

I f (_A.)k L C(k l(G).J!f(AI(G)(XI ..... X2
P
I 

k=O GeP2p 

..;,1 N + I const4 • (2.22) 

Now we prove the proposition C(kl(G) = Cpert(G) (for 
Gey(k I) by an induction in N. Assume the proposition for all 
k..;N - 1. Then, on the right-hand sideof(2.22), all the terms 
with k..;N - 1 exactly cancel. Dividing the consequent ine
quality by A. N and letting ,1-0, we are led to the equality 

L C (k I( G ).J!f(OI( G )(XI .... ,x2
p
l 

GeP2p 

L Cpert (G ).J!f(OI(G )('>:1 ..... X2p! , (2.23) 
GeY2plk ) 

where .J!f(O) stands for amplitudes obtained from the Gaus
sian propagators «(fJX(fJy)A=O' Note that the Gaussian pro
pagator has the explicit expression 

CXy=«(fJX(fJy)A=O = (A -I)XY' 

where a IA I X IA I matrix A is defined as Axy = - JXY for 
X=f=y and Ax.>: = ax' This implies that we can choose every 
Cxy at will20 independently. If the (finite) lattice A is suffi
ciently large (compared with N), successive differentiations 
ofEq. (2.23) by various CXy yield the desired equality. 

To start the inductive proof, we only have to note that 
no terms with inverse powers of ( - A. ) exist in Eq. (2.22). 
This (formally) corresponds to the desired statement for 
N= -1. • 

Proof of Lemma 2.6: We first define 

N 

GXy(A.N)= L (_A.)k L Cpert(G).J!f(O)(G)(.>:.YI' (2.24) 
k = 0 Gep,lk) 

where the second summation runs over all the k th-order 
graphs that appear in the formal perturbation series for 
«(fJ x (fJ y >. By the asymptoticity of the formal perturbation se
ries, we have (if we write G.>:y (AI = «(fJx(fJy » 

IG (AI_G (A.NII/A.N+1const xy xy.... 5' 
(2.25) 
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Thus, if we denote by ,pf(A..N) the amplitude obtained by re
placing G"y (A.) by G"y(A.·N) in the definition of ,pf(A.), Eq. (2.9), 
we obtain 

- f (_A)k L Cpert(G),pf(A.·N)(G)(" ••...• "2P) I 
k = 0 GeY 2P(k) 

<A N + ) const6 • (2.26) 

Next substitute the definition (2.24) for G(A.·N) in ,pf(A..N), 

and rewrite everything in terms of the Gaussian propagator 
G"y (0). Then the one-to-one correspondence ofthe resulting 
graphs up to order N leads to the following "skeleton expan
sion vs formal expansion estimate": 

- f ( -A)k L Cpert (G ),pf(O)(G )(" • • ···,x2p) I 
k = 0 GeP2P(k) 

<A N + ) const7. (2.27) 

The desired equation [(2.21)] follows from Eqs. (2.26) 
~~m • 

III. APPLICATION TO CRITICAL PHENOMENA 

We discuss some results obtained by applying the skele
ton inequalities to statistical mechanical problems. For this 
purpose, we consider a translation invariant system with 
nearest neighbor interaction on ad-dimensional hypercubic 
lattice Z d (d> 4). The interaction {J"y J satisfies J"y = J> 0 
if Ix - yl = 1, and J"y = 0 otherwise, and the potential 
V(tp" 2) is given by 

V( 2) a 2 ~ A2n 211 2 0 
tp" tp" + "-~" , /1.211>' 

2 II=2(2n)! 
(3.1) 

where the constants a, M, and A211 ( = Ag2n , in Sec. II) are 
now site independent. Moreover, we require an additional 
condition a > O. 

Thermal expectation of the system is then constructed 
as an infinite volume limie2 A_Zd ofthe finite volume ex
pectation (2.3), where A is a rectangular-parallelepiped sub
lattice of Z d with periodic boundary condition. We denote 
such a limit expectation by ( ... ). 

We will investigate the behavior of the following three 
thermodynamic quantities: 

x= L (tpotp,,), (3.2) 
xezd 

C = I"~) {(tpotp"tpytpy') - (tpotp,,) (tpytpy' ) J, (3.3) 

ly-y'I=) 

IU41= L IU4(O,x,y,z)I, (3.4) 
".y,zeZd 

where the truncated four-point function U4 is defined as 
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U4(X 1,x2,x3,x4) 

==(tp".tp"2tp"3tp".> - (tp".tp",) (tp"3tp".> 

- (tp".tp,,) (tp",tp".> - (tp".tp",>(tp",tp"3)' 

and X and C are the susceptibility and specific heat, respec
tively. 

For the lattice dimensionality d>2, it has been rigorous
ly established that, these systems possess critical 
points12.21-23 characterized by2.24 (among other things) 

(3.5) 

with finite and nonzero Je • Accordingly, we define2s the 
critical exponents y, a, and ..:14, which characterize the criti
cal behavior of the quantities (3.2H3.4): 

r= lim 
J--+Jc - 0 

-lnx /In(Je -J), (3.6) 

a= lim - In C /In(Je - J), 
J--+Jc - 0 

(3.7) 

(3.8) 

These definitions are formal ones, since the existence of 
the limits is not known. But for some suitable systems in high 
dimensions, we have the following theorem. 

Theorem 3.1: In the system (3.1) with d> 4, critical ex
ponents y, a, and..:14 exist and satisfy the equalities 

y= 1, a=O, ..:14=~' 

if the couplings A211 are sufficiently small.27 

Proof: We first illustrate the proof of the equality 
..:14 = ~y in A4tp4 systems (i.e., M = 2). In this case, the first 
three skeleton inequalities applied to u4(x,y,z,w) are 

U4(X,y,z,W)<O, (3.9) 

u4(x,y,z,w) 

> - A4L (tp"tp,.> (tpytp,,) (tpztp,,) (tpwtp,,) 

" 

(3.10) 

..; - A4L (tp"tp,,) (tpytp,,) (tpztp,,) (tpwtp,,) 

" 

+ (A;)2 L[ (tp"tp,,) (tpytp,,) (tp"tp.)2 
" .. 

x (tp.tpz) (tp.tpw) + (two permutations)] 

= _A4

X X Y 

z w 

+ iJ.;f [:XX: + (two permutations I] , 
(3.11) 
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where, in the graphical descriptions, a wavy line stands for 
the two-point function and a dot is a shorthand for a summa
tion over the lattice sites. 

From the first-order skeleton inequality (3.10) and the 
definitions (3.4) and (3.2), one can easily see28 

lu4144 L (tpcfP,.) (tp%tp,.) (tpytp,,) (tpztp,,) 
%.y.z." 

=A.~. (3.12) 

Similarly, from the second-order skeleton inequality (3.11), 
we have 

IU41;>A.~ - +A.4)2~(tpcfP%)2X4 

=A.4(1- ~A4~(tpcfP%)2~4. (3.13) 

If the coefficient of X4 on the right-hand side is finite and 
nonzero as J-.Jc - 0, we can conclude 

lu41-x4 as J-.Jc - 0, 

and, from Eqs. (3.5) and (3.7), we can obtain a critical expo
nent equality ..::1 4 = ~r, which, with r = 1, gives the desired 
equality ..::1 4 = ~. 

To estimate the coefficient in question, we use infrared 
bounds of Frohlich, Simon, and Spencer,21.22 

= ~{(21T)-d/2f ddk G(k)~lar 

= fddklG(kW 

1 fTT ddk[ d ]-2 1 <-2 - 2L(I-coskj ) =~2(d). 
J - ". (21T)d j = 1 J 

Note that C2(d) is a finite constant in d > 4 dimensions. Com
bining this with the bound of the critical temperature31 

Jc ;>a/(2d I, we can bound the coefficient in Eq. (3.13) (in the 
limit J-.Jc ) as 

1 - 2.~2d 12C2(d)«1 - 2.A.4L(tpcfP%)2)<1. 
2 a 2 % 

Now, it is easily observed that the left-hand side of the above 
inequality can be made strictly positive by lettingA.4 become 
sufficiently small compared with a. 

Proofs of the equalities r = 1 and a = 0 can be given in a 
similar way.S.26 Representations 

~-l) = _ \ L u4(0,xJ'J") - 2d, (3.14) 
dJ 2,( %.1 y- y'l = I 

C = IX~ I I U4(0,xJ',Y') + 2 (tpcfPy ) (tpxtpy') I, (3.15) 

Iy-y'l = I 

together with the zeroth- and first-order skeleton inequal
ities, (3.9) and (3.10), imply (again for d> 4 and sufficiently 
smallA.4) 

~-l)-const, C-const, as J-.Jc - 0, 
dJ 

which reduce to the exponent equalities r = 1 and a = O. 
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Extensions of the above proofs to the general U 2n tp 2n_ 

systems can be done almost automatically, if one takes care 
of the following few points. 

In the first-order skeleton inequality corresponding to 
Eq. (3.10), one now finds the terms like 

... , 

which contain bubbles 

But a bubble can be controlled by infrared bounds as 

2 1 f ddk 1 
(tpo )<- -d d ' 

J (21T) 2~/=.(1 - cos k/) 

where the integral converges if d > 2. 
In the second-order skeleton inequality [corresponding 

to Eq. (3.11 )), along with the bubbled "fish" diagrams (with 
"spinals") 

... , 

one has to deal with "squids" 

, ... , 

and "quadrupuses" 

These can be again controlled by infrared bounds in d> 4 
dimensions. • 

Finally, we note that most of the critical exponent 
(in) equalities discussed in the present section have been ob
tained for various systems through different correlation in
equalities. We summarize these results in Table I, where the 
ingredients of the proofs and the validities of the inequalities 
are listed. 

Remarks: (1) Theorem 3.1 is also valid for the two-com
ponent systems with the same potential. 

(2) The condition A.2n ;>0 is not always necessary for the 
proof of Theorem 3.1. For example, in a suitable tp8 system 
with A.4, A.8 > 0 and A.6 < 0, we can prove (by brute force) first
and second-order skeleton like inequalities and Theorem 3.1. 
It may be interesting to extend skeleton inequalities to a 
much wider range of models, though the simple extension of 
our method does not seem to work. 

(3) To prove the inequality r< 1 from the Frohlich ine
quality (see Table II, one has to employ numerical evalua
tions ofthe infrared integrals (see Ref. 8). 
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TABLE I. Ingredients of the proof of critical exponent inequalities for var
ious systems (d> 4). IR = Infrared bounds, 21.22 Leb = Lebowitz inequa
lity.32.14 A = Aizenman inequality,' F = Frohlich inequality,8.9 AG = Ai
zenman-Graham inequality,6 Sk = Skeleton inequalities. 1.13.10 
Gr = Griffiths inequaiities. 17.IR 

V(9'2) 
"soft" ..1.9" with 
V(9'2) ..1.>0 Ising V "(x);;,O 

pI Leba 

r<;1 Sk.IRb (i)AG,IR 
A,IRo F,lRb 

(ii)F,IR 
a<;O Leb.IRd 

a;;.O Gr,IR" 

(i) Sk 
(i) A 

A4<;~r (ii) F 
(ii) F A F 

(iii) Skf 

A4;;.~r Sk,lR 
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We consider the static properties of a sequential process where the compartments of a I X n lattice 
space are filled irreversibly with particles of integral random length a (a-bell particles, a-mers; 
I <q<a<r, r>2). While, in a previous model, filling was assumed to be random on the occasionally 
accessible (yet unoccupied) part of the lattice (shrinking target area), particle placing is now 
assumed to be random on the entire array at any time (constant target area) and subject to the 
condition of no overlap, i.e., particles striking already filled sites will be rejected. The occupation 
statistics of the lattice in the jammed state is analyzed by means of three random variables, (i) the 
total number of empty sites, (ii) the number of a-bell particles forming part of the saturation 
coverage (a = q, ... ,r), and (iii) the number of vacancies of m sites (m = O,I, ... ,q - I). Recursion 
relationships are obtained for the expectation values of these random variables and their behavior 
for n_ 00 is studied. The results are used to describe the size distribution of adsorbed particles on 
infinite arrays. 

I. INTRODUCTION 

In a previous paperl two distinct multitype random se
quential processes, designated model I and model II, have 
been suggested as possible generalizations of the classical 
one-type sequential filling process.2

-6 The common feature 
of both models is as follows. A finite one-dimensional array 
of equivalent compartments is to be filled with particles of 
random lengths subject to the following conditions: (i) once a 
particle has been placed, its position remains permanently 
fixed, and (ii) no two particles overlap. Addition of particles 
takes place sequentially and randomly but is carried out in 
two different ways: In model I, in any attempt to place a 
particle, the entire lattice space is assumed to be target area. 
Consequently, due to the condition of no overlap, a particle 
oflength k, say, will stick only if striking a stretch of k conti
guous yet unoccupied compartments; otherwise it will be 
rejected. In model II filling instructions square with the con
dition of no overlap beforehand: In a given attempt to place a 
particle only the still accessible part of the lattice space is 
taken as target area. 

The random sequential process in the setup of model I 
may be thought of as describing the complete monolayer 
adsorption of multicomponent gas or liquid mixtures into 
parallel troughs of suitable crystal surfaces. 1-3 Since a mole
cule (generally believed to contact the surface in a spatially 
random manner) will be adsorbed only iflanding on a vacant 
trough segment, the filling procedure as postulated in model 
I seems to fit in with the real situation particularly well. 
Clearly, the sequential approach is only reasonable if the 
molecules interact with the surface so strongly that they 
stick without diffusion. 

Another example of model I type we have in mind is that 
of the reaction kinetics 7-9 of a long chain molecule (array) 
carrying reactive substituents or groups (compartments), 
which, when exposed to a multicomponent mixture of rea
gents, may suffer various kinds of reactions (bonding). A 
certain type of reaction (assumed to affect a specific number 
of substituents) is represented by the placement of a particle 

of respective size. If reactions are irreversible the sequential 
approach appears to be justified while the assumption of ran
domness obviously requires the absence of inhibitory or acti
vitory neighboring-group effects. IO

,l1 However, reacted 
chain segments, on obstructing potential reactions (those 
which would be possible if the participation of already react
ed groups in later reactions were allowed for), will have some 
influence on the activities (and hence on further reactions) of 
the different solute species in bulk solution. Since this fact is 
taken into consideration in model I, the placement concep
tion of model I seems to be preferable to that of model II. 

Contrarily, with reference to the modeling of crystalli
zation oflinear chains 12,13 and finite cascade processes 14 one 
would choose model II rather than model I, since placing a 
particle may then be identified with subdividing the array 
into two independent subarrays. 

Most interesting two-dimensional random sequential 
placing problems arise when considering particles in cell 
membranes IS and protein adsorption on surfaces such as 
glass or metals. 16-18 However, in two or more dimensionss,I9 

analytical results are scarce and most of our information 
stems from numerical simulations. 

As pointed out earlier, I the two models under consider
ation not only differ in their (manifestly unlike) kinetic beha
viors but also in the static properties of their occupation con
figurations in the jamming limit (see Fig. 2 and Table I of 
Ref. I). Quantities which give some valuable insight into the 
final state configuration of the lattice space are, e.g., the total 
number of occupied sites (extent of reaction), the total num
ber of particles of some given kind finally placed, and the 
total number of gaps (stretches of vacant compartments) of 
some specified length ultimately present. 

In model II, after placing the first particle, the initial 
problem is reduced to two independent problems of the same 
type. On account of this fact it is rather easy to derive fairly 
simple difference equations for the variables of interest. 1,20 

In model I, owing to the unchanging target area, the final 
occupation configuration of some subarray will not only de-
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pend on the subarray's length but also on the extension of the 
entire lattice space the subarray belongs to. It still ·will be 
possible to derive difference equations for the quantities we 
are interested in, but they will depend on the length of the 
initial lattice space (see Sees. III and V); this complicates an 
asymptotic analysis. 

Certain aspects of the above-mentioned random varia
bles have been studied already within the framework of mod
el II .• ,20 In the present paper we will be interested in a similar 
analysis of model I. The results obtained will be compared 
with the corresponding ones of model II. In Sec. II a precise 
description of model I will be given and results, deduced in 
subsequent sections (Secs. V-VII), will be put together in 
Sec. III. In Sec. IV we present some examples and illustra
tions. 

II. THE MODEL 

The formal description of model I is as follows. We con
sider an initial one-dimensional array of n equivalent com
partments (sites). From the probability distribution 
P = {pq , ... ,p, } on {q,q + 1, ... ,r - l,r} with q> 1, r>2, 
Pq >0, Pq+. >0, ... , P,>O, we sample integers a.,a2"" and 
proceed to place an a.-bell particle (a particle that occupies 
a. adjacent compartments) on the 1 X n array at random, i.e., 
the particle's left-hand end point occupies any of the sites 
1,2, ... ,n - a. + 1 with equal probabilities l/(n - a. + 1). 
We then make a random attempt (independent of the first) to 
place an a2-bell particle. Its placement, however, will only be 
realized if the condition of no overlap (with the already 
placed a.-bell particle) is fulfilled. Otherwise we discard the 
particle and try to place (independently and at random) an 
a3-bell particle instead. We thus continue until the a.-bell 
and some ak-bell particle, k = 2,3, ... , have no sites in com-

I 

mono A random number of placement attempts then follow 
until for the first time some ak + rbell particle, j = 1,2, ... , 
intersects neither the a .-bell nor the secondly placed a k -bell 
particle. The process of placing nonintersecting random par
ticles thus goes on and is finished when no further particle 
fits, i.e., when all holes are made up of less than q sites. At 
this stage we say that the lattice space is saturated or in the 
jammed state. 

Clearly, at the beginning of this "trial and error" filling 
process, attempts at inserting a particle will be highly suc
cessful but as the coverage of the lattice space increases 
checks will become more and more frequent. The adsorption 
dynamics of model I has been studied by McQuistan and 
Lichtman6 in the most simple (one-type) case of dumbbells, 
while the kinetics of related continuous-time models for 
polymer reactions has been considered by various auth
ors.7,8,I0, •• ,2. 

III. NOTATIONS AND RESULTS 

In the present paper we will analyze the static properties 
of model I by means of the following random variables, 
which refer to the jammed state of an initially unoccupied 
1 X n array: A .. , the total number of vacant compartments; 
B ~, the total number ofi-bell particles placed, i = q, ... ,r; and 
C,:, the total number of m-gaps (runs of exactly m vacant 
sites), m = O,l, ... ,q - 1. These random variables are obvi
ously connected through the relations 

, q-I 

n- I iB~ =A .. = I mC':, (3.1) 
i=q m=O 

and the main interest will be in their expectation values, de
noted by a .. , b ~, and c':, respectively. 

Setting 

p/(n-j+ 1) 

l:~=qPv(k-v+ 1)/(n-v+ 1)' 

17"'k, .. = 0, 

if j= q , ... ,k } 

if j = k + 1 , ... ,r 
k=q , ... ,r-l, 

(3.2) 

if j = q , ... ,r, k=r, ... ,n, 

and defining recursively (here and in the sequel an empty sum is given the value zero) 

{

k, 
ak,n = r v k-v 

2 V~q 1rk , .. j~1 OJ ... , if k = q , ... ,n ; 

if k = 1 , ... ,q - 1 , 

{

O, 
bi _ , k-v 

k ... - 2 V~q 1rt .. j~i b J, .. + (k - i + l}1r"k, .. , if k = i , ... ,n; 

if k = 1 , ... ,i - 1 , 

and 

if k=O, ... ,m ) 

k 
m =O, ... ,q-l 

if =m + 1 , ... ,n 

(t5k•m denotes the Kronecker delta), we shall see in Sec. V that 
I 
and 

(3.3) 

(3.4) 

(3.5) 

a .. = a ..... , (3.6) c': = c;:: .. , m = ° ,1 , ... ,q - 1 . (3.8) 

b ~ = b ~, .. , i = q , ... ,r, (3.7) As they stand, Eqs. (3.6H3.8) look somewhat mysterious but 
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their origin is rather easy to understand since a k,n' b ~n' and 
cz:n, k = 1, ... ,n, prove to be nothing else but the total aver
age number of unoccupied sites, i-bell particles, and m-gaps, 
respectively, of a k-gap in the terminal state, having been 
filled as part ofa 1 Xn array. 

The relative frequency of i-bell particles among the par
ticles forming the saturation coverage of a 1 X n lattice space, 

b i 

P~n = , n j' i = q, ... ,r, (3.9) 
~j=qb n 

and the relative probability of an m-gap in a saturated 1 X n 
array, 

cm 

Pm,n = ~q_nl d.' m = O, ... ,q - 1, (3.10) 
'j=O n 

are, by virtue of (3.7) and (3.8), computable from the recur
rence relations (3.4) and (3.5), respectively, and provide, to
gether with Eqs. (3.3) and (3.6), a fairly satisfactory descrip
tion of the mean saturation configuration of a finite array. 

The mean occupation statistics of a saturated 1 X n lat
tice space, where n is large, may be described by means of 
two different limit processes. (i) We may let n tend to infinity 
and request information on the asymptotic behavior of an' 
b ~, and c':. (ii) Considering a k-gap we may first let n and 
then k tend to infinity and ask about the asymptotic behavior 

of ak,n' b ~n' and cz:n. 
The latter procedure may be of particular interest in 

practical situations, e.g., experimental conditions may be 
such that only a relatively small section of the entire target 
area (chain molecule, trough) is accessible to observation. 
Data will then be available only for array segments. 

From physical considerations we may expect that the 
terminal occupation statistics of a large array and a large gap 
within an even larger lattice space will not be really different. 
It is therefore not surprising that both limiting procedures 
lead to a unique limit value. More precisely, it will be seen 
that 

lim anln = lim ak,~ Ik, 
n_oo k-oo 

(3.11) 

lim b ~/n = lim b ~~ Ik, i = q, ... ,r, (3.12) 
"-00 k_oo 

lim c': In = lim cZ:~ Ik, m = 0, ... ,q - 1, 
"_00 k--+oo 

(3.13) 

where 

ak,~ = lim ak,n' (3.14) 
n--+~ 

b ~,~ = lim b ~,n' i = q, ... ,r, (3.15) 
n--+~ 

and 

cZ:~ = lim cz:n, m = O, ... ,q - 1. (3.16) 
n--+~ 

However, it turns out that the mean values ak,~, b ~~, and 
ck.~, in what refers to an asymptotic analysis (k---.oo), are 
easier to handle than an' b ~, and c': for n---. 00. The reason is 
rather obvious, On account ofEqs. (3.6H3.8) the sequences 
(an)n' (b ~ )n, and (c':)n are in fact (diagonal) double sequences 
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of a quite complicated structure [see Eqs. (3.3H3.5)]. Owing 
to this fact there seems to be no way to establish explicit 
analytic forms of their respective generating functions. On 
the contrary, this may be managed in the case of the se
quences (ak,~ )k' (b ~~ )k' and (CZ:~)k and gives rise to fairly 
accurate approximation formulas [see Eqs. (3.25H3.27) be
low]. Unfortunately, we do not see how these could be used 
to improve (if actually possible) the comparatively poor 
asymptotic results [Eqs. (3.31H3.33)] on (an)n, (b~)n' and 
(c':)n' 

To state explicit expressions for the common limit val
ues in Eqs. (3.11H3.13) we must introduce some notations. 
LetPI =P2 = ... =Pq_1 = o and set 

, 
()= LjPj' (3.17) 

j=q 

sIx) = 'il 
xI(1 - ~=qP;), 

j=1 J 
(3.18) 

g/(X)=X,-I {'-±-Ipj + itlp,_i_l+jx'}, 
j= I j= I 

;=0, ... ,r- 2, (3.19) 

t/(x) = p/x,-I{r - i - (r - i - 1)x}, i = q, ... ,r, (3.20) 
,-2 

R (x) = L ak,~gk(X), 
k=1 

,-2 

T,(x) = L b ~,~ gdx), ; = q, ... ,r, 
k=i 
,-2 

Qm(X) = L CZ:~gk(X), m = 0, ... ,q - 1. 
k=m 

From these definitions it is easily checked that 

(3.21) 

(3.22) 

(3.23) 

lim R (x)xl - 9 = O. (3.24) 
x--+O 

Like relations hold for Ii> Ti> and Qm. The existence of the 
integrals (lower limit) appearing in Eqs. (3.28H3.30) is there
fore guaranteed. 

In Sec. VI we shall obtain the following asymptotic 
forms. For any 0 < E <P = 1/(r - 1), as k---. 00, 

ak,~ = (k + (})a + O(k -kIP-E)), (3.25) 

b~,~ = (k+(})b(l)-Pi +O(k -kIP-E)), 

i=q, ... ,r, (3.26) 

cz:~ = (k + () )elm) + O(k -kIP-E)), m = 0, ... ,q - 1, 

(3.27) 
with 

a==a(pq, ... ,p,) = {2 f (1 - x)x-9R (xje2Slx) dx 

+ (r - l)6q,,}e - 2W ), (3.28) 

b (l)=b (i,pq, ... ,p,) = e - 2~(1) f x - 9 (2(1 - x)T,(x) 

+ li(X)}e2S1x) dx, (3.29) 

c(m)=c(m,pq'''' ,p,) = {2 f(t -x)x-9Qm(x)e2S1X) dx 

~ ~ } -2S(1) + Uq"Um,,_1 e . (3.30) 
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Clearly, as a consequence of (3.11) and (3.25), (3.12) and 
(3.26), and (3.13) and (3.27) we have 

lim a • .In = a, (3.31) 
n-oo 

lim b ~/n = b (11, i=q, ... ,r, (3.32) 
n-oo 

and 

lim c';:/n = c(m), m =0, ... ,q-l, (3.33) 
"-00 

respectively. 
Concerning the variances of A .. , B~, and C';:, we men

tion that it may be shown that, as n-co, 

Var A,,==(A~) - (A,,)2 = O(n), (3.34) 

Var B~ = o (n), i = q, ... ,r, 

Var C::' = O(n), m = 0, ... ,q - 1. 

(3.35) 

(3.36) 

Just as in the case of the means, the random variables refer
ring to gaps in infinite lattice spaces can be treated more 
accurately. For example, the variance of A k,n' the number of 
unoccupied sites of a k-gap (in the jamming limit) filled as 
part of a 1 Xn array, exhibits the following asymptotic be
havior. There exist constants d1 > 0 and d2 such that, for 
every 0 < E <P = 1/(r - 1 I, 

lim Var Ak,n = d1k + d2 + O(k -kIP-E)), as k-co. 
"-00 

(3.37) 

The proof ofEq. (3.37) is similar to that presented in Sec. V C 
of Ref. 1. Equations (3.34H3.36) may be deduced adopting 
the argument given in the second part of the following sec
tion (VI). As a general rule, the proofs are rather heavy and 
for that reason will not be given. 

What is the probability that a particle chosen at random 
from those forming the saturation coverage of a 1 X n array, 
is an i-bell particle? In such an experiment, letting I" denote 
the length of the selected particle, we are then interested in 

P(I" = i) = ( B ~ ), i = q, ... ,r. 
I,;=qB~ 

(3.38) 

Generally, given two random variables X and Y, (X /Y) 
:;6 (X)/(Y); in the present case, sinceB~ and I,j=q B~ are 
obviously dependent, the equality [recall Eq. (3.9)] of 
P(I .. = 11 and ptll cannot be expected either. Indeed, consid
er, for example, the two-type case q = 2, r = 3, and take 
n = 4 and i = 3. Then, obviously, P(I4 = 3) = P3 and pt4 
= P~(P3 + iP21:;6P3 ifp2:;60:;6P3' For finite n, the expecta-

tion value on the right-hand side of(3.38) is difficult to deter
mine. It is therefore helpful to know that the limiting distri
bution (n-co) of In may be obtained from the relative 
frequencies Ptn; more precisely, 

lim P (I,. = z1 = lim Pt,. 'Pr, i = q, ... ,r. (3.391 
n-oo n __ OQ 

Similarly, defining J,. as the length of a gap chosen randomly 
from those present on a 1 X n array in the terminal state, we 
shall see in Sec. VII that [see Eq. (3.10)) 
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TABLE I. The relative frequencies Pt. andp ..... [Eqs. (3.9) and (3.10), re
spectively] corresponding to the three-type model (model I) q = 2, , = 4. 
P2 = P3 = P. = i. for various values of II. 

" Po .• P •.• pt. 11. pt.. 

3 0.7500 0.2500 0.5000 0.5000 0.0000 
4 0.7500 0.2500 0.4545 0.2727 0.2727 
5 0.6783 0.3217 0.5286 0.2571 0.2143 
6 0.7358 0.2642 0.5687 0.2485 0.1828 

10 0.7197 0.2803 0.5436 0.2685 0.1879 
20 0.7181 0.2819 0.5330 0.2733 0.1937 
SO 0.7173 0.2827 0.5256 0.2763 0.1981 

100 0.7170 0.2830 0.5230 0.2773 0.1997 
200 0.7169 0.2831 0.5217 0.2778 0.2005 

1000 0.7168 0.2832 0.5206 0.2783 0.2011 
00 0.7168 0.2832 0.5204 0.2784 0.2013 

lim P(J" = ml = lim Pm,,,=={Jm' m = O, ... ,q - 1. 
n-oo n-+oo 

(3.401 

In Table I we listpt,. andpm,,., corresponding to the three
type model q = 2, r = 4,P2 = P3 = P4 = ~, for some values of 
n. It is seen that for n> 100 all entries differ from the respec
tive limit values by no more than 0.8%. 

A final question we ask is the following. Choosing at 
random a site on a filled 1 X n array, what is the probability, 
t'pj,,., that it is occupied by an i-bell particle, i = q, ... ,r, or that 
it belongs to an i-gap, i = 1, ... ,q - I? In finite lattice spaces, 
end effects2 (e.g., the qth compartment from either end of the 
array will always be occupied) complicate an answer serious
ly. However, as n-co, end effects clearly disappear and, 
obviously [recall Eqs. (3.1), (3.32), and (3.33)], 

~r _ {iC(II, i= 1, ... ,q - 1, 
t'p/= un t'pi,,. - 'b(') . 

11_00 I I, I = q .... ,r. 
(3.411 

IV. ILLUSTRATIONS 

In this section we specialize to some cases of particular 
interest and present various examples of models that include 
up to nine types of particles. Given some symbol defined 
within the present model I, x say, let us agree to write IX 

instead, in order to distinguish it from the corresponding 
quantity of model 11,1,20 which will be denoted uX. 

As pointed out earlier, 1 the two models do not differ in 
their static properties if filling is carried out with just one 
kind of object. Thus, as a check on our results we must meet 
with well-known formulas when specializing to the case 
q=r. 

A. One-type filling 

Letq = r,p. = 1, i.e., (J = r. It then follows from (3.18) 
and (3.19) that 

.-1 xi 
sIx) = ~ -:-' g,(x) = x i +., i = 0,1, ... ,r - 2. (4.1) 

j=l J 
Sinceak,oo = k, k = 1, ... ,r - 1, we find from (3.21) and (3.28) 
that 
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{ Sa
l r-2 } 

a = r - 1 + 2 (1 - x) L kxke2s (x) dx e - 2s(l). 

o k=1 

(4.2) 

This representation (one of various I possible) of the uncov
ered fraction of a saturated infinite lattice space has been 
stated in Ref. 22. Another onel•3,22 comes up on observing 
(3.1) and making use ofEqs. (3.4). (3.20). (3.22), (3.29), (3.31). 
(3.32), and (4.1), 

a = 1 - rb (r) = 1 - re - 2W) f e2s (x) dx. (4.3) 

Turning to gaps, Eqs. (3.5), (3.23), (3.30), and (4.1) yield the 
expressions first stated by Mackenzie3 

c(m) = 2e- 2s (l) f (1 - x)xme2S(x) dx, m = O,I, ... ,r - 1. 

(4.4) 

Note that c(r - 1) admits of the alternative representa
tion8,11,22 

(4.5) 

Furthermore, observe that substitution of (4.4) and (4.5) into 
a = l:~-=IO mc(m) [this relation is a consequence ofEq. (3.1)] 
leads to (4.2) again. 

B. The three-type model q = 2, r = 4 

Recall that q = 2 implies that P2 > O. Hence a2,,,, = 0 
and since ai,,,, = 1 it follows from (3.19) and (3.21) that 
R (x) =gl(x) =X3{P2 + P~ + P4X2J. Consequently, 

I a = Ia/p2,P3,P4) 

= 2e- 2W) f (1 -z){p:zZ + pJZ2 + P4r J 

(4.6) 

with 

25 (x) = 2x + /P3 + P4)x + 1P4X3 . (4.7) 

Figures 1 and 2 show I a and II a (see Ref. 1) as functions of P3' 
keeping fixed P4 = 0 and P2 = 0.15, respectively. In the two
type situation of Fig. 1 (dimers and trimers only) we observe 
that there is no difference in the average saturation coverage 
of models I and II if (a) P2 = 1, P3 = 0 and (b) P2 = 0 + , 
P3 = 1 - . This is to be expected since (a) corresponds to the 
one-type case considered above and since (b) refers to the 
limiting case where filling is in stages: The regime "First 
trimers and then dimers" rules out the effect of particle com
petition peculiar to model I which puts the trimers at a disad
vantage (with respect to model II trimers) and causes, if 
o <P3 < 1, more isolated vacancies in model I than in model 
II (see Fig. 1). Not surprisingly, in the present three-type 
model, the average saturation coverage takes on its maxi
mum value [equal to that of model II (see Ref. 1)] when filling 
is in stages: First 4-mers, then trimers, and finally dimers. 
More precisely, 

X exp{2z + r + ~}dz~0.0505. 
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0.070.!-------=O.l:.5-----""""1.0 

P3-

FIG. 1. In the two-type model q = 2, r = 3, the average uncovered frac
tions, ,a and II a (model I and model II, respectively), of an infinite lattice 

space in the saturation limit, as functions of P3' 

From Eq. (3.29) we get the following expressions for the 
relative numbers of i-bell particles: 

Ib (i) = Ib (i,P2,P3,P4) 

= e - 2s(l) 11
.t;(x)x1 - P3 - 2P4e2s(x) dx, 

i= 2,3,4, 

where 

h(X) = (2 - X)P2 + 2x(1 - X)fp2 + P3X + P4X2], 

iJ(x) = P3,h(x) = P4X, 

and where 5 (x) is stated explicitly in (4.7). 

(4.8) 

lt is rather obvious from our model assumptions that 
whenever 0 <P2,P4 < 1 then I b (2) > II b (2) and I b (4) < II b (4), 
confirming once more the fact that model I favors the short 
particles. Concerning trimers, the situation is most interest
ing. Depending on the activity parameters P2, P3' and P4' 

0.09.-------..-------.-----. 

0.15 

0.5 0.85 
P3-

FIG. 2. In the three-type model q = 2, r = 4,P2 = 0.15, the average uncov
ered fraction, ,a (II a), of an infinite array filled due to model I (model II), as 

function ofp3' [,a is given explicitly in Eq. (4.6).] 
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P3-

FIG. 3. In the three-type model q = 2, r = 4, P2 = 0.1, the difference 
between Ib(3) = Ib(3,p3)[Ub (3) = ub (3,P3)] , the relative number of model 
I (model II) trimers that form part of the saturation coverage of an infinite 
lattice and 0.28P3' 0<P3 <0.9; in the three-type model q = 2, r = 4, P2 = 0.5, 
the difference between I b (3,P3)[ u b (3,P3)] and 0.29p3' 0<P3<0.5. [. b (3) is 
stated explicitly in Eq. (4.8); see also text.] 

their relative number may be greater in model I than in mod
el II and vice versa: Figure 3 shows plots of [the following 
notation is introduced in Eq. (4.8)] b (3,O.1,P3,O.9-P3)-O.28p3 
and b (3,O.5,P3,0.5-P3)-0.29p3' which reveal that (a) I b (3) and 
nb (3) differ very little (see scale) and (b) Ib (3»nb (3) only if 
P2 + £1 <P3 < 1 - P2 - £2 for some positive £ l' £2' Evidently, 
in both models, there is a hierarchy of particles. Dimers are 
in the most favorable position and trimers predominate over 
4-mers. In model II, this is exclusively due to the fact that 
dimers fit on 2-gaps, which are not accessible to both trimers 
and 4-mers, and trimers may stick to 3-gaps whereas 4-mers 

0.3.---""T""---...------.-_ 

0.2 

I 
I 

0.278 

I 
0.253 

I 
I 
I 
1 
I 
I 

- ----I 
I 
I 
1 
I 
I 
I 
1 
I 
I 

P3 = 0.2 

0.1~0 ---=0"=.2----:0:":.5=----~0.~8 ---I 

P4-

FIG. 4. In the three-type model q = 2, r = 4, P3 = 0.2, the relative frequen
cy, IP1(ul'f), of model I (model II) trimers among the particles composing 
the saturation coverage of an infinite array, as function of P4' [See Eq. 
(3.39).] 
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cannot. Thus (note that model II particles-as long as they 
may be accommodated-are treated in an equitable manner: 
a chosen particle is placed ), hierarchy becomes effective only 
in the late stages of occupation when the lattice is close to 
saturation. On the contrary, in model I, hierarchy is perti
nent to any placement attempt (except the first), since for 
particles, the shorter they are, the better possibilities of ac
cess they have. Taking this in mind, case (b) is not as strange 
as it looks: Ib (3»nb (3) if trimers, being more active than 
dimers, gain an advantage (from the very beginning of the 
model I filling process) at the expense of 4-mers (in Fig. 3, for 
P2 = 0.1, if 0.15q,3<0.73, Le., 0.17q,4<0.75). However, 
this effect clearly disappears when 4-mers become rare (in 
Fig. 3, forp2 = 0.1, ifp4<0.17, Le., 0.73 <P3<0.9); then the 
(relative) superiority of (model I) dimers to (model I) trimers 
prevails and once more Ib (3) < lIb (3). 

Recalling (3.9), (3.32), and (3.39) and utilizing (4.8) the 
probabilities p~, i = 2,3,4, may be calculated. Figure 4 shows 
IPf and npf as functions of P4 for fixed P3 = 0.2. In both 
models, pf>P3 = 0.2 if dimers are sufficiently rare (P2<O.17 
in model I and P2<0.22 in model II). Due to the effect de
scribed above, if 4-mers are predominant in number 
(0.705 <P4<0.8), model I trimers take profit and IPf > npf. 

C. Some nine-type models 

The characteristic features of some nine-type models are 
shown diagrammatically in Figs. 5-7. In (a) is given the 
graph of the particle ("input," "activity") distribution Pq 

= {pq "",Pq +8}' (b) and (c) show the probabilities [see Eq. 
(3.41)] Itpi and ntpo i = 1, ... ,q + 8, respectively, and in (d) 
and (e) are plotted the particle "output" distributions [see 
Eq. (3.39)] IPr and npr, k = q, ... ,q + 8, respectively. In Figs. 
5 and 6, q = 2, whereas q = 10 in Fig. 7. 

The "input" distribution P2 in Fig. 6 (ii) is chosen such 
that the "output" distribution I P! = {IP! '''''IPTo } is nearly 
uniform. 

It is particularly worthwhile to compare Fig. 5 (i) with 
Fig. 7. In both, the "input" distribution is symmetrically 
binomial, with centers in 6 and 14, respectively. But while in 
the former case "input" and "output" distributions (related 
to model I as well as model II) are rather unlike, they resem
ble each other in shape in the latter situation. Clearly, in the 
model of Fig. 5 (i) particles are very much unlike (the longest 
exceeds in length the smallest by a factor 5), while in that of 
Fig. 7 differences in particle lengths are relatively small (the 
factor referring to extremes is now 1.8 only), making hierar
chy effects more tenuous. 

v. RECURSION RELATIONSHIPS 

The proofs of Eqs. (3.6)-(3.8) are all in the same spirit 
and it will therefore suffice to establish Eq. (3.7), say. 

Before tackling the general case let us consider the fol
lowing simple situation. Let n = 5, q = 2, r = 3, and P2 
= P3 = !, Le., a 1 X 5 lattice is to be saturated by equally 
active dimers and trimers. Remaining a 3-gap to be filled 
(suppose, e.g., that compartments 1 and 2 are already occu
pied by a dimer), will the two types of particles have equal 
chances to get stuck? Because of their coinciding striking 
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llllltll 
2 4 6 8 10 2 4 6 8 10 

2 4 6 8 
(d) 

_lUll1lll 
2 4 6 8 10 2 4 6 8 10 

(d) (e) 

FIG. 5. Two nine-type models with 
q = 2 and ,. = 10. The particle ("input") 
distribution [diagram (a)] is in (i) binomi
al with parameter p = 0.5 and in (ii) bi
nomial with parameter p = 0.9. In (b) 
and (c) are shown the probabilities ({Jj 

[see Eq. (3.41)], referring to models I and 
II, respectively, and in (d) and (e) the 
"output" probabilitiespt [see Eq. (3.39)] 
of model I and model II, respectively. 

FIG. 6. The nine-type model q = 2, ,. = 10, 
with uniform "input" distribution in (i) (a) 
and (approximately) uniform "output" dis
tribution (model I) in (ii) (d). (See symbol ex
planation in Fig. 5.) 

FIG. 7. The nine-type model q = 10, 
,. = 18, with symmetrical binomial par
ticle ("input") distribution in (a). (See 
symbol explanation in Fig. 5.) 
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frequencies one might give an affirmative answer. Equation 
(5.1) confirms the opposite, however. Clearly, dimers and 
trimers are equally likely to take part in a given trial, but 
while a trimer sticks to the triple vacancy only with probabil
ity !, a dimer does with probability! (when striking sites 3 
and 4 or sites 4 and 5). Obviously, these probabilities refer to 
individual strokes (involving dimers and trimers, respective
ly), but they suggest that the trimers are in an unfavorable 
condition also as final occupation is concerned. Indeed, the 
probability of the event 

E: "A trimer (finally) lands in the 3-gap" 
is less than !, namely 

PIE) = ~ =!. V(!'! +!. i)· (5.1) 

To see the validity of (5.1) we may decompose the event 
E = U)"'= IEj into the mutually exclusive events 

Ej : "A trimer sticks to the 3-gap in thejth attempt," 
whose probabilities are given by 

PIE)) =! .!(! . i +! . iY-I, j = 1,2,... . (5.2) 

Since PIE) = ~)"'= IP(Ej), Eq. (5.1) follows from Eq. (5.2). 
Another argument goes as follows. Due to our model as
sumptions any attempt which results in the rejection of a 
particle does not change the odds of E, i.e., relevant to the 
occurrence or nonoccurrence of E are only those attempts in 
which a particle becomes fixed. Using the relative frequency 
of these trials [which equals the denominator in the quotient 
on the rhs of(5.1)) as a standatd of measurement and taking 
into account that outcomes (there is only one) favorable to E 
occur with probability!.! we get (5.1) again. 

In the above example, if we shift the 3-gap to another 
position within the 1 X 5 array (e.g., assuming that sites 1 and 
5 are not accessible), Eq. (5.1) remains unchanged. However, 
if we imagine the 3-gap to be within a 1 X n array instead, 
then 

P(E)= !. [l/(n-2)] n=3,4, ... , 
! . [l/(n - 2)] + ! . [l/(n - 1)] 

(5.3) 

i.e., the odds of E change. Thus, contrary to the situation in 
model II, the occupation statistics of an initial 1 X k array 
and a k-gap situated within a larger 1 X n lattice space will be 
different. It is this point that makes the recursion schemes 
behind Eqs. (3.6H3.8) somewhat complicated. Clearly, still 
accessible small-size gaps will be not infrequent in a large 
array whose coverage is slightly below the jamming limit. It 
is therefore worthwhile to note that the expression on the rhs 
of(5.3), as n-+CXJ, tends to l' i.e., the inferiority of the trimers 
then becomes even more pronounced. 

Now turning to the general case, fix i E {q, ... ,rj and k 
E {1, ... ,n j. Consider a k-gap (its exact position does not mat
ter) within a 1 X n lattice space and number its compart
ments from left to right 1,2, ... ,k. This k-gap will be destroyed 
if a first v-bell particle [v = q, ... ,min(k,r)) sticks to any of its 
k - v + 1 v-fold vacancies. Since particles are chosen inde
pendently according to the probability distribution 
P = {pq, ... ,pr j and since placements are directed indepen
dently and randomly to the entire 1 X n array this will hap
pen-in a given attempt-with probability 
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min(k,., k - v + 1 

V~q Pv n - v+ 1 

(which is zero ifk <q). Hence, foranym = 1, ... ,k - j + 1 the 
probability of the event 

"The first particle sticking to the k-gap 

E 1.': : in question is a j-bell particle occupying 

positions m,m + 1, ... ,m + j - I" 

is seen to be given by ~k,n as defined by Eq. (3.2). Defining 
B ~,n as the number of i-bell particles that have been placed 
on the k-gap when the latter (as part of the 1 X n array) has 
become saturated, we therefore find 

r k-v+1 

b ~n == (B ~,n) = L L (B ~,n IE k~n }1Tk,n . (5.4) 
v=q j=1 

Since the conditional expectation 

(B~,nIEk~n) =bJ-I,n +b~_j_v_I,n +£5;,v, 

j = 1, ... ,k - v + 1, (5.5) 

and since obviously b ~,n = 0, k = 1, ... ,i - 1, Eq. (3.4) fol
lows. The observation that B ~,n = B ~ then yields (3.7). 

VI. ASYMPTOTICS OF THE MEANS 

Recalling (3.14) we conclude from Eqs. (3.2) and (3.3) 
that 

r 

ak,oo L (k - j + l)pj 
j=q 

r k-v 

= 2 L Pv L aj,oo' k = r - I,r, ... , (6.1) 
v=q j=1 

which, on introducing. the generating function 

G(s)= f ak,oosk, (6.2) 
k=r-I 

may be converted into the first-order linear differential equa
tion 

sG'(s) = G(S){O - I + 2sg(S)} + _2_R (s), (6.3) 
l-s l-s 

whereOandR areas defined in (3.17)and (3.21), respectively, 
and 

r 

g(s) = L pjsi- I 
• 

j=q 
Substituting [see Eq. (3.18) for the definition of s] 

G(s) = s8-le -2S(S)H(s)/(1 _ S)2 

into (6.3) and utilizing the fact that l 

s'(x) = (l-g(x)j/(l-x), x:;i:l, 

yields the even simpler equation 

H'(s) = 2(I-s)s-8e2s(S)R (s). 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

As seen from (3.3), (6.2), and (6.5). the initial condition to be 
imposed is 

H(O) = {O, if q<r, 
r - I, if q = r, 

(6.8) 

and it leads to the solution 
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H(s) = (r- l)c5q,r + 2 f (I - x)x-8R (x)e25
(X) dx. (6.9) 

Recalling (3.24) and furthermore noting that () is integral if 
q = r, S8 - Ie - 25 (')H (s) is seen to be an integral function23 of 
orderatmostr - I (it is of order r - lifPr >0). Additionally 
observing thatg'(I) = () - I = s '(I) and reasoning just as in 
Ref. 20 we obtain Eq. (3.25), with a = H(I)e-25(I), as a con
sequence23 of (6.2) and (6.5). 

Equations (3.26) and (3.27) may be proved analogously. 
We omit the details. 

To establish (3.11) [and hence, by (3.25), Eq. (3.31)] we 
shall apply the concept of uniform convergence. Let n >r and 
introduce the probability distribution {pq(n), ... ,Pr(n)} by 
means of the definition 

p/(n -j+ 1) . 
pj(n) = , ] = 1, ... ,r. (6.10) 

l:~=qpv/(n - v + I) 
Replace the probability masses PI in Eqs. (3.17)-(3.19) by 
Pi(n) and call the arising quantities (}", S", and gi,,,' respec
tively. Furthermore put 

r-2 
R,,(x) = L ak,,,gk,,, (x) (6.11) 

k=1 

and define the modified generating function H" [compare 
with (6.5)] by 

00 

H"(s)/n- I=(I-s)2 exp{2s"(s)} L ak,"sk. (6.12) 
k=r-I 

Rewriting Eq. (3.3) in the form 
r 

ak,,, L pj(n)(k - j + 1) 
j=q 

r k-v 

=2 L pv(n) L aj,,,, k=r-l, ... , (6.13) 
v=q j=1 

and following the line of thought adopted at the beginning of 
this section, one finds from (6.12) and (6.13) that 

H"(s) = (r - l)c5q,r + 2 f (1 - x)x -8nR ,,(X) 

x exp{2S" (x)}dx. (6.14) 

Thus,23 by (6.12), for some sufficiently small p > 0 and as 
k-oo 

ak," = [()" + k ]H"(I)exp{ - 2s"(I)} + O(k -k p
), n>r, 

(6.15) 

and, consequently, 

a(n)=lim ak,,,lk =H,,(I)exp{ - 2S,,(I)}, n>r. (6.16) 
k--..oo 

Clearly, the constant implied in the 0 term ofEq. (6.15) a 
priori is not independent of n. However, revising the equa
tions defining pj(n) and ()" [see Eqs. (3.17) and (6.10)] the 
coefficients of the polynomials S" and R" are seen to be uni
formly bounded; since furthermore /. - IH" (s), 

n = r,r + 1, ... , and S8 - IH (s) = lim S8. - IH" (s) are all inte-
"--"00 

gral functions of the samejinite order we conclude that (6.15) 
is valid as it stands and hence that ak,,,lk-a(n) uniformly in 
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TABLE II. The average uncovered fractions in the saturation limit, la.ln 
and n a. In. of a I X n array filled sequentially and randomly (due to model I 
and model II, respectively) with equally frequent dimers and trimers (Le., 
q = 2, r = 3, P2 = P3 = 0.5). for various values of n. 

n la.ln na.ln 

5 0.1467 0.1417 
10 0.1335 0.1265 
20 0.1210 0.113S 
SO 0.1133 0.1062 

100 0.110S 0.1037 
200 0.1095 0.1024 
500 0.IOS7 0.1017 

1000 0.IOS5 0.1014 
a> 0.IOS2 0.1012 

n. (Observe that this follows from ak,,, = [()" + k laIn) 
+ 0 (1), k_ 00, only.) Since the iterated limit 

lim(lim ak,,,lk) = lim a(n) =H(I)exp{ - 2S(I)} = a, 
n---l>QO k-+ao ft-+oo 

(6.17) 

the double limit of (ak,,,Ik k" also exists and is equal to a. 

Particularly, lim a",,,ln =a, proving (3.11). Equations 
"--"00 

(3.12) and (3.13) follow by similar arguments. 
To investigate the error term "'" in the representation 

a",,, = an + "'", one would have to examine, as suggested by 
(6.15), the speed of convergence of H,,(I)exp{ - 2s,,(I)}. 
Since, as n-oo, ()" = 0 (lin) only, it is not clear at all if the 
asymptotic behavior of "'" is similar to that of the corre
sponding error term in (3.25). In Table II we give a"=la,, 
= a",,, (as well as the corresponding values II a" for model II) 

for some values of n in the two-type case q = 2, r = 3, 
P2 = P3 =!. Differences in the behaviors of la" and IIa" are 
anything but significant. Observe that n = 1000 is small, 
however. 

VII. LIMITING DISTRIBUTION OF A PARTICLE CHOSEN 
AT RANDOM 

To prove (3.39) we shall modify an idea of Bank6vi used 
in his paper4 on the gap distribution in Renyi's "parking 
problem. ,,25 

Fixie {q, ... ,r} and letS" = l:;=qB~,s" = l:;=qb~,and 
Q ~ = B ~/S". Equation (3.39) then reads [recall Eqs. (3.9) 
and (3.38)] 

lim<Q~) = lim b~/s" =pr, i=q, ... ,r, (7.1) 

and since Q<Q ~ < 1, n>q, it suffices to show that (Q ~)" con
verges to pr in probability (stochastically), i.e., for any E> 0, 

lim P(IQ~ -prl>E)=O, i=q, ... ,r. (7.2) 
"--"00 

To this end let D ~ and D" denote the dispersions of B ~ and 
S", respectively, and note that, due to Chebyshev's inequa
lity, for any positive AI and A2 , 

P(IB~ - b~ I<AtD~ 

andlS" - s" I <A.~,,) > 1 - A 1- 2 - A 2- 2. (7.3) 
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By virtue of (3.32) and (3.35) we can choose no such that Sn 
- A~n > 0 for n>no' Rewriting Q ~ in the form Q ~ = (B ~ 
- b ~ + b~)/(Sn - Sn + sn) we find that 

( b~(1-AlD~/b~) . b~(l +AlD~/b~)) 
P <Q~<~~--~---

sn(l +A~n/Sn) sn(1-A~n/Sn) 

constitutes, for any n > no, an upper bound for the probability 
on the lhs of Eq. (7.3). On observing once more (3.32) and 
(3.35) we therefore conclude that, for any n>no, 

P(b ~(l + Ed/sn <Q~ <b ~(l + E2 )/Sn) > I - A 1-
2 

- A 2-
2

, 

(7.4) 

where El and E2 depend on i,n,).I' andA2 and IEll-o, IE21-o 
as n-00. Hence 

P(lQ ~ - b ~/sn I> max(IEII,IE2Ilb ~/sn) 

<A 1- 2 + A 2- 2, n>no (7.5) 

and (7.2) follows sinceA l andA2 are arbitrary. 
Equation (3.40) may be derived quite analogously. We 

desist from giving the details. 

VIII. DISCUSSION 

We have considered a process where a one-dimensional 
lattice space is filled sequentially and irreversibly with parti
cles of random length. Filling may be random both on the 
occasionally accessible part of the lattice (changing target 
area; model II) and on the entire array (constant target area; 
model I). In the latter case particles are adsorbed only if they 
do not intersect previously placed particles. This condition 
of no overlap, apart from leading to a "trial and error" pro
cess where checks become more and more frequent as time 
goes on, establishes a hierarchy of particles: The shorter a 
particle is, the better are its chances of adsorption-clearly, 
once the particle is chosen to be placed. As a "measure of 
benefit" may serve d k = pr - Pk' the difference between Pk, 
the "input" probability of a k-bell particle (its activity coeffi
cient or frequency), and pr, the probability of choosing such 
a particle randomly from among the particles making up the 
saturation coverage of an infinite lattice. See Figs. 5-7 to get 
an idea of the magnitude of dk and its sign. Also, compare d k 

to the corresponding quantity in model II where "benefit" is 
only a "late" phenomenon in the filling procedure. (See Sec. 
IV B.) 

The saturation configuration of a finite as well as an 
infinite array has been analyzed by means of the most impor
tant mean total number of occupied sites (extent of reaction), 
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the distribution of isolated vacancies and the above-men
tioned "output" or "response" distribution {pr, k = q, ... ,rJ. 
Recursion relationships constitute the solution for finite lat
tices, while a generating function technique is used to get a 
picture of the terminal occupation statistics of an infinite 
lattice space. 

The two models, coinciding (in what refers to their static 
properties) in the one-type case, are different in the multitype 
case. As emphasized earlier, 1 model II is particularly well
adapted for being applied to problems such as polymer crys
tallization l2 and finite cascade processes. 14 On the contrary, 
model I should be taken into account when treating filling 
problems, which are controlled by external conditions like 
molecule adsorption3 and polymer reactions.7- lo,21 
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Perturbation theory for polyacetylene-type kink dynamics model with 
acoustic phonon effects 
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Using a quasirealistic generalized continuum Takayama-Liu-Maki (TLM) model including 
acoustic phonon effects, perturbation theory is applied and a formal method for computing the 
kink of the TLM model with its perturbative corrections due to acoustic phonon interaction 
effects is presented. It is found that acoustic effects induce the motion of the soliton. The kink is 
then constrained to propagate along the molecular chain with a fixed velocity of magnitude close 
to that of the acoustic phonon velocity. No static solution is consistent with perturbation theory. 

I. INTRODUCTION 

The basic aim of this paper is to present a formal compu
tational method dealing with topological soliton solutions of 
apparently complicated scalar-spinor field systems by mak
ing use of perturbation theory. As a practical presentation of 
the method, we introduce a physically relevant quasirealistic 
generalization of the Takayama-Liu-Maki (TLM) model! 
for the polyacetylene molecule taking into account acoustic 
phonon interaction effects. The relevance of such a model 
lies on the possibility that it might predict new physics about 
polyacetylene on the experimental level, if acoustic phonon 
effects would be observed. On the other hand, on a more 
theoretical and mathematical basis, our generalized TLM 
model falls into the class of soliton systems with nontrivial 
dynamics treated perturbatively and studied recently by var
ious authors.2-6 A candidate for such systems is, for exam
ple, the modified sine-Gordon equation,S which is used to 
model the Josephsonjunction. In this case, however, the per
turbational interaction dissipates energy, while in our case 
the acoustic phonon interaction does not violate the energy 
conservation law. 

A completely realistic generalized continuum TLM 
model can be formally derived from the discrete SSH La
grangian model,7 introduced few years ago by Su, Schrieffer, 
and Heeger, by keeping terms up to the square of the lattice 
spacing thereby including acoustic effects. Under a suitable 
limiting procedure, one recovers the TLM theory. This real
istic continuum model, however, contains also certain deri
vative coupling terms in the optical phonon-electron inter
action, which slightly modify the homogeneous theory. One, 
therefore, expects a deviation from the TLM gap equation, 
which resembles the superconduction BCS-type equation. 
Under the assumption that this deviation from the TLM gap 
equation is small, we can modify in a somewhat ad hoc man
ner the optical phonon-electron derivative couplings in or
der to simplify the perturbational analysis. Such a modified 
theory will be called quasirealistic. The explicit derivation 
from the discrete model is left to Appendix A. 

Calculating the acoustic effects on the inhomogeneous 
sector of the quasirealistic model, our result is going to show 
that although these effects modify slightly the soliton kink 
profile of the TLM solution, the single kink becomes depen
dent oftime. To understand this surprising situation it may 
be helpful to recall that the polyacetylene Lagrangian is not 

Lorentz invariant and that the continuum model under con
sideration is obtained from the SSH model for the reference 
system in which the lattice points are at rest. We will find 
that acoustic effects not only change the shape of the kink 
but also induce a uniform motion of the soliton in the lattice 
reference system. The velocity of this motion is controlled by 
the acoustic phonon velocity v. Since it is expected that the 
presence of the soliton deforms the displacement field (Le., 
the acoustic phonon field) inducing deformations of lattices 
around it, we are not surprised by the creation of a second
order parameter, that is a soliton of an acoustic phonon field. 
This companion excitation to the optical phonon order pa
rameter is moving with the same velocity as the one for the 
optical phonon soliton. 

Our computation is organized as follows. First, we ap
ply perturbation theory to the mean-field equations of our 
quasirealistic model, where the solution is assumed to be 
expressed in terms of the square of the acoustic phonon ve
locity (v2

) since the additional coupling in the interaction is 
proportional to v2

• At each order we obtain a set of differen
tial equations, which we solve by means of the formal meth
od of asymptotic expansion, where the solution is displayed 
as a power series of the asymptotic form for the unperturbed 
part of the soliton (the TLM kink). Since the asymptotic 
form of the TLM kink is an exponentially damping one indi
cating how fast the solution approaches the homogeneous 
theory at spatial infinity, it is identical in shape to the so
called boson function and the asymptotic expansion scheme 
then becomes very similar to the boson transformation 
method,8 where the condensation of bosons in the vacuum 
gives rise to the whole soliton structure. In this computation, 
however, we restrict ourselves to first-order acoustic pertur
bational effects, that is, to second order (v2

) in acoustic 
phonon velocity. 

Whenever we consider perturbative modifications to so
liton systems, we meet the serious question of what is the best 
choice for the unperturbed state. In the present case we easi
ly find that a static kink solution does not exist. To look for a 
time-dependent solution, the natural choice for the unper
turbed part is the boosted TLM kink because the TLM mod
el is Lorentz invariant. We then are led to an equation that 
determines the soliton velocity VIOl' Self-consistency of the 
perturbation expansion therefore requires that the soliton be 
constrained to propagate at a fixed velocity, which is propor-
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tional to v, along the molecular chain. The perturbation to 
the soliton shape is computed up to the third power of the 
boson function. An algorithm is then developed that pro
vides a quick way of calculating coefficients up to any de
sired order. The result can be formally summed up and we 
can bring the complete kink solution into the following ele
gant closed form (up to v2 order): 

¢>(X) = [1- v2Q sech2(X 12)]tanh(X 12), (1.1) 

where Q is a constant and X is given as 

X = (26,oIvF)(Jl - v;")lv2)-1 [Xl ± Vso1Xo - x], (1.2) 

with 

= v;") = I(A 2 + U )1/2 - A, A>O, 
02_ v2 ±(A2+U)1/2_A, A< -2. (1.3) 

Here A is a dimensionless constant, which specifies the 
strength of the v2 correction in the optical-phonon-electron 
coupling (see Appendix A). Note that 26,0 is the Peierls ener
gy gap. 

The acoustic phonon soliton is obtained as (at lower or
der) 

(t }(X) = R tanh(X 12) + arbitrary constant, (1.4) 

where R is a constant. 
The limit v-o leads back to the static TLM kink. A 

complete proof of the results (1.1)-( 1.4) can be obtained by 
the following self-consistent consideration: first, assuming 
( 1.1 H 1.4), calculate the wave function of electrons, and then 
recalculate the phonon order parameters by means of the 
electron wave functions thus obtained. When the calculated 
order parameters become (1.1) and (1.4), the proof is com
pleted. A brief sketch of such a proof is given in Appendix B. 
A more detailed account of this proof together with the ma
jor physical results were already published in Ref. 9. How
ever, the derivation of the result (1.1)-(1.4) is not at all an 
easy task; it requires quite a tedious series of steps. The main 
purpose of this paper is to present the method used in the 
derivation of (1.1)-(1.4). 

In physical situations, the above analytical solution may 
help us in studying the behavior of the propagating soliton. 
The free parameter A remains, however, unknown in the 
present context. However, Eq. (1.3) tells us that a vanishing 
value for A brings us back to the static case. We must men
tion that a preliminary study of the completely realistic mod
el described in Appendix A has shown that a static soliton is 
not a solution ofthe field equations. Therefore the case A = 0 
in the context of our quasirealistic model does not corre
spond to a physical situation. 

Our results seem in accordance (at least qualitatively) 
with numerical computations applied to the discrete SSH 
model; Su and SchriefferlO showed that the velocity of the 
single kink was of the same order of magnitude as the acous
tic phonon velocity. Furthermore Bishop et al. 11 recently 
found an upper limit of about 2.7v, which corresponds to 
A~ - 4.22 in our analysis. 

Our preliminary study of the completely realistic model 
has shown that the correct time dependence of the soliton 
may be much more complicated than a constant motion. 
Oscillation may also be present as suggested by recent nu-
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merical results in Ref. 11. The region - 2 < A < 0 may well 
correspond to such a kinetic zone forbidding uniform trans
lational motion. It should also be pointed out that even the 
quasirealistic model studied might have more solutions dif
ferent from the one presented in this paper, although no stat
ic solution is permitted. 

As is well known, the TLM model contains other types 
of soliton solutions. 12 However these are not topological 
kink solutions. The TLM kink is the same as the one for the 
A¢>4 theory1,l2-11 The question asking how far the Yukawa
type TLM model is similar to the A¢>4 theory has recently 
been answered. 17 It has been shown that a set of solutions for 
the static optical phonon order parameter 6,(x) can be classi
fied by the equation 

[~ _ 6,2(X)]6,(X) + ~v~*[a26, _ n _1_ (a6,)2] = 0, 
2 ax2 6,(x) ax 

(1.5) 

with number n. The solution with n = 0 satisfies the equa
tion for the A¢>4 model because (1.5) with n = 0 coincides 
with the equation for static A¢>4 theory. A solution with n = ~ 
yields the polaron state. Mancini presented also an integral 
form for solutions of (1.5) with arbitrary n. However, the 
topological kink solution is of more physical importance 
since its topological properties render the dimerized state of 
polyacetylene stable. Therefore, in this paper we study only 
the TLM kink solution modified by the acoustic phonon ef
fect. 

II. THE (1 + 1)-DIMENSIONAL QUASI REALISTIC 
MODEL 

The bare Lagrangian density describing our quasirealis
tic generalized continuum model for transpolyacetylene is 
written as 

(2.1) 

and 

.Y'/ =giflTlt/A' +g(v2Im2)[ - i(iflT3if/ - tPt'T3tP)t' 

+A(tPtT1tP)'<P']. (2.3) 

As usual, tP describes the two-component electron field while 
<P and t are the optical and acoustic phonon fields, respec
tively. The parameters VF' v,lt, and m are the Fermi velocity, 
the acoustic phonon velocity, the quasielectron mass, and 
the optical phonon mass, respectively, while g denotes the 
phonon-electron coupling constant. The nondimensional 
parameter A is a constant which specifies the strength of v2 

correction in the optical-phonon-electron coupling. (See 
Appendix A.) 

This model has been obtained from the natural contin
uum limit of the discrete SSH model where terms up to the 
square of the lattice spacing have been kept. This is reflected 
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by the appearance of terms of order v2 in the continuum 
model. 

The bare field equations obtained from the above La
grangian are 

[ _~_v2~_m2]ct>= _g[l_AW ~],pt7',p, 
at 2 ax2 m2 ax2 

(2.4) 

(2.5) 

(2.6) 

Now let us write the vacuum expectation value of acous
tic and optical phonon fields as follows: 

(Ols- 10)=(s- )(x,t), (2.7) 

(OIct>lo)==(aolg~(x,t), (2.8) 

where 2ao is the Peierls energy gap of the quasielectron field. 
Neglecting the boson-excitation modes as well as their 

quantum corrections, the set of equations (2.4)-(2.6) leads to 
the following mean-field equations: 

[. a . a ]." 1- - J.t + IVP 7 3 - 'I' 
axo ax, 

= [( _ 1 + AV2 ~)ao'l>7' 
m2 ax~ 

+i!:':(S-)W +2(S-)' a~)73],p, (2.9) 

[ _~+V2~](S-) ax~ ax~ 

= -ig V22(01[,pt73(a2~)_(a2~t)73,p]10), 
m ax, ax, 

(2.11) 

where (xo,x,) stands for (t,x) and x denotes from now on a 
space-time dependence in general. 

Equations (2.9)-(2.11) constitute a set of three coupled 
nonlinear differential equations. Equation (2.9), however, 
enables us to compute the quasielectron two-point function, 
which, in turn, under a suitable limiting procedure, enables 
the explicit computation of the currents on the right-hand 
side of (2.10) and (2.11). The limiting procedure is the so
called point splitting method. 

The quasielectron two-point function is defined as 

iGa,8(x,y)==(OI T,p .. (x),ph(v)IO). (2.12) 

Now, since 

2942 J. Math. Phys., Vol. 26, No. 11, November 1985 

(2.13) 

and 

(01 [,pt73 (~~f) -( ~~t )73,p] 10) 

= tr 73(01 [,pt (~~f) - (~~t ),p] 10), (2.14) 

one can rewrite the latter local currents in terms of the qua
sielectron Green's function as follows: 

(,pt(x),p(x) = lim - iG (x,y)= - iG (x,x) 

(yo > X o) 

and 

(01 [ ,pt( ~~f) -( ~~t ),p] 10) 

and 

= lim - i( a: - ~)G (x,y). 
y-.x ax, an 

(Yo>Xo) 

Using the definitions 

S (X,y)=7, G (x,y), 

D(X,y)=73G (x,y), 

~=t/J-l, 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

and making use ofEqs. (2.13)-(2.16), one rewrites the field' 
equations (2.9)-(2.11) as 

[i ~ - J.t + iVP73 ~ + ao7,],p 
axo ax, 

= _ [(1 _ AV2 ~)a~7' 
m 2 ax~ 

- i gv: (S-) H + 2(S-)' ~)73],p, 
m ax, 

(2.20) 

(2.21) 

(2.22) 

From (2.20) one directly obtains an iterated form of the 
two-point function for the quasielectron field 

G(12) = Go(12) - Go(l1')1:(I')Go(I'2) 

+ Go( 11')1:( 1 ')Go( 1'2')1:(2')Go(2'2) 

- Go( 11')1:( 1')Go( 1'2')1:(2') 

X Go(2'3')1:(3')Go(3'2) + -"', (2.23) 

where G(12) stands for G(xy) and primed integers stand for 
internal space-time coordinates being integrated over. This 
notation will be very useful in future computations. Here 
1:(x) is defined as 
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l:lx)=~o(1 - AV2 ~)¢),il 
m2 aX~ 

- i gv: [(S)" + 2(S)' ~]1"3' 
m aX l 

As usual GolxJ') s,atisfies 

12.24) 

[ i ~ - Jt + iVF 1"3 ~ + ~01"l]GoIXJ') = 82)lx - y) 
axo aXl 

12.25) 

and its Fourier form is 

GolxJ') = 12~)2 f d 2p e-iP(x-Y)GolpoPl), 12.26) 

where 

with Ep defined as 

E; = v;,p~ + ~ . 
Now using the gap equation 

Im2/gz)~0 + i tr Solxx) = 0, 

and realizing that 

a2 

-Solxx) =0, 
ax~ 

as well as 

12.27) 

12.28) 

12.29) 

12.30) 

12.31) 

one casts the field equations 12.21) and 12.22) into the follow
ing final forms: 

[~+v2~+m2]~~ ax~ ax~ gz 

= -I 1---- trSlxx) . ( AV2 a2
) A 

m2 ax~ 
12.32) 

for the optical phonon soliton and 

12.33) 

for the acoustic phonon order parameter. The two-point 
functions with a hat in 12.32) and 12.33) are obtained from 

G IXJ')~G Ixy) - Golxy). (2.34) 

The set of equations (2.32) and 12.33) together with the ex
pansion 12.23) for the two-point functions can now be solved 
perturbatively in terms of powers of the square of the acous
tic phonon velocity v2

• 

III. A PERTURBATIONAL ANALYSIS 

We now proceed to solve the combined equations 12.32) 
and 12.33) using perturbation theory. But before doing so let 
us rewrite Eq. 12.32) as follows: 

m2 ~J + igz tr S Ixx) 

=v2 --trS(xx)---; --~ot/J. [ 
igz Aa 2 

A ~aa2 A] a2 A 
m2 axi axi ax~ 

(3.1) 

In analogy with the study of the modified sine-Gordon 
equation presented by Salerno et al.,5 we should carefully 
choose the unperturbed solution. The celebrated hyperbolic 
tangent profile corresponds to the static solution of 13.1) with 
v = 0, which makes the left-hand side Ilhs) of 13.1) vanishing. 
Furthermore, the time-dependent solution of the vanishing 
lhs of 13.1) is obtained from the static one by a Lorentz boost 
since the static equation with v = ° can be considered as a 
static situation of a Lorentz invariant system with the qua
sielectron satisfying a Dirac-type equation. This suggests 
that a reasonable choice for the unperturbed state is the 
boosted kink and the perturbation is given by the rhs ofI3.1). 
This then implies that the "anomalous" term ~o(a 2 / ax~)~ in 
the rhs ofI3.1) is of order 0 Iv2

), suggesting that the velocity of 
the soliton is of the order of the acoustic phonon velocity v. 
As a matter of fact we tried a perturbational analysis made 
under the constraint that the soliton be static for finite A and 
found that this led us to an inconsistency, suggesting that the 
soliton be time dependent. The origin of this inconsistency 
will be pointed out at a later stage in our calculation. 

Let us now assume the following expansions in which 
Ixo.xd appears in the configuration 11.2), where Vsol depends 
on v, 

~ = ~o + V2~l + ... , 
(S)=SO+V2Sl+"" 

l: = l:o + V2l: l + .... 

The expansions 13.2H3.4) enable us to define 

G Ix,y)=G (O)lxJ') + v2G (l)lxJ') + .... 

13.2) 

(3.3) 

(3.4) 

13.5) 

The velocity Vsol will be determined self-consistently. 
The following calculation will show that the choice 11.2) for 
X works for this model. In other cases, one may need more 
complex X (see Refs. 2-6). Inserting the latter expansions 
into (2.24) gives directly 

13.6) 

~ _ A :l A~o1"l :lIt ig1"3 [I;-" + 'll;-' a] 
~l-u01"l'f'l---'f'O --- ~o ~o-· 

m2 m2 
aXl 

13.7) 

Plugging the latter results into (2.23) and making use of(3.5) 
gives, in turn, 

G(0)112) = - Go(ll')l:01I')GoP'2) + Golll')l:0(I')Goll'2')l:0(2')GoI2'2) 

- Golll')l:0Il')Goll'2')l:012')Go(2'3')l:0(3')Go(3'2) + - ... 13.8) 

and 
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G(I)(12) = - Go(11')~I(I')Go(1'2) + Go(11')~0(1')Go(I'2')~1(2')Go(2'2) 
+ Go(11')~I(I')Go(I'2')~0(2')Go(2'2) 
- Go(11 ')~o( 1 ')Go( 1 '2')~0(2')Go(2'3')~1(3')Go(3'2) 

- Go( 11 ')~o( 1 ')Go( 1 '2')~1(2')Go(2'3')~0(3')Go(3'2) 

- Go(II')~I(I')Go(I'2')~0(2')Go(2'3')~0(3')Go(3'2) 

+ - .... 

One notes that G(I)(xy) is linear in ~I' Inserting Eqs. (3.2), 
(3.3), and (3.5) into the field equations (2.32) and (2.33) gives 
finally 

dJo(X) = - (igl /m2)tr S(O)(xx), (3.10) 

~l(X) = - (igl/m2)tr S(l)(xx) 

do [ a2 a2 ]A 
- m2 a (VXO)2 + (1 + A,) ax~ ~o(x), (3.11) 

for the optical soliton and 

SO(x)= -- ----g[a 2 a2]-1 
m2 axi a (vxo)2 

x lim (~ - ~)tr D(O)(xy) 
}'-+x ax~ ~ 

(3.12) 

for the acoustic phonon order parameter. Note that S I gives 
a contribution or order v4 to the soliton solution and is there
fore disregarded as well as higher-order terms in the expan
sions (3.2H3.5) since one restricts oneself to second-order 
effects. The "anomalous" term in (3.1) is responsible for the 
appearance of time derivative v-dependent terms in the ex
pressions (3.11) and (3.12) for ~I and So' However, when the 
condition of the soliton velocity being of order 0 (v) will be 
implemented, these terms will become independent of v. 

Equation (3.10) together with (3.6) and (3.7) give the un
perturbed part of the solution, which leads to the boosted 
kink profile 

(3.13) 

where UVp is the soliton velocity (VIOl)' x its center at initial 
time, and M is defined as 

(3.14) 

Equation (3.12) together with (3.6) and (3.8) tells us that the 
knowledge of the unperturbed part ~o determines So com
pletely. Once So has been obtained, Eqs. (3.6), (3.7), and (3.9) 
together with (3.11) as well as (3.13) determines ~I uniquely. 
The complete soliton solution is then known up to v2

• 

In order to obtain the explicit forms for So and ~I' we use 
the asymptotic expansion scheme. 

Defining 

X ==(M / .JI=tiZ)(x I ± uVpxo - x), (3.15) 

(3.9) 

/(X)=e- X (3.17) 

and 

(3.18) 

The/(X) in the expansion (3.16) is the so-called boson func
tion.2 This expansion scheme is called asymptotic since the 
function/(X) is just the asymptotic form for ~o and therefore 
indicates how fast the TLM soliton approaches the homo
geneous theory at spatial infinity. Expressions for So and ~I 
will then be obtained as power series of this function. Since 
(3.16) is defined only in the region of positive X, the complete 
solution for the soliton for the entire range of X will be deter
mined from topological considerations at the end of the com
putation. One then expands So and ~I as 

00 

So= L c"r(X) (3.19) 
n=O 

and 

~I = f an/n(X). (3.20) 
n=O 

The coefficients en and an are to be determined self-consis
tently from (3.6), (3.8), (3.12), and (3.16) and (3.6), (3.7), (3.9), 
(3.11), and (3.16), respectively. Now in order to eliminate the 
v dependence ofEqs. (3.11) and (3.12) and therefore render 
the perturbation method meaningful, one writes 

(3.21) 

where u is a pure number also to be self-consistently deter
mined through the calculation afterward. This redefines the 
"generalized coordinate" X as 

X = (M /~I - q2v2/V~ )(XI ± uvXo - x). (3.22) 

A convenient form for the boson function is the follow
ing rotated expression into the complex plane: 

fIx) = Ke - ikx==Keik,x, - ikoxo, 

where 

kl=(f3/~I- O:V/v~)~{3 + o (V2), 

ko== ± uvkl~ ± uv{3 + 0(11), 

with 

{3=iM 

and 

K ==exp(MX/ ~ 1 - Q2v2/~ ). 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

The function/(X) is rotated back to the real axis at the 
Eq. (3.13) can then be expanded as 

~o= f h"r(X) (X> 0), 
n=1 

where 

(3.16) end of the computation. This method is just a trick enabling 
us to treat the boson function as an external leg in the compu
tation of the forecoming Feynman diagrams. 
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IV. COMPUTATION OF sO 
As a first step toward the establishment of the soliton solution, one must determine the acoustic phon~n order parameter 

So, which we calculate using the asymptotic expansion method. From (2.18), (3.6), and (3.8) one obtains O(O)(xy) as 

15(0)(12) = - 00(11')1'!'1'300(1'2j[ao¢o(I')] 

+ 0 0(11 ')1'11'3°0(1'2')1'11'30 0(2'2)[ a~¢0(1')¢0(2')] 

- 0 0(11 ')1'11'300(1 '2')1'11'30 0(2'3')1'11'30 0(3'2) [a~¢0(1')¢0(2')¢0(3')] 
+ - .... (4.1) 

Making use of the expansion (3.16) for ¢o gives, up to the third power of the boson function, 

15(0)(12) = - 00(11')1'11'300(1'2)1 aohd(I') + aohd2(1') + aoh3f3(1') + .. , J 

+ 00(11')1'11'3°0(1'2')1'11'300(2'2)1 a~b fI(I')f(2') + a~blb2[f(I')f2(2') + f2(1')f(2')] + ... J 

- 00(11')1'I1'30 0(1'2')1'I1'30 0(2'3')1'I1'30 0(3'2){ a~b U(I')f(2')f(3') + ... J 

+ _ .... 

Evaluation of the rhs of (3.12) when using (4.2) gives a 
local power series of the boson function. By virtue of (3.19) 
the coefficients en are then determined and so is So. In the 
following we compute the coefficients up to second order. To 
that purpose let us define the following quantities: 

IMvn(x) 

[ 
a2 a

2 ]-1. (a
2 

a
2

) = axi - a (VXO)2 ~ axi - ayi 

Xtr f d 2z °0(XZ)1'I1'30 0(zy)r(z), 

12(a)j2(x) 

[ 
a2 a

2
] -I. (a

2 
a

2
) 

= axi - a (vxo)2 ~ axi - a.vi 

(4.3) 

Xtr f d 2z d 2w °0(XZ)1'I1'30 0(ZW)1'I1'30 0(wy)f(z)f(w), 

(4.4) 
where 

Ii (a )e - inkx==Ii(nk)e - inkx. 

From (2.26) and (3.23), it follows that 

II(a)r(x) 

n[ a
2 

a
2 ]-1. (a

2 
a

2
) 1 

= K axi - a (VXO)2 ~ axi - ayi (21T)4 

x f d 2z f d 2p d 2q e- ip(x-z) - iq(z-y)- inkz 

(4.5) 

Xtr 00(POPI)1'I1'300(qo qt! (4.6) 

[
a

2 
a2 ]-1. (a

2 
a

2
) 1 

=K2 axi - a (VXO)2 ~ axi - a.vi (21T)6 

X f d 2zd 2w f d 2pd 2qd 2/ 

Xe - ip(x -z) - iq(z- w)- i/(w - y)e - ik(z+ w) 

xtr 00(PoPI)1'I1'300(q~I)1'I1'300(lJt!. (4.7) 
Performing all the derivatives and limits in the dis

played order and then integrating over internal coordinates 
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(4.2) 

i 
yields 

and 

II(nk) = [1- ~]-I-l-~fd2P(2PI - nkt! 
nkl (211f 

XOO(POPI)1'I1'300(PO - nko,PI - nkl) (4.8) 

J(2k)= [1-~]-I~~ 
2 kl (21Tf 

xf d 2p(pl - k l)00(POPt!1'I1'3 

XOo(po - ko,pt - kl)1'I1'300(PO - 2ko,p1 - 2kl), 
(4.9) 

where integrations over 8 functions created by internal co
ordinates' integrations have been performed. One must rea
lize however that the above expressions in fact lead to expan
sions in powers of v. This is so because of (3.24) and (3.25). 
Since So contributes to the soliton solution ¢ in the second 
order of v, any v-dependent terms in (4.8) and (4.9) will give 
higher-order corrections to the soliton form. One can, there
fore, drop them at this stage. Equations (4.8) and (4.9) are 
then evaluated in the static limit, that is, 

(4.10) 

This prescription applies as well to the computation of the 
coefficients for ¢I' One must be careful, however, to perform 
any time derivative before taking this limit. 

Using the explicit form (2.27) for the Green's function, 
taking the trace, and applying the above prescription lead to 

I (n/3) = _ 2vF~[I-~]-1 
1 n{3(21T)2 

X Jd
2 (2PI - n{3)2 (411) 
P (pz _Ez)(pz _E2) . o p 0 p-nfJ 

and 

2vF[I-~]-1 
12(2{3) = /3 (21T)2 

Xfd 2 (P1-/3)2[p~ +3~ -zlpPI(PI-2{3)]. 

P (p~ - E;)(P~ - E;_p)(P~ - E;_2/J) 

(4.12) 
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Carrying out the integrations and making use of the identity 

4~ + u:,p 2=0, (4.13) 

definitions (4.3) and (4.4), one obtains the following coeffi
cients: 

which follows straightforwardly from (3.14) and (3.26), one 
obtains finally 

Co = (arbitrary), 

Cl = - (g/m2)[ - Aohll(P)), 

(4.17) 

(4.18) 

I1(np) = (1/n)[S - m2/g2][ 1 - 02] -I (4.14) 

and 

12(2{3) = -(1/4Ao)[S-m2/g2][I-cr]-I. (4.15) 

C2 = - (g/m2)[ - AohJI(2{3) + A~bV2(2{3)]. (4.19) 

The expressions (4.14) and (4.15) together with (3.18) finally 
lead to 

In gaining the above expressions, use has been made of the 
gap equation (2.29), which can be written, after integration, 
in the following form: 

c1 = (gAoIm2)[S - m2/g2][1 - cr] -Ibl> (4.20) 

c2 = (gAofm2)[S - m2/g2][ 1 - cr] -lb2. (4.21) 

This suggests that, in general, 

m2 1. h_I(VFA) -=--sm -, 
g2 1TVF Ao 

(4.16) c" = (gAoIm2)[S - m2/g2][I_ cr]-Ib" (n:;;.I), 
(4.22) 

so that 

50(X) = (gAoIm2)(S - m2/g2)(1 - cr)-I~O(X) 

+ arbitrary constant. (4.23) 

where A is a high momentum cutoff. Note that in (4.14) and 
(4.15) a surface term denoted by S (S = 1/ 1TVF ) has appeared 
while integrating. It originates from the choice of the high 
momentum cutoff regularization scheme and can be shown 
to disappear by a suitable symmetrization procedure. How
ever, from now on, we deliberately keep it since it will be 
shown to help discover the structure of the computation in 
later sections. From Eq. (3.12) for 50 as well as (4.2) and the 

A complete proof for this expression requires the self
consistent calculation, which was mentioned in the Intro
duction, and involving fermion wave functions. 

I 

v. A DIFFERENTIAL EQUATION FOR ~1 

Equations (3.6), (3.7), and (3.9) together with (2.17) and (2.18) lead to the following expansion for S (I)(xx): 

S(I)(11) = - So(11')So(l'I){A)o(l') + V(l')} - So(l1')[O(l')]Oo(l'l) 

+ So(11')S0(1'2')S0(2'1){ A~ [~0(l')~1(2') + ~1(l')~0(2')] + Ao[~0(1')V(2') + V(l')~0(2')]} 
+ So(11')[A)0(l')]So(1'2')[0(2')]00(2'1) + So(11')[0(1')]00(I'2'j[A)0(2')]So(2'l) 

- So(11')S0(1'2')S0(2'3')S0(3'1){ A~ [~0(l'~0(2'~1(3') + ~0(l')~1(2')~0(3') 
+ ~1(1')~0(2')~0(3')] + A~ [~0(1')~0(2')V(3') + ~0(1')V(2')~0(3') + V(l')~0(2')~0(3')]} 
- So(ll') [A)o( 1 ')]So(l '2')[Ao~0(2')]So(2'3') [0(3')]00(3'1) 

- So(ll')[A)o(1 ')]So(1 '2')[ 0(2') ]00(2'3') [A)0(3')]So(3'1) 

- So(11') [0(1')] Dol 1 '2')[A)0(2')]So(2'3')[A)0(3')]So(3'1) 

+ -"', 
where 

and 

V(x)== - (AA);:/m2)(x) 

O(x)== - i
g

2 [5;: + 25 ~ ~]. 
maxI 

(5.1) 

(5.2) 

(5.3) 

In Eq. (3.11) we then substitute (5.1). Extracting linear terms with respect to ~I' ~o, and 50' we define the derivative 
operators Do, D1, D2, as 

Do(a)A)I(l)==itr So(l1')So(I'l)[A)I(I')] - (m2AoIg2~1(1), 

D.(a )A)o{l)== - itr So(l1')So(l'l)[V(l')] + (Aofg2)[(l + A )~;:(1) + ~oIV2], 
D2(a )50== - i tr So(11')[0(l')]00(l'l), 

where 

Dtta)e -/nloc==D/(nk)e - inloc. 

Then (3.11) and (5.1) yield the following differential equation for ~1: 
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(5.6) 

(5.7) 
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Do(a)a~I(I) = DM)a~o(l) + D2(a)So(1) + itr{So(l1')S0(I'2')S0(2'I){a~ [~o(1')~1(2') + ~I(1')~0(2')] 
+ ao[~0(1')V(2') + V(I'~0(2')] + So(II')[a~o(1')]So(1'2')[0(2')]00(2'1) 
+ So(11')[0(I')]00(l'2')[a~0(2')]So(2'1) - So(11')S0(1'2')So(2'3')S0(3'1){ a~ [~0(1)~0(2')~1(3') 

+ ~o(1')~1(2'~0(3') + ~I(1')~0(2')~0(3')] + a~ [~0(1')~0(2')V(3') + ~0(1')V(2')~0(3') + V(I')~0(2')~0(3')]} 
- So(II') [a~o( 1')]So(I'2') [a~0(2'2)]So(2'3) [0(3')]00(3') 

- So(II')[a~0(I')]So(I'2')[ 0(2')]00(2'3')[a~0(3')]So(3'1) 

- So(II')[O(I')] 00(I'2')[a~0(2')]So(2'3') [a~0(3')]So(3'1) 

+ - ... }. 

The differential operator Do(a ) is the operator that deter
mines the mass shell condition (3.14), giving information on 
the speed rate of the exponential damping of the asymptotic 
form of tPo and tPl in the static limit. In that limit it is obtained 
as 

(5.9) 

When rotating back to the real axis, one must be careful in 
choosing the proper branch for (5.9). However, one shall not 
be concerned with this problem since Do(n/3 ) will disappear 
self-consistently throughout the calculation. The operator 
D 1(a) is now easily calculated. To that purpose let us write 
(5.4) and (5.5) as 

[Do(nk) + m2/g2]e- inkx = itr So(xz)So(zx)e- inkz (5.10) 

and 

Dl(nk )e - inkx 

= - (n2k i /m2) {iA tr So(xz)So(zx)e - Inkz 

+ (m2/g2)[(1 +A.)+o2]e- inkx }. (5.11) 

In (5.11) we made use of (5.2) as well as the following rela
tions: 

r'(x) = inkdn(x), 

r"(x) = - n2kir(x), 

jn(x) = - n2kio2zrr(x). 

(5.12) 

Inserting (5.10) into (5.11) and taking the staticlimit lead to 

D1(n/3) = 4 n2a~ [~2 ((U + 1) + 02) +A.Do(n/3)]. 
v~m2 IS 

(5.13) 
Now one writes equation (5.6) as 
D

2
(nk )e - inkx 

= g22 tr So(xz) [n2k i - 2inkl ~]Oo(zx)e-inkz, 
m aZ1 (5.14) 

where (5.3) and (5.12) have been used. In the Fourier repre
sentation, (5.14) becomes 

D2(nk )e - inkx 

2947 

= ....L ~ f d 2Z f d 2p d 2q e - ip(x - z) - inkz 
m2 (21T)4 

xs. ( )0 ( ) [ 
2k2 2' k a] -iq(z-x) o POPI oqofh n 1 - In 1- e , 

aZ1 
(5.15) 
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which leads to 

D2(nk )e - inkx 

(5.8) 

= nklg f d 2z f d 2p d 2q e-iP(x-z)-iq(Z-x) -inkz 
m2(21T)4 

X [2ql + nktltr So(PoPl)Oo(qollt!. (5.16) 

Integrating over internal coordinates and over the {j function 
thus created yields 

D2(nk) = n2 k
1g 2 f d 2p(2pl - nkl) 

m (21T) 

xtrSO(POP1)00(PO - nkO,Pl - nkl)' (5.17) 

Making use of (2,27) and taking the trace in the static limit 
gives directly 

D (n/3) = - 2naJ3g f d 2 (2Pl - n/3 )2 
2 m2(21T)2 p (p~ -E;)(p~ -E;_n(3) , 

(5.18) 

Comparing this result with (4.11) and (4.14) yields finally 

D 2(n/3) = - (4na~g/v~m2)[S - m2/g2]. (5.19) 

Once again the static limit has been used to determine 
the explicit form for Do(n/3), D1(n/3), and D2(n/3). Otherwise 
computed these quantities would have given higher-order 
corrections to the soliton profile, The knowledge of the three 
latter operators enables us in tum to obtain full information 
about the linear terms of the expansion (5.8). Using (3.16), 
(3,19), and (3.20) and comparing linear! terms in (5.8), one is 
led to 

(5.20) 

Note that ao in (3.20) is trivially obtained as zero. According 
to (3.14) and (3.26), we have 4a~ + v~/32 = 0 in (5.9). Thus, 
the contribution from a 1 in (5.20) vanishes. Equation (5.20) 
together with the result (4.22) gives the following condition 
on the soliton velocity: 

m
2 g2 [ m2]2 7[(U+l)+o2]- m2 S-7 [1-02]-1=0, 

(5.21) 

where the explicit forms (5.13) and (5.19) have been used. 
The latter equation can be brought into the form 

u4 + 202 A. - U = 0, (5.22) 

in which the surface term S has been set equal to zero. The 
reason for this has been mentioned previously. 
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Equation (5.22) is solved as 

{
(A. 2 + U )1/2 - A., 

02 = ± (A. 2 + U )1/2 _ A., (5.23) 

The critical condition (5.21) will be shown to reappear 
self-consistently in higher power computations. 

Since the case A. = 0 is equivalent to neglecting alto
gether the optical-phonon-electron derivative coupling, that 
is, recovering the TLM coupling, it is easy to see from (5.21) 
how a perturbational analysis made on the constraint that 
the soliton be static for A. #0 leads to an inconsistency, as 
mentioned in the beginning of Sec. III. The static case corre-

I 

Do(2{3 )ll.cP2/2( 1) 

sponds to u = O. Inserting this into (5.23) for nonvanishing A. 
leads us to a dead end. 

From (5.20), the coefficient a l in (3.20) is left undeter
mined. It will be obtained from boundary conditions on the 
full solution at the end of the calculation. Higher-order coef
ficients will be obviously ai-dependent. 

VI. COMPUTATION OF THE SECOND-ORDER 
COEFFICIENT FOR ~1 

~hen the expansions (3.16), (3.19), and (3.20) for~o, So, 
and ¢JI are used, Eq. (5.S) leads to the following relation for 
the second-order coefficient for ~I: 

= D I(2{3 )ll.oh2/2(1) + D2(2{3 )c2P(I) + i tr So(11')S0(1'2')S0(2'1)/(I')/(2') {21l.~ bla l + 2~,1 ({32/m2)b ~ J 

- i...L2 ll.ohlcl{itr So(II')S0(1'2') [ - p 2 + 2iP ~]00(2'1)/(1')/(2') + itr So(l1')[ - p2 + 2iP~] 
m a2' a l' 

x 00(1'2')S0(2' 1)/(1')/(2')}, (6.1) 

where a/a l' and a/a 2' mean the space derivative with re
spect to the internal coordinates l' and 2', respectively. In 
the above formula, (5.2), (5.3), and (5.12) were used as well as 
the static limit taken. 

A2(a)/2(1)=itrSo(11')[ _p2 + 2iP a~'] 
XOo(1'2')S0(2'1)/(I')/(2'), (6.4) 

where 
Let us define the following operators: 

Ao(a )/2(1)=i tr So(11')S0(1'2')S0(2'1)/(I')/(2'), (6.2) 

AM)/2(1)=itr So(11')S0(1'2')[ _p2 + 2iP a~'] 

X 00(2'1)/(1')/(2'), (6.3) 

and 

AM )/2==A. i (2{3 )/2. (6.5) 

One can show that A 0(2{3 ) is related to Do(2{3 ) ofEq. (5.9) 
by the relation 

Ao(2{3) = B (2{3 )Do(2{3 ), 

where B (2{3) is found to be 

B (2{3 ) = 1I21l.0· 

(6.6) 

(6.7) 

Now using again the Fourier representation for the two-point functions and performing as usual the appropriate integra
tions over internal coordinates and momenta enables us to solve (6.3) and (6.4) for A I(a) and A2(a) as 

and 
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AI(2{3) = - iP (2:)2 f d 2p(2pI - 3P)S0(PoPI)S0(PoPI - P)OO(POPI - 2{3) (6.S) 

A2(2{3) = - iP (2:)2 f d 2p(2p1 -P)SO(POPI)OO(POPI - P)SO(POPI - 2{3). 

Taking the trace of both equations and summing them up give explicitly 

A (2{3) +A (2{3) = _ Sivp fd2 {P~ [p~ - 2{3(PI -P)] + (PI _P)2[31l.~ - V~PI(PI - 2{3)]}. 
I 2 (217f P (p~ _ E;)(p~ - E;_p)(p~ - E;-2P) 

Carrying out the integration yields, after much algebra, 

A 1(2{3) + A2(2{3) = - (4ill.oIv~) [Do(2{3) + (S - m2/g2)]. 

After insertion of all the aboveA I (2{3)'s, (6.1) leads to the relation, among the coefficients ai' bi and Ci , 

(6.9) 

(6.10) 

(6.11) 

161l.~ [m2 ] Il.~g [ m
2 

] [ 4,11l.~ 2 ] 
Do(2{3)ll.cP2 = v~m2 ~(U + 1) + 02) + ,1Do(2{3) ll.oh2 - S v~m2 S -7 C2 + Il.o albl - ~m2 b I Do(2{3) 

- 4 ~~2 bICI [Do(2{3) + (s _ ;2)]. (6.12) 

Inserting (3.1S) and (4.23), (6.12) becomes 
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+ {~~[-t -~S- ~)(1_a2)-1] -2a1}Do(2P). (6.13) 

Remembering the condition (5.21), a2 is then determined as 

a2 = 8Q- 201, (6.14) 

where Q is defined as 

Q 2a~ [-t-L(S- m
2

)(I_a2)-I]. 
tfpm2 m2 Ii (6.15) 

Obviously, a third-order calculation is required to shed more light on the perturbed solution. The calculation in the next 
section shows that a3 is indeed a linear combination of Q and ai' as in the present case for a2• 

VII. COMPUTATION OF THE THIRD-ORDER COEFFICIENTS FOR ~1 

The equation of the third-order coefficient for ~I is obtained from (5.8) as (note that blc2 = b2cl ) 

Do(3p)aaa3f3(1) = D1(3p)aob3f3(1) + D2(3P)c3f3(1) + i tr{So(11')S0(1'2')S0(2'I)[P(I')f(2') + f(I')f2(2')] 

X {a~ [a l b2 + a2bd + 5 -t~~2 bl b2} - iga;:1 C2{So(l1')S0(I'2')[ _p 2 + 2iP a~,]00(2'I)f2(I')f(2') 

+ So(l1')S0(1'2')[ - 4p2 + 4$ a~,]00(2'I)f(I')f2(2') + So(II')[ - 4{32 + 4iP a~'] 

XOo(1'2')S0(2'I)f2(I')f(2') +So(l1')[ _p2 + 2iP a~,]00(1'2')S0(2'I)f(I')f2(2')} 

_ So(l1')S0(I'2')S0(2'3')S0(3'1)/(1')/(2')f(3'){ 3a~ [b~al + -tp~: i]} 
+ i :2 ~ b ~Cd(I')/(2')/(3'){So(l1')S0(I'2')S0(2'3')[ - p2 + 2iP a~' ]00(3'1) 

+ So(l1')S0(I'2')[ - p2 + 2iP a~' ]00(2'3')S0(3'1) + So(II')[ - p2 + 2iP a~' ] 00(I'2')S0(2'3')S0(3' I)}} , 

(7.1) 

where (5.2), (5.3), and (5.12) have been used again. 

and 
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Now let us introduce the following set of operators: 

II(a )f3(1)=i tr So(II')S0(1'2')S0(2'1)[/2(I'lf(2') + /(1')P(2')] 

= 2 i tr Sol 11 ')S0(1'2')S0(2' 1 )f( 1 ')/2(2'), (7.2) 

12(a )/3(1):=i tr So(11')S0(I'2')S0(2'3')S0(3'1)/(I')/(2')/(3'), (7.3) 

Lo(a)/3(1)=itr {SO(11')S0(1'2')S0(2'3')[ - p2 + 2$ a~,]00(3'1) + So(11')S0(1'2')[ - p2 + 2iP a~' ] 00(2'3')S0(3' 1) 

+ So(l1')[ - p2 + 2$ a~,]00(1'2')S0(2'3')S0(3'1)} /(1')/(2')/(3'), (7.4) 

L I(a)/3(1)=itr {So(l1')S0(1'2')[ _p2 + 2iP a~,]00(2'I)f2(I')/(2') 

L2(a)/3(1)=itr {So(11')S0(1'2')[ - 4{32 + 4iP a~' ]00(2'1)/(1')/2(2') 

+ So(l1')[ - 4{32 + 4iP a~' ]00(1'2')S0(2'1)/2(1')f(2'+ 

J. Math. Phys., Vol. 26, No. 11, November 1985 Leblanc, Matsumoto, and Umezawa 

(7.5) 
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where 

J;(a )j3==J;(3{3 )f3 (7.7) 

and 

(7.8) 

One notes again that, similarly to Ao(2{3) in (6.6), J 1(3{3) and J2(3{3) can be related to Do(3{3) by the following relations: 

JI(3{3) = [R (3{3)/B(2{3)]Do(3{3) (7.9) 

and 

(7.10) 

whereB (2{3) and Do(3{3) have been defined by the relations (6.7) and (5.9), respectively, whileR (3{3) and C(3{3), after tedious 
algebraic work, can be obtained as 

R(3{3)= 2Do-I(3{3) [J.- '4a2 +QV2{32Sinh-I(3VF{3)_ 'a2 +v2 {32Sinh-I(VF{3)] (7.11) 
31rV~{3 3 2 V 0 F 2ao V 0 F a o 

and 

(7.12) 

However, (5.9) yields the following relations: 

(7.13) 
and 

J a~ + VF {3 2 sinh -I(VF {3 / a o) = - 1rV~ {3Do(2{3)· (7.14) 

Inserting the relations (7.11)-(7.14) as well as (6.7) into (7.9) and (7.10) yields finally 

(7.15) 

and 

(7.16) 

where (3.14) together with (3.26) have been used at will. 
Again going to the Fourier representation and carrying out the appropriate differentiations and integrations yield the 

following results for Lo(3{3), L I(3{3), and L2(3{3): 

i{3tr f 2 Lo(3{3) = - (21T)2 d p{(2pl -{3)So(PopI!Do(PoPI -{3)SO(POPI - 2{3)SO(POPI - 3{3) 

+ (2PI - 3{3)So(PoPI)So(PoPI -{3)Do(PoPI - 2{3)SO(POPI - 3{3) 

+ (2PI - 5{3)So(PoPI)So(PoPI -{3)SO(POPI - 2{3)Do(PoPI - 3{3)j, 

i{3tr f 2 LI(3{3) = - (21Tf d p{(2pl -{3)So(PoPI)Do(PoPI -{3)SO(POPI - 3{3) 

+ (2Pl - 5{3)So(PoPI)So(PoPI - 2{3)DO(POPI - 3{3)j, 

and 

4i{3 tr f 2 L 2(3{3) = - (21T)2 d P{(PI -{3)So(PopI!Do(PoPI - 2{3)SO(POPI - 3{3) 

+ (PI - 2{3)SO(POPI)SO(POPI -{3)Do(PoPI - 3{3)J. 

Carrying out the above integrations yields finally, after very tedious manipulations, 

Lo(3{3) = (2i/v~) [ lfDo(2{3) - Do(3{3)] , 

LI(3{3) + L 2(3{3) = - (12iaolv~)[Do(3{3) - Do(2{3) + (S - m2/g2)]. 

(7.17) 

(7.18) 

(7.19) 

(7.20) 

(7.21) 

Inserting the explicit expressions for the J;(3{3)'s and L;(3{3 )'s as well as Eqs. (5.13) and (5.19), together with (4.23), into 
Eq. (7.9) for a3 yields the following: 
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+ [ll.o(a 1b2 + a2b1) - 20 AIl.~ b1b2] [J.- Do(3{3) - J.- Do(2{3)] 
v~m2 2 3 

- l~r;~ b1b2 [S - ~] [1 - u2] -1 [Do(3{3) -Do(2{3) + (S - ~)] 

+ ~o [b~al _ 4~!~~ ]DO(2{3) _ 2~:!~~ [S - ~] [1- u2] -1 [-¥-DO(2{3) - DO(3{3)). (7.22) 

Using (3.18) together with (6.14) and (6.15), one rewrites the above relation as 

Do(3{3)a3 = - ~~ {~ ((U + 1) + u2) - ~2 (s - ~r(1 - u2)-I} 

+ {3a 1 - 48~ [A _ L(S- m
2
)(I_u2)-I]}Do(3{3). 

v~m2 m2 g2 
(7.23) 

Terms containing Do(2{3) cancel among each other. Re
membering the condition (5.21) for the soliton velocity, one 
therefore determines a3 as 

a3 = 3a1 - 24Q, (7.24) 

where Q was defined by Eq. (6.15). 

VIII. A CLOSED FORM FOR ~1 
The results (6.14) and (7.24) indicate that, in general, 

each coefficient an is indeed separated into two parts, one 
proportional to a1 and another proportional to Q. Let us 
therefore write 

an =AnQ-BnaJ (n;;;d). (8.1) 

Equations (6.14) and (7.24) are consistent with the following: 

Bn = (- lrn, (8.2) 
I 

(8.3) 

In order to discover the sequence An' we will inspect the 
structure of Q as well as Eqs. (6.12) and (7.22) for a2 and a3, 

respectively. The key factor is the quantity (S - m2 
/ g2). 

The characteristic form under which the calculation is 
displayed for each order in the asymptotic expansion is the 
following: 

Do(n{3)an = 4n2(1l.~/v~m2)[Eq. (5.21)]bn 

+ [anQ-BnadDo(n{3) (n = 1,2,3), 
(8.4) 

which is merely a restatement of(8.1) since (5.21) is the con
dition for the soliton velocity and vanishes identically. The 
factor 4n2 in the first term comes from the expression (5.13) 
for DJ(n{3). At an earlier stage in the calculation, however, 
one has 

Do(n{3)an = 4n2 ~ [m2 ((U + 1) + u2)]bn _ 4n 1l.c8 [s _ m2 
]Cn _ Il.~ 

v~m2 g2 v~m2 g2 ~m2 

X [t5~) ~2(S - ~}1- u2)-JDo(n{3) + t5~) ~2 (s - ;2r(1 - u2)-I] + YnDo(n{3) (n = 1,2,3). (8.5) 

The first two terms are contributions from D1(n{3) given by (5.13) and D2(n{3) given by (5.19), respectively. The third term 
containing linear and quadratic forms for (S - m2/g2) with respective coefficients t5 ~l) and t5~) is obtained from computation 
of terms involving the acoustic phonon order parameter So. The remaining contribution is simply denoted by Yn' Now 
assuming the validity of the general result (4.23) for Cn one rewrites (8.5) as 

Do(n{3)an = V:!2 {4n2[~ ((U + 1) + u2)]bn - 4n[ ~2 (s - ~r(1 _u2)-1 ]bn 

- t5~)[ ~2 (s - ~}1 - u2)-1 ]Do(n{3) - ~;)[ ~2 (s - ~r(1 - u2)-I]) + YnDo(n{3) (n = 1,2,3). 

(8.6) 

Noticing that the factor (S - m2/g2) apears only linearly in 
the expression (6.15) for Q, one therefore obtains, by com
parison with (8.4), 

An = t5~)/2 (n = 1,2,3). (8.7) 
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The factor! comes in because Q has been defined with a 
factor 2. The quantity (S - m 2/g2), however, appears only 
quadratically in the condition (5.21) for the soliton velocity. 
Comparing (8.4) and (8.6), one obtains 
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~~) = (4n2 
- 4n)b" (n = 1,2,3). (S.S) 

The next critical step is based on the following nontrivial 
observation: 

~~) = ~~) (n = 1,2,3). (S.9) 

Upon the assumption that the above considerations re-
main valid for any order n, Eqs. (S.7HS.9) lead to 

A" = 2n(n - l)b" (n>I). (S.lO) 

From (3.1S) one finally obtains 

A" = (- 1)"4n(n - 1) (n>I). (S.l1) 

This generates the sequence 

A" = [O,S, - 24,4S, - SO,120, - + ... }, (S.12) 

which agrees with (6.14), (7.24), and (S.3). Therefore (S.I) 
becomes 

a" = ( - 1)"[ 4n(n - I)Q - nad, 

which in tum determines ~I as 

~I = 4Q i: (- 1)"n(n - l)e- nX 

,,=1 

- a l i: (- 1)"ne-"X [X>O]. 
,,=1 

Now, since 

and 

sech X = 2 i: (- 1)"e-{Z,,+ I)/lX [X>O], 
2 ,,=0 

one obtains 

X co 

sech2
- = -4 L (-I)"ne- nX [X>O] 
2 ,,=1 

and 

sech
2 ~ [tanh ~ - 1 ] 

(S.13) 

(S.14) 

(S.15) 

(S.16) 

(S.17) 

= - 4 i: (- 1)"n(n - l)e- nX [X>O]. (S.IS) 
,,=1 

Inserting (S.17) and (S.IS) into (S.14) gives finally 

~I = ~ sech2 X _ Q sech2 X [tanh X_I], (S.19) 
4 2 2 2 

where X was defined in (3.22). 
The rather exotic argument presented in this section en

abled us to bring ~I into the very appealing closed form 
(S.19). The complete form for the perturbed soliton, up to v2 

order, can now be written as 

~(X) = tanh ~ + V2[(~ + Q )sech
2 ~ 

_ Qsech2 X tanh X]. 
2 2 

(S.20) 

At any finite time, the following topological properties 
should be realized: 

~(+ 00)= -t,b(- 00)= 1. (S.21) 
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This implies that, for the same time, the soliton obeys 
the following condition at its center: 

~(O)=O. (S.22) 

The latter boundary condition determines the coeffi
cient a l in (S.20). It is easily found to be 

a l = - 4Q. (S.23) 

Therefore one is led finally to 

t,b(X) = [ 1 - v2
Q sech

2 ~]tanh ~ , (S.24) 

which has the required topological properties. 
The soliton profile (S.24) is constrained to move along 

the molecular chain with the velocity 

Vsoliton = UV, (S.25) 

where u is given by (5.23). 
Again a complete prooffor the soliton profile (S.24) re

quires the self-consistent computation mentioned in the In
troduction. Such a proof is briefly sketched in Appendix B. 

IX. CONCLUSION 

An important feature of the solution (S.24) is that the 
space-time coordinates always appear in the configuration X 
given by (3.22). It therefore has the form of a purely boosted 
solution. However, since the full generalized model is not 
Lorentz invariant, as opposed to the TLM model, one ex
pects an additional constraint on the solution (S.24). This 
constraint chooses a preferred frame, which is given by 
(S.25). The appearance of a special configuration X for space
time coordinates in soliton systems treated perturbatively is 
not a feature restricted to our model. Other soliton systems, 
like the modified sine-Gordon equation,S which is used to 
model the Josephson junction, have also a special configura
tionX. 

The determination of a suitable X is closely related to the 
problem of choosing the unperturbed state for the perturba
tion calculations. The explicit form for the choice of the con
figuration coordinate X is determined by the physical prop
erties of the soliton system. A boosted like form seems to be 
appropriate for nondissipative systems as in our case while a 
more complex form may be suitable for systems violating the 
energy conservation law as in the soliton model for the Jo
sephsonjunction. The dissipative (nondissipative) quality of 
a soliton system seems to be reflected by the nonintegrability 
(integrability) property of its solution. 

Now let us make some comments on the observability of 
the features of the present quasirealistic model in accordance 
with previous numerical computations. \0 However, al
though our quasirealistic model predicts that the shape of 
the kink remains independent of time for the range of A al
lowed by (5.23), solutions to the truly realistic model may be 
more complicated than a constant motion. Oscillations may 
also be present. II The region - 2 < A < 0 in our case may 
well correspond to a forbidden zone for constant transla
tional motion. Note that a value A~ - 4.22 yields the maxi
mum velocity Vso1 ~2. 7v of Ref. 11. For positive A, the soli
ton velocity is always smaller than v. Finally, as will be seen 
in Appendix B, acoustic effects do not destroy the fermionic 
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zero-energy mode of the TLM model. This mode, however, 
should be properly called a zero mode only in the frame 
moving with the soliton. As a result the well-known charge 
fractionalization mechanism l ,16,18-20 should remain an ob
servable consequence of the model. 

To put even more emphasis on the above results, we can 
mention the fact that it has been shown that a static soliton 
solution is also inconsistent with the truly realistic contin
uum model. Work on this model is now in progress. 
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APPENDIX A: DERIVATION OF THE QUASIREALISTIC 
MODEL 

In this appendix we formally derive the completely real
istic generalized TLM model from the discrete SSH model 
and indicate the modification which leads to the quasirealis
tic model. 

Su, Schrieffer, and Heeger7 proposed the following 
model for a linear chain of trans-(CH)x, the polyacetylene 
modecule, as equal to 

~C!(i :t -1l)Cn 

(AI) 
n 

where Cn is the destruction operator of the electron at the 
lattice point rn, Un is the displacement field of the lattice rn,1l 
is the chemical potential for the electron, p is the mass of the 
lattice atom, and K is the spring constant. The hopping ma
trix element tn,n + I is given by 

tn,n + I = to - a(un + I - un)· (A2) 

The operators Un and Cn satisfy the following canonical 
commutation relations: 

(A3) 

(A4) 

In order to go to the continuum model, it is convenient 
to introduce suitable Fourier transforms. For an operator An 
associated with the lattice point rn , we define its Fourier 
transform as 

A [k) = Jf ~e-ikrnAn' (A5) 

where a is the lattice spacing, The inverse transform is ex
pressed by 

An = ~f1rla dkikrnA [k). (A6) 
\j 21T -1rla 

Dividing the Brillouin zone into half, we define two 
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fields t/t I [k ], t/t2[ k ] as well as acoustic phonon S [q] and optical 
phonon ~[q] as 

t/tl[k )=C [k + 1T/2a) , -1T/2a <k <1T/2a, (A7) 

t/t2[k )= - iC [k -1T/2a), -1T/2a <k<1T/2a, (AS) 

and 

s [q)=u[q), -1T/2a <q<1T/2a, (A9) 

~[q)=u[q + 1T/a], -1T/2a <q<1T/2a. (AlO) 

By making use of the relations 

~ I exp(ikrn) = It5(k + 21T~\ 
21T n N a-) 

a [Ia 
- dkexp[ik(rn -rm)] =t5nm , 
21T -1rla 

as well as the definition 

(All) 

(AI2) 

(A13) 

we can express the Lagrangian (AI) in terms of Fourier am
plitudes and expand it in powers of a. Defining the fields in 
configuration space as 

t/t(x) = I dk t/t[k )eikx, 
,ffi 

sIx) = WiI dq S [q)eikx, 
,ffi 

~(x) = WiI dq ~[q)eikx, 
,ffi 

we have, up to order a2
, 

L = I dx 2'(x), 

where 

( a 2t/t a 2t/tt )] + t/ttTI ax2 + ax2 Tlt/t ~ , 

in which 

(AI4) 

(AI5) 

(AI6) 

(AI7) 

(AIS) 

vF ==2atO' v2=(K /p)a2
, m 2=4K /p, g= 4a~a/p. 

(AI9) 

The Lagrangian density (A IS) describes the completely real
istic generalized continuum model for polyacetylene. The 
passage to the quasirealistic model consistent with an acous
tic-effects-free BCS-type gap equation is simply obtained by 
replacing the derivative coupling term involving only the 
optical phonon by the following correction: 

v2 a t a~ 
2' corr = g -2 -a. (t/t Tlt/t) -a. ' 

m:x :x 
(A20) 

whereA is a dimensionless parameter. This ad hoc modifica-
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tion yields the quasirealistic model as described by (2.1)
(2.3). 

The interaction (A20) term is the only possible form that 
respects both the total degree of derivative of the original 
interaction term as well as the BeS-type condition imposed 
on the gap equation. The constant A is introduced to correct 
roughly the change of effective coupling. This parameter re
mains unknown in the present context and is to be deter
mined from experimental results. 

APPENDIX B: SELF-CONSISTENT PROOF FOR 
SOLITON SOLUTIONS 

In this appendix we sketch briefly, without going into 
the computational details, a self-consistent consideration 
that presents a complete proof for the soliton solutions 
(acoustic and optical phonon order parameters) obtained in 
this paper. 

The consistency of our solutions with the mean-field 
equations (2.9)-(2.11) is most easily shown by assuming from 
the start the validity of the results of this paper. They are 
summarized as 

(BI) 

and 

<S) = So(X) + "', (B2) 

where the dots stand for higher-order corrections and 

~o(X) = tanh(X /2), (B3) 

~1(X) = Qsech2(X /2)tanh(X /2) = Q(~o-~~)' (B4) 

and 

So(X) = R~o(X) + arbitrary constant. (BS) 

The "generalized coordinate" X is specified by Eq. (1.2) to
gether with the constraint (1.3) on the soliton velocity, while 
the constants Q and R have been obtained as 

Q = (2~/v~m2)[A + (I - cr)-l], (B6) 

R = - (ao/g)(1 - cr)-l. (B7) 

Using the relations (B I )-(B7) we can now explicitly calculate 
the fermion wave functions from the field equation (2.9). 
Once they are obtained, these wave functions are then insert
ed back into the source terms of (2.10) and (2.11), thus check
ing the consistency of (BI)-(B7). To that purpose, one must, 
however, expand the electron wave functions in powers of 
the acoustic phonon velocity as in (BI) and (B2). But since 
the unperturbed soliton part is the boosted TLM kink, one 
must be careful to implement such a perturbation expansion 
in the frame moving with the soliton and thereafter extract 
the Lorentz invariant part as the unperturbed state. Expand
ing the electron field in such a frame (XO,xI) as 

tPlXoXl) = tPo(XoX.J + V2tPI(XoXI) + ... 

= [(UO(XI )) + V2(UI (X.J) + ... J 
VO(XI ) VI(XI) 

(B8) 

one obtains the following set of linearized field equation (up 
to the correct order): 

(w - vpk)Uo + ivp U b + a~ovo = 0, (B9) 
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(w+vpk)Vo-ivpVb +~oUo=O, (BIO) 

(m2a~o/g2)(XI) = (OltP~(XoXI)'TltPo(XoXl)IO), (BIl) 

for the unperturbed part (which is the TLM model in the 
boosted frame) and 

(w - Vpk)UI + ivpU; + a~OVI 

( A~") . 
= a o ~l + m~ Vo + ;:2 IS [{ + 2ikS b)uo 

+2!Ls,U' m 2 0 0' (BI2) 

(w + Vpk)VI - ivp V; + a~OUI 

(B13) 

and 

[I - cr]s [{(Xl) = - i
g
2 (01 [tP~'T3tP[{ - tP~"'T3tP01 10), 

m 
(BI4) 

a~" aa 
[(A + I) + cr] -;- (Xl) - m2 7 ~1(XI) 

= (01 [tP~'TltPl + tPt 'T1tP01 10), (BIS) 

for the perturbation. Of course the boosted spatial coordi
nate Xl is related to the configuration X at the origin by 

X = (2ao/vp )Xl' (BI6) 

The electron energy Wk is given as 

Wk = ± ~V~k2 + a~. (BI7) 

The solutions to the unperturbed system (B9) and (BIO) 
are well knownl,l6 and a detailed review has been given by 
Nakahara. 16 The results are 

U
o

= ~[(Wk +vpk)+ia~o], 
2 Wk 

(BI8) 

Vo-- , 
_ Ak [ - i(Wk - vpk) - a~o ] 

2 (j)k 

(BI9) 

whereA k is a normalization factor. Note that Eqs. (B9) and 
(BIO) also have a zero-frequency solution (w = 0), 

UOB = - iVOB = ! ~ ao/2vp ~ I - ~~ . (B20) 

Although such a bound state zero mode does not contribute 
in shaping the soliton profile as opposed to the scattered 
modes (BI8) and (BI9), it yields nevertheless the so-called 
charge fractionalization mechanism. This zero mode, how
ever, should be properly called as such only in the frame 
moving with the soliton. 

Using the relations 

~b = (ao/vp)(1 - ~~), (B21) 

(B22) 

one easily realizes that the perturbed scattered wave func
tions solutions of(B 12) and (B 13) are now given as polynomi
als in ~o. They are readily obtained as 
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(B23) 

. (Wk + 3VFk) ,1,2 3.410 ,l,3]} 
+1 'f'0 + --'f'0 • 

2wk 2wk 
(B24) 

The correction to the zero mode is obtained as 

UIB = - ;VIB = (gaoR /v~m2) [I - 3t/J~] UOB • (B2S) 

Since the normalization of the fermion number obtained 
from (B2S) is not altered by these acoustic corrections. so is 
the charge fractionalization mechanism. 

Rewriting (BII). (BI4). and (BIS) as 

m~ao t/Jo = + [ U~ Vo + c.c.]. (B26) 

(l-ul)sO'= - :2+[U~UO'-V~VO'-c.c.]. (B27) 

(( I + A ) + ul) ao t/JO' - m2 ~ t/JI 
g2 g2 

= +[U~VI + V~Ul +c.c.]. (B28) 

one can now insert back the wave functions (BI8). (BI9). 
(B23), and (B24) into the rhs's of (B26) and (B28). Doing so 
Eq. (B26) yields the gap equation 

2 A2 
; = - + w: · (B29) 

while (B27) together with the above gap equation yields the 
results (BS) and (B7) for the acoustic phonon order param
eter. Finally insertion into (B28) of the electron wave func
tions as well as the use of (B4). (B6). (B21), (B22), and the gap 
equation (B29) yields the following condition for the soliton 
velocity: 
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(B30) 

The physical root of this equation is just Eq. (1.3). One has 
proven therefore that our soliton solutions to the present 
model are consistent with its mean-field equations if and 
only if the condition (1.3) on the soliton velocity is implemen
ted . 

'H. Takayama, Y. R. Lin-Liu, and K. Maid, Phys. Rev. B 21, 2388 (1980). 
2D. W. McLaughlin and A. C. Scott, Phys. Rev. A 18, 1652 (1978). 
3V. I. Karpman and V. V. Solov'ev, "The influence of external perturba
tions on solitons in Josephon junctions," IZMIRAN Preprint No. 28, 
Moscow, 1980, p. 294. 

4M. Salerno and A. C. Scott, Phys. Rev. B 26, (1982). 
'M. Salerno, M. P. Soerensen, O. Skovgaard, and P. L. Christiansen, Wave 
Motion 5, 49 (1983). 

"Y. I. Karpman and V. V. Solov'ev, Physica D 3, 487 (1981). 
7W. P. Su, J. R. SchrieJfer, and A. J. Heeger, Phys. Rev. Lett. 42, 1698 
(1979); Phys. Rev. B ll, 2099 (1980); Phys. Rev. Lett. 44i, 738 (1981). 

8H. Matsumoto, N. J. Papastamatiou, and H. Umezawa, Nucl. Phys. B 82, 
45 (1974); Nucl. Phys. B 91,90 (1975); G. Oberlechler, N. Umezawa, and 
C. Zelses, Lett. NuovoCimento13, 641 (1978); L. Wadati, H. Matsumoto, 
and H. Umezawa, Phys. Lett. B 73,448 (1978). 

9y. Leblanc, H. Matsumoto, H. Umezawa, and F. Mancini, Phys. Rev. B 
30,5958 (1984). 

"'W. P. Su and J. R. SchrieJfer, Proc. Nat!. Acad. Sci. USA 77,5626 (1980). 
"A. R. Bishop, D. K. Campbell, P. S. Lomdahl, B. Horowitz, and S. R. 

Phillpot, Phys. Rev. Lett. 52, 671 (1984). 
12D. K. Campbell and A. R. Bishop, Nucl. Phys. B 200 [FS4] 2, 297 (1982). 
13S. A. Brazovskii, JETP Lett.lS, 606 (1978) [Pis'ma Zh. Eksp. Teor. Fiz. 

28,656 (1978)]; Sov. Phys. JETP 51,342 (1980) [Zh. Eksp. Teor. Fiz. 78, 
677 (1980)]. 

I~. A. Brazovskii and N. Kirova, Pis'ma Zh. Eksp. Teor. Fiz. 33, 6 (1981); 
D. K. Campbell and A. R. Bishop, Phys. Rev. B 24, 4859 (1981). 

15M. Nakahara and K. MaId, Phys. Rev. B 25, 7789 (1982). 
16M. Nakahara, Ph.D. thesis, University of Kyoto, Japan, 1981. 
I7G. Rella, S. Mancini, M. Marimiro, and G. Scarpetta, Phys. Lett. A 100, 

482 (1984). 
18J. Goldstone and R. Jackiw, Phys. Rev. D 11,1486 (1975); R. Jackiw and 

C. Rebbi, Phys. Rev. D 13, 3398 (1976). 
19R. Jackiw and J. R. SchrieJfer, Nucl. Phys. B 190 [FS3], 253 (1981). 
20G. Semenofr, H. Matsumoto, and H. Umezawa, Phys. Rev. D 25, 1054 

(1982). 

Leblanc, Matsumoto, and Umezawa 2955 



                                                                                                                                    

Unbounded representations of symmetry groups in gauge quantum field 
theory. I. Confinement and differentiation 
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Symmetry groups and especially the covariance (substitution rules) of the basic fields in a gauge 
quantum field theory of the Wightman-Garding type are investigated. By means of the continuity 
properties hidden in the substitution rules it is shown that every unbounded form-isometric 
representation U of a Lie group has a form-skew-symmetric differential au with dense domain in 
the unphysical Hilbert space. Necessary and sufficient conditions for the existence of the closures 
of U and au as well as for the isometry of U are derived. It is proved that a class of representations 
of the translation group enforces a relativistic confinement mechanism, by which some or all basic 
fields are confined but certain mixed products of them are not. 

I. INTRODUCTION 

In recent years there has been increasing evidence that 
gauge quantum field theories may be the only kind of field 
theories relevant to elementary particle physics. According 
to theorems of Strocchi and Wightman l

-4 and references 
quoted by them, it seems to be unavoidable for a consistent 
formulation of a gauge quantum field theory to introduce an 
indefinite metric formalism.5 This formalism makes use of 
three Hilbert spaces HoCHC!)Y with scalar product ( . , . ) 
and a Hermitian sesquilinear form ( . , . ) = ( . ,TJ • ), which 
is generated by a bounded symmetric operator TJ on!)Y. The 
sesquilinear form is semidefinite on H and induces a definite 
scalar product on the factor space H / Ho. The completion of 
this factor space is considered as the physical Hilbert space 
!)Y ph • As a consequence there emerge a variety of structural 
differences between gauge quantum field theories and the 
classical Wightman theories.6-8 We mention only a few 
which are relevant for the consideration below: Physically 
interesting quantities (like transition amplitudes, etc.) have 
to be computed in terms of the sesquilinear form ( . , . ) 
whereas the basic fields of the theory are operators in K 
rather than in K ph ' Observables have to be symmetric with 
respect to the form ( . , . ) (in the following called TJ symme
try) but not necessarily essentially self-adjoint in K. Similar
ly symmetry groups are represented by operators in K 
which are isometric with respect to the form ( . , . ) (in the 
following called TJ isometry), but in general they are neither 
unitary nor even bounded in K. The best-known example 
for such an unbounded representation is probably the Lor
entz group in the Gupta-Bleuler formulation of the free elec
tromagnetic vector potential (Ref. 5, Sec. III). 

Within the classical Wightman quantum field theories 
the unitarity of a representation of a Lie group establishes 
the existence ofits differential; this means a representation of 
its Lie algebra in terms of essentially skew-adjoint operators 
(Ref. 9, Chap. 4). Conversely, under a variety of well-known 
conditions (See Ref. 9, Chap.4, and Refs. 10-18) a represen
tation of a Lie algebra by linear (skew-adjoint) operators can 
be integrated to a continuous (unitary) representation of the 
universal covering group of a corresponding Lie group. In a 
gauge quantum field theory this connection is an open prob
lem in both directions. A priori the differential may fail to 

exist because the representation of the Lie group is not con
tinuous. All integrability conditions known (to the author) 
from the literature lead to continuous group representations. 
Hence in general they are not directly applicable in the pres
ent case. On the other hand in a gauge quantum field theory 
the connection between the representations of a Lie group 
and its Lie algebra is of the same fundamental importance 
for the physical interpretation as in the Wightman theory, 
since the TJ-skew symmetric differentials of a symmetry 
group are the candidates for the observables of the theory. 
Moreover conditions for the integrability of an TJ-skew sym
metric representation of a Lie algebra, respectively, for its 
failure are an important aspect in the deeper understanding 
of symmetry breaking mechanisms. Thus a systematic inves
tigation of the differentiation and integration of unbounded 
representations of Lie groups, respectively, Lie algebras in 
gauge quantum field theories seems to be of vital interest. 

The present note is concerned with the differentiation of 
unbounded representations of groups satisfying the TJ iso
metry and especially the covariance condition (substitution 
rule for the basic fields) in K. It will be shown that in gauge 
quantum field theories (over a quite general class of counta
bly normed test function spaces including the Schwartz as 
well as the Jaffe spaces19

), which satisfy the Wightman
Garding axioms5 with the possible exception of locality, 
Lorentz covariance, and spectrum condition, any such rep
resentation of a Lie group possesses an TJ-skew-symmetric 
differential with dense domain in K (Sec. V). Sufficient con
ditions for the existence of the closure for the representatives 
of both the original group representation and its differential 
are proved (Sec. IV, respectively, Sec. V). As a by-product we 
derive a necessary and sufficient condition for the unitarity 
of the group representation in terms of special covariance 
properties of the basic fields for those theories in which the 
vacuum state is an eigenstate of the metric operator TJ (Sec. 
IV). This condition shows that in these theories the "usual" 
one-dimensional representations of the translation group are 
always unitary. The key to all our investigations and their 
results is the observation that via the covariance of the basic 
fields the unbounded representations in the Hilbert space K 
are closely related to continuous representations on the un
derlying countably normed test function space and the com-
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pleted tensor products of them (Sec. III). For the latter the 
differentiation is a well-understood operation (Ref. 9, Chap. 
4). In order to pave the ground for the investigation of the 
inverse operation (the integration of an l1-skew-symmetric 
representation of a Lie algebra) an infinitesimal characteri
zation for the subspaces of ~ 00 vectors of the bounded re
presentations in the countably normed test function spaces is 
derived (Sec. VI). For the integration itself will be treated in a 
separate note. For almost two decades the confinement of 
the quarks, etc., has been the central problem of elementary 
particle physics. In Sec. VIII we prove that a relativistic con
finement mechanism is enforced by a certain class of repre
sentations of the translation group (R4' + ). It is self-evident 
that this program has to be started with a record of the axi
oms for a gauge quantum field theory and the discussion of 
symmetry groups in the necessary and unavoidable minute
ness of detail (Sec. II). 

II. GAUGE QUANTUM FIELD THEORIES AND 
SYMMETRY GROUPS 

As indicated in the Introduction a distinguished role 
will be played by the test function spaces. We have to specify 
them first. In the following, S(R4L ,CN ) (L,N EN, natural 
numbers) denotes a separable and nuclear Frechet space (i.e., 
locally convex, metrizable, and complete) of complex 9ff 00 

functions f:R4L -+CN, X-+ fix) = (f1(X), ... ,J N(X)) in 4L 
real variables x = (x~ , ... ,xi , ... ,x~ , ... ,xi). The topology is giv
en by a countable set of pairwise compatible norms IIfllp 
(p E N° = Nu{ 0 J) (Ref. 20, Chap. I). Finally, it is assumed 
that the nuclear theorem holds. It roughly says that any mul
tilinear functional defined on all product functions 

[xj = (xJ , ... ,x])] and continuous in each variable f j sepa
rately has a unique extension to a continuous linear func
tional on S (R4L ,CN ). Three important properties which will 
be needed below are (Ref. 20, Chap. I, Secs. 3-6, and Ref. 21, 
Part III, Proposition 50.2) the following. 

(S.O) Every space S (R4L ,CN ) is perfect; this means every 
bounded subset is relatively sequentially compact. 

(S.I) If Sn (R4L ,CN ) denotes the completion of S (R4L ,CN ) 

with respect to the norm II ... lin then 

(S.II) Every linear continuous functional F on 
S(R4L ,CN ) is of finite order, i.e., there exists aCE R+ (posi
tive real numbers) and a minimal Po E N° such that 
IF(f)I.;;;cllfllpo • 

Physically important examples of such spaces are, be
sides the Schwartz space of strongly decreasing 9ff 00 func
tions, all strictly localizable spaces of Jaffe Sg(R4VCN ) 

= .Y(R4L ) ® CN (® denotes the completed tensor pro
duct). 19 The countable set of norms generating their toPOlo
gies is given by 
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Ilfll~m,p) 

= IIfll!,p: = sup till g~.tO(p:)2) 
X [jill iirO (1 + I pJ It] / J d 4LX p'(x)xlrl 

Xexp [-iktl(Pk ,xk)]//PER4L ; rJE~, 

ttl .to r:<m; J.l = 1, ... ,N} , 

with m E ~,p E N, and 

(2.1) 

3 L 3 ;, 

(p . x): = pOxo - L paxa, xlrl: = II II (XJ) 1. (2.2) 
a=1 j=li=O 

Furthermore, v denotes a bijection from ~XN onto N°. 
Here, g:C--+R is some entire function which is positive and 
monotonically growing on R+u{O} and satisfies the condi
tion (strictly localizability) 

f" dt t -2Ing(t 2)< + 00. 

Note that for g=1 we get back the Schwartz spaces. 
With these preparations we can proceed to the formula

tion of the axioms for a gauge quantum field theory 
(GQFT).2,S 

A.L· Field operators: Let 71" denote a Hilbert space with 
elements \II, 4>, ... , scalar product (\11,4», and norm II \II 11K 
= (\11,4»112, D a dense linear subset of 71" and T an at most 

countable set of (multi-) indices r,a, .... Then for every 
f ES(R4,q and rET there exists a linear operator ~r(f) 
with domain D(~r(f)) such that (a) DkD(~r(f)) and 
~r(f)DkD; (b) if ~r.(f) = ~.(f) = ~r(f)· (f complex 

r 
conjugate of f) denotes the adjoint operator of ~r(f), then 
r· E T for every rET; and (c) for all 4> E 71", \II ED the map
ping f -+(4)'~r (f)\II) is a linear continuous functional on 
S(R4 ,q. 

Since all field operators together with their adjoint ones 
possess a dense domain, they are all closable. For the sake of 
notational simplicity we assume they are closed; that is, 

~r •• = ~r' 
For notational convenience we denote the mapping 

f-+idK S d 4xf(x) [fE S(R4,Q and idK the identity opera
tor in 71"] in misuse of the phrase field operator by ~o(f) and 
assume 0,0· E T. Of course ~o possesses all properties of a 
field operator. 

A.IL· Metric operator and physical Hilbert space: There 
exists a linear, bounded, and Hermitian operator 11 with 
l1DkD which generates a nontrivial and nonpositive semi
definite sesquilinear form ( . , . ): = ( . ,11 . ) on 71". Further
more, there exists a nontrivial and maximal linear subspace 
He 71" such that for all \IIeH, (\11,\11) ;>0. If H ° denotes the 
linear subspace of all \II E H with (\II, \II) = 0, then the com
pletion of the factor space H IHo (with elements 
[\II]: = \II + H o) in the natural scalar product ([\II], [4>])H 
: = (\11,4» is called the Hilbert space of physical statesK'ph' 

Let us remark in passing that we do not demand the 
form ( . , . ) to be nondegenerate. Hence 11 is not necessarily 
invertible. On the other hand our continuity assumption 
A.I (c) is stronger than that in Refs. 2 and 5, where only the· 
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continuity of the matrix elements ('11 ,IPr (f)<I» in f is as
sumed. If 11 has an inverse, however, then both are equiva
lent. 

Throughout this paper we mean by a representation R of 
the group (G,.) on a vector space E a homomorphism 
R:G_AutE, g_R (g) of (G,.) into the automorphism 
group of E and by a representation W of a Lie algebra 
( g, ® ,0, [, ]) on E a homomorphism W: g-End E, 
X _ W (X) of the vector space ( g, ® ,0) into the vector space 
of the endomorphisms of E such that for all X, Y, 
e g:W([X,Y]) = W(X)W(Y) - W(Y)W(X). 

A. IlL' Translational symmetry and the vacuum: There 
exists a representation T of the vector group of R4 on a dense 
linear subspace DT ~ D which leaves D invariant and has the 
following properties. 

(a) (11 isometry): For ally e R4; '11,<1>, eDT 

(T(y)'I1,T(y)<I» = ('11,<1». (2.3) 

(b) (Vacuum): There exists a unique state '110 e H (called 
the vacuum) such that ("'0,"'0) = 1 and for all 
ye R4:T(y)'I10 = '110' 

(c) (Covariance): There is a decomposition of T into a 
countable union T = U.,.- E Ir T T(Y) X {Y} of pairwise dis
joint finite subsets T T(Y) X {Y} such that for all y e R4; 

Y I e IT' /-tl e T T(Y1) (i = 1, ... ,L ), LeN, and '11 e D the 
substitution rule holds: 

L 

11T (y) II IPI' • .,.-,tft)T(y)-I'I1 
1=1 

(2.4) 

with fl.y(x): = fl(x - y) and (y. ax): = 1:;=0 yP (alaxP). 

t;'(y. ax) = exp(y. q(Y)) 

(y. ax) 1I2(y. ax)2 

o 1 (y.ax ) 

o 
o 

o 
o 

o 
o 

If in the case of Jaffe spaces S g(R4 ,Cm ) the real part of q(Y) 
is unequal to zero for some Y then the corresponding fields 
IPI' . .,.-(/) together with all polynomials of them can create 
only states of zero 11 norm from the vacuum '110 

VLeN, V /-t1, ... ,/-tL eTT(Y), Vfl, ... ,fL eS g(R4,Cm ), 

L 

II IPI', . .,.-(/J'I1o e 7t"o~Ho· 
1=1 

Moreover for a mixed product of two (or more) such 
fields IPI'."'-} (/) and IPI' . .,.-, (h) this need not be true. By a suit
able choice of q(Y1) and q(Y2 ) the mixed product of them 
can create states in 7t"'\7t"0. This offers an attractive expla
nation of the confinement mechanism for quark fields, etc., 
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I 

Here T"'-((y. ax)) isa Y = IT T(y)I-dimensional inde
composable (matrix) representation of (R4, + ) ~m S (Ri ;Cy ) 
and continuous iny. Moreover, it is assumed Y· = Y. 

Since in the covariance condition we have admitted "un
usual" higher-dimensional representations, we have to make 
some comments. 

(i) The decomposition of T just means a splitting of the 
multi-indices r = (/-t,Y) into a (multi-) index Y which 
characterizes besides other properties of IPr = IP 1'."'- a spe
cial representation to which IPr belongs and an index 
/-t e T T(Y) counting the Y = IT T(y)1 components which 
belong to the representation Y. 

(ii) T(y) is neither assumed to be unitary nor even a 
bounded operator on DT • In theories in which "'0 is not an 
eigenvector of 11 the representation T (y) (y =f: 0) cannot be 
unitary. For if it would be unitary, than (a) and (b) imply 
T (y)11'11 0 = 11'110 and therefore 11'110 = d'I1 0 with d e R +. 

(iii) From Theorems 3.1, 3.2, and 7.1 below it follows 
that the continuity of T"'-(( y . ax)) iny implies the continuity 
of the matrix elements (<I>,T(y)'I1) in y for all quasilocal 
states '11,<1>. 

(iv) In classical Wightman theories (11 = idK , identity 
operator) one admits only one-dimensional representations 
[Y = 1 and T"'-((y. ax)) = 1]. In case '110 is an eigenvector 
of the metric operator 11 this would imply here that T (y) has 
a unique extension to 7t" (see Theorem 4.2 below). On the 
other hand it has been argued in Ref. 3 that charge confine
ment may be closely connected with the unboundedness of 
the translation operators T (y). In spite of the fact that we 
present in Sec. VIII a confinement mechanism which does 
not necessarily require higher-dimensional representations 
T"'- ((y. ax)) with Y> 1, the latter can a priori not be ex
cluded. If q = q(Y) denotes an arbitrary element from C4 

then any indecomposable representation Ton S (R4 ,Cy ) of 
dimension m = Y and continuous in y is equivalent to the 
(operator) matrix representation (Ref. 22, Chap. V, Sec. 9) 

1I(m - 2)!(y· axt- 2 1I(m - 1)!(y. ax)m-I 

1I(m - 3)!(y. axt- 3 1I(m - 2)!(y· axt- 2 

(2.5) 

o 

in spite of the fact that there seems to be some vinegar in this 
wine; the fields IPI'."'- can be Lorentz but not Poincare covar
iant. The latter requires q(Y) = O. However, since they are 
unobservable, they do not need to be Poincare covariant 
themselves but only those mixed products (of different ones) 
of them which create states in 7t"'\7t"0 from the vacuum. 
The important point is that the latter products are Poincare 
covariant if their constituents are covariant under Lorentz 
transformations and translations separately. The detailed 
derivation of these results will be given in Sec. VIII. 

A.IV: Completeness: The vacuum '110 is cyclic with re
spect to the polynomial • algebra r!Jl (IP ) over C with basis 
[IPr(/)lr e T,f eS(R4'C)} and r!Jl(IP)'I1o nH dense inH. 
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The completeness assumption means that the linear sub
space (LH -linear hull) 

gn:= 9('1')'1'0 

= LHLDltpr,(fl)'I'o!/; eS(R4,C);r; e T,n eN} 

(2.6) 
in dense in K. As a consequence K is separable, since 
S(R4'C) is separable and T countable. Since the algebraic 
tensor product sLS(R4,C)=S(R4,C)s ... sS(R4,C) (L 
times) is dense in S (R4L ,C) we may use the nuclear theorem, 
the completeness of S (R4L ,C), and the continuity of the field 
operators to define on D the more general operators 

[ iL]tpr (f), r l e T, feS(R4L'q. They are obtained in ex-
1-1 I 

actly the same as in the Wightman theories (Ref. 23, Chap. 
III, Sec. 1) by means of the strong limits in K 

[!~]tpr,(f)~: = ~~~ j~1 i[I1 tpr,(f{)~, ~ eD, (2.7) 

for an arbitrary sequence (I.j= I s L f{) N converging in 
1= I " 

S(R4L'C) of f. The dense linear subspace defined by the lin-
ear hull 

gQL = LH4~~tpr,](f)'I'0!f eS(R4L ,C); 

rl, ... ,rL eT; LeN} (2.8) 

is called the set of quasilocal states. It obviously belongs to 
the domain of every (basic) field operator tpr(f), which 
means g QL r;;.D. Moreover we assume g nand g QL to be 
invariant under the metric operator '1]. 

A. v.: '1] stability: 

'1]gn r;;.gn l\'1]gQL r;;.gQL' (2.9) 

For the sake of completeness we only mention the two re
maining axioms of a gauge quantum field theory without 
spelling them out in detail,2,s because we do not use them. 

A. VL' Spectrum condition. 
A. VIL' Locality (Einstein causality). 
These two additional axioms of course would reduce the 

class of admissible test function spaces to the strictly locali
zable ones of Jaffe. 19 

Finally, in analogy to the translational symmetry in axi
om A.III we define a global symmetry or a symmetry group 
of a gauge quantum field theory by the following. 

Definition 2.1 (global symmetry): A Hausdorfftopologi
cal group [§ is called a symmetry group, if there exists a 
representation V of [§ on DG with g QL r;;.Dr;;.DG , 

V ( gIg QL r;;. g QL' and the further following properties. 
(a) (Invariance ofthe vacuum): Vg e G, V( g)'I'o = '1'0' 
(b) ('1] isometry): Vg e G, V'I',~ e DG , (V( g)'I', 

V(g)~) = ('I',~). 
(c) (Covariance): There exists a decomposition ofT into 

a countable union T = u ..... E I G T G (d) X { d J of pairwise 

disjoint finite subsets T G (d) X { d J with ~: = ! T G (d) ! 
=~. = ITG(d·)! and for every d eIG a continuous rep

resentation R ..... of G on S(R4,C..;..) such that for all g e G, 
d l eIG, Pi e IIG(di), and 'I' e gQL the substitution rule 
holds: 
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L 

'1] V( g) II tpJ< • .aI,(f;) V( g)-I'I' 
1=1 

L 

= '1] L . . . L II tpY ..... (R ..... ,( g)"'J< fj)'I'· 
YJETa(.alJI YLETa(.alLlj=1 1" J 

(2.10) 

(G,V) is called a strict global symmetry if 
V( g)(Dnn H )r;;.(Dnn H). 

We have to add here a series of comments. 
(i) By a continuous representation R .aI on S (~;C..;.. ) we 

mean a homomorphism into the group of topological auto
morphisms of S (R4 ;C..;.. ) such that for every fixed 
f eS(R4;C..;..) the map G-S(R4,C..;..),g-R .aI(g)f is con
tinuous. If G is locally compact and countable at infinity 
then this implies that the map G XS(R4'C,,;,,)-+S(~,C .... ), 
(g,J)--+-R .aI( g)f is continuous (Ref. 9, Chap. 4.1). 

(ii) By means of the principle of uniform boundedness 
the continuity of R .aI implies that R .aI is uniformly bounded 
on some neighborhood %(e) of the unit element e of G. This 
means for every p e N° there existp' e ~ and r(d,p) e R+ 
such that for all f e S(R4 ,C..;.. ) and g e %(e) we have 

(2.11) 

According to Theorems 3.1 and 3.2 below this together with 
the continuity of R .aI (g) in g implies the continuity of the 
matrix elements ('I', V( g )4» in g for all 'I' e K and 
~egQL' 

(iii) In Sec. VII it will be shown that for the proper ortho
chronous Poincare group, all representations 

(R .aI(a,a)f)J«x) 

. - L Tq((a. ox))J<pM.aI(a)Py 
p.YE T P'+ (.all 

(2.12) 

where Tt is equivalent to a direct sum of the matrices (2.5) 
and M.aI is an ~ -dimensional matrix representation of 
SL(2,C), possess all the continuity and boundedness proper
ties of Definition 2.1 on every Jaffe space S I(R4;C..;..). 

(iv) In analogy with the discussion of the Poincare sym
metryinRef. 5, pp.137-142and 151, the general form of the 
substitution rule (2.10) (inclusive of the factor '1]) is "dictated 
by physics." However, when compared with the substitution 
rules of a classical Wightman theory there is a characteristic 
difference which is closely related to the nonunitarity of V. 
Exactly as in the case of a Wightman theory the unitarity of 
V would enforce a close connection between the substitution 
rules of a field tpJ< • .aI and its adjoint tpJ< • .aI-' Essentially (see 

Theorem 4.2) it reads R .aI-( g)f = R "'( g)f. For the Lor
entz group this means that the adjoint field transforms with 
the complex conjugate of that matrix according to which the 
field itself transforms. In a gauge quantum field theory this 
connection in general breaks down, which in turn causes the 
nonunitarity and even the unboundedness of V. For exam
ple, in the Gupta-Bleuler formulation of the free electro
magnetic field the substitution rules for the vector potentials 
tpJ< • .aI and their adjoints 'I' J< • .aI- under Lorentz transforma
tions read (Ref. 5, Part III) 
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3 

V(A)qJ~.d(/)V(A -1)\f1 = L rpv.d(AV~1 ,d\f1, 
v=o 

3 (2.13) 

V(A)qJ~.d*(/)V(A -1)\f1 = L rpv.d*((GAG -lt~1 A)\f1, 
v=o 

with I A (X) = I(A -IX) and G = (g;.p) the Minkowski met
ric tensor. Here, GAG -I is the transposed inverse of A and 
not the complex conjugate. On the other hand, the 'TJ iso
metry of V connects the substitution rule of rp ~.d under V ( g) 
with that of the adjoint field rp ~* under the adjoint and 

~.-
inverse representation operator V( g-I). in the same way as 
stated before in the case of unitarity. If in addition 'TJ has an 
inverse this leads to the same connection as above between 
the su~stitution rules under V( g) for rp~.d and the "'TJ-ad
joint" operator ('TJ-Irp ~* 'TJ) but not rp ~* itself. 

~.- ~.-
For the remainder it will be of considerable advantage to 

introduce instead of the one-component fields rpr (I), reT 
the multicomponent Wightman-Garding fields with respect 
to the symmetry group G defined bys 

tfJd(/): = L rp~.d(/~), I eS(R4'C,,;-). (2.14) 
~ e Td.d) 

More general, let S (d 1>" .,d d denote the L-fold completed 
tensor product of the nuclear Frechet spaces S (R4 ,C.,;-) (Ref. 
21, III, Chap. 50 ff; Ref. 24. Secs. 41-44; and Ref. 9, Appen
dix2) 

S(dl> ... ,dd = ,®LS(R4,C.,;-) = S(R4L , ,®LC.,;-). (2.15) 
;=1 i ;=1' 

Then we define for all I eS(dl,· .. ,dL) 
tfJd I ... ·•d L(/) 

: = L ... L [~L rp~"dl](/~I""'~L). 
~I eTd.dl) ~LeTd.dL) 1= I 

(2.16) 

By virtue of the equality (2.15) the matrix elements of the 
new field operators inherit from those of the original fields 
the properties of being linear continuous functionals, pos
sessing finite order (S.II) and so on. Especially, it follows 
from Eq. (2.7) for all \f1 e K, eI> e D and any sequence 
(~j= I ®f= I l\il)neN converging in S(dl , ... ,d d to I, 
(\f1,tfJ d I.···.d L( l)eI» 

= lim (\f1,tfJdl ..... d L( ± '® L I\J))eI» 
n-..oo .j=II=1 

= n~ ( \f1'J~1 lIltfJdl(fPl)tfJ) . (2.17) 

The equivalence ofthe sets T G(d) and T G(d·) (~ = ~.) 
implies tfJd(/)· = tfJd*(I). In order to generalize this rela
tion to the product fields (2.16) we introduce the antilinear 
and isometric (with respect to all norms II ... lip, peN) bi
jections ctfi = ctfi(dl , ...• d L)' LeN by 

ctfi: ®LS(R4,C.,;-j- ® IS (R4,C.,;- ), 
1= I I I=L I 

(2.18) 

Note that ctf ~ = ctf ~ - I acts simply as complex conjugation 
of the components of f. If ctf L denotes the unique isometric 
extension of ctf i onto the completed tensor product 
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S (d I , ... ,d L)' then it follows by means of (2.17) 

tfJdl ..... dL(/)· = tfJdr. ..... d,(ctf LI). (2.19) 

Finally the linear subspaces 9J n, respectively, 9J QL read in 
terms of the Wightman-Garding fields 

9Jn = LHLVltfJdl(/I)\f1olll eS(R4'C,,;-); 

dl, .... d L eIG ; LeN}, 

(2.20) 

9JQL = LH{tfJdl ..... dL(/)\f1oll eS(d1> ... ,dd; 

dl, ... ,dL eIG ; LeN}. 

III. CONTINUITY IN THE GROUP ELEMENTS 

Our Definition 2.1 of a symmetry group G contains no 
explicit assumption about continuity properties of V( g)\f1 in 
its dependence on g for fixed \f1 e D G' The aim of this section 
is to construct in three steps a representation U of G on 9J QL 

which is strongly continuous in the group elements g and in 
case Vis a strict global symmetry physically equivalent to V. 
The latter means that both U and V generate on Kph one 
and the same unitary representation of G. This continuity is 
necessary for the differentiation in Sec. V. Furthermore, for 
the remaining considerations we have to get rid of the factor 
'TJ in the substitution rule at least on 9J QL • 

Theorem 3.1: If G is a symmetry group, then for all 
d I , ... ,d LeI G' LeN the extended tensor product 
R d I.···.d L( g) = '® f = I R d l( g) is a continuous representa
tion ofG onS(dl , ... ,dL ). 

Proof: If G is locally compact and countable at infinity, 
Theorem 3.1 follows directly from Proposition 4.1.2.4 in 
Ref. 9. In order to cover also the gauge groups ofthe second 
kind we do not assume this here and in the following section. 
However, it is well known (Ref. 24, Secs. 41, 5) that the ten-

sor product ® f = I R d
l
( g) of the topological automorphisms 

R d
l
( g) has a unique extension to a topological automor

phism R d I.···.d L( g ) = '® f = I R d '( g)' of S (d 1> ... ,d d. It 
plainly satisfies the group property. It remains to prove the 
continuity in g. Since the topology of S (d I , ... ,d L) is equi
valent to the projective one, the uniform boundedness of 
R d ( g) on ..;V(e) and Propositions 43.1 and 43.2 in Ref. 21 
imply the following inequalities. For every 

h = L ®L hIe ®LS(R4,C.,;-), 
J /=1 /=1 I 

every g e ..;V(e), every p e~, and somep' = p'(P»P2>PI>P, 

II I~~ R dl(g)h lip 
<C1 inf {~ IUIIiR d

l

( g)h IlipI I ~ ~ ~ hI = h } 

<CIPI(d l , ... ,d L;PI) 

X inf {~ IUllih IIIP21 ~ I~ ~ h 1 = h } 

<CIC2 Pl(d 1 , .. ·,dL ;p')lIh lip" (3.1) 
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Now let I be from S(.J<fI, ... ,.J<f d and (h (II')IIeN a sequence 

with elements from ®LS(R4 ,C ...... ) converging to I; then 
;=1 I 

(3.1) implies that for every PEN> there exists ap' EN> such 
that for all n E N and g E .AI(e) we have 
IIR ...,' •.... ...,L(g)/lIp 

<p(.J<f I , ... ,.J<f L; p)lIh (II'llp' 

+ IIR ...,1.··· . ..., L( g)1 _ ® L R ""'( g)h (11'11 
;=1 p 

<P(.J<f" ... ,.J<fL;p)(ll/lIp' + III -h(II'lip') 

+ IIR ...,I ..... ...,L( g)(1 - h (n')lIp' (3.2) 

Taking the limit n-oo and observing the continuity of 
R ...,1 ..... ...,L(g) as an operator on S(.J<f1 , ... ,.J<f L) we obtain for 
allp E N°,g E.AI(e), I ES(.J<f1 , ... ,.J<f L),andsomep'(p) E N°: 

IIR ...,I ..... ...,L( g)/lIp <p(.J<f I , ... ,.J<f L;p)lI/lIp" (3.3) 

Now we use this uniform boundedness of R ...,I.··· . ...,L on the 
neighborhood .AI(e) of the unit element to derive the strong 
continuity of R ...,1.··· . ..., L( g) in g. We restrict ourselves to the 
case L = 2, since the general case then easily follows via 
complete induction from the equation S (.J<f I , ... ,.J<f d 
=S(.J<fI ' ... ,.J<fL_d®'S(R4 ,C .... J by a literal repetition of 

the arguments below. We first observe [Ref. 24, Sec. 41.4(6)] 
that for every IE S (.J<f 1'.J<f 2) there exist null sequences 
(h 7)neN in S(R4 ,C ...... ,), i = 1,2 and in addition a sequence 
(An)n e N of complex numbers with 'I.: = I IAn 1<1 such that 

n 

1= lim L Ajh {®hJ = limpn,. 
n-OOj=l n_oo 

(3.4) 

Let (ga)a e 1«, be an arbitrary net converging to the unit 
element of G. Then for every E> 0 and p E N° there exist a 
natural number N (E, p) and a P (E) E 1«) such that for all 
a EI«) withP< a and all n>N(E,p) we have ga E.AI(e), 
respectively, 

(3.5) 

This together with the inequality (3.3) implies that for any 
p E N° there exists a p' E N° such that for all P (E)<a and 
n>N(E,p): = max {N(P,p),N(P,p')] we have 

IIR ""1""'(ga)1 - Ilip 

<III - I(II'llp + IIR ""I""'(ga)(f - l(n')llp 

+ II(R ""I( gal ®R ...,,( g))/(n' - l(n'lIp 
II 

<E·(I +P(.J<f I ,.J<f2;P)) + L IAjl 
j=1 

X IIR ""'(ga)h {®R ""'(ga)h J - h {®h Jllp' (3.6) 

Each term in the last sum can be rewritten in the form 

IIR ""'(ga)h { ®R ...,,( ga)h J - h J ®h Jllp 

= IIR ""'(ga)h { - h (lIpllh Jllp 

+ IIR""'(ga)h{lIp IIR""'(ga)hJ -hJIlp' (3.7) 

Since R ""'( g) is strongly continuous in g it follows at once 
from the last two relations for every E> 0 and 
I ES(.J<fI,.J<f2 ) 
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limliR ""1""'( ga)1 - Ilip < E· (1 + p(.J<f" ... ,.J<f2 ;p)). 
a 

(3.8) 
This proves the continuity in g E G. 0 

Theorem 3.2: IT G is a symmetry group, then there exists 
a representation U of G on ~ QL with the following proper
ties. 

(1) For allg E G; .J<f l , ... ,.J<f L E I G ; LEN; and 'I' E ~ QL: 

U( g)'I'o = '1'0' 

U( g),p""I""'''''L(f)U( g)-I'I' = ,p...,I .... '...,L(R ...,I ..... ...,L( g) 1)'1'· 

(2) U (g) is strongly continuous in g; this means that for 
every fixed 'I' E ~ QL the map G-H, g_U ( g)'I' is strongly 
continuous. 

(3) (1J-coincidence). For all g E G, 'I' E ~ QL: 

1JU (g)'I' = 1JV (g)'I'. 
(4) (1J-isometry). For all g E G, 'I' E ~ QL: 

(U( g)'I',U( g)4» = (4),'1'). 

Proof: On ~ QL we define the linear operators U (g) in 
the following way: 

U (g)¢,o: = '1'0' 
(3.9) 

U( g),p...,I ..... ...,L(/)'I'o: = ,p...,I ..... ...,L(R ...,I ..... ...,L( g)f)'I'o, 

and on the remaining states by linear extension. Plainly U is 
a representation of G on ~ QL since all R ...,1.··· . ..., L are repre
sentations of G on S (.J<f I , ... ,.J<f d. The second part of state
ment (1) is a trivial consequence ofthe definition (3.9). 

In order to prove statement (2) it suffices to prove the 
continuity ing on the states of the form ,p...,I ..... ...,L(/)'I'o. For 
them it follows from the definition (3.9) by means of Eq. 
(2.19) 

II U( g),p...,I •.... ..., L(/)'I'o - f/S...,I ..... ..., L(/)'I'oll.i--

= ('I'o,f/S...,t ....• ...,f('G'L [R ...,I ..... ...,L( g)1 - I]) 

X,p...,I ..... ...,L(R ...,1 ....• ...,L(g)1 - 1)'1'0) 

= ('I'o,,p...,t ..... ...,f...,, ..... ..., L( ['G' L (R ...,1.··· . ..., L( g)1 - I)] 

® [R ...,1 ..... ...,L(g)1 - 1])'1'0)' (3.10) 

Since the matrix element in the last row is a continuous lin
ear functional on S(.J<ft, ... ,.J<f d, it is of finite order. Hence 
there exist a smallest number Po E N> and a positive real 
number K (.J<f I , ... ,.J<f L) independent of g such that 

11U( g),p...,I •.... ...,L(f)'I'o - ,p...,' ..... ...,L(/)'I'oll~ 

<K (.J<f I , ... ,.J<f L)l1 'G'L [R ...,1.··· . ..., L( gll - I] IlPo 

X IIR ...,1 ..... ...,L(g)1 - Illpo' (3.11) 

This inequality, the isometry of 'G'L' and Theorem 3.1 imply 
the continuity of U (g) in g. From Definitions 2.1 (a) and 
2.1 (c) and Eqs. (3.9), the 1J coincidence (3) follows trivially 
for all 'I' E ~ n C ~ QL' Let I be from S (.J<f I , ... ,.J<f L) and 
('I.j= I ®f= I h P')neN a sequence from ®f= IS(R.,C ...... ,) con
verging to I; then we deduce by means of Theorem 3.1 and 
the 1J isometry of the original representation V for all 
eEDG;J~QL 
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(e,7]V( g~A"I ..... A"L(/)'I'o) 

= lim(V(g)-le,7]t/>A"I ..... A"L(± ~L h\1I)'I'o) 
n-....oo .]=1,=1 

= lim (e,7] V( g) ± IT t/>A", (h \11)'1'0) 
......... J=II=I 

= lim (e,7]t/>A"I ..... A"L(± ~L R A",( g)h ~j))'I'O) n_.. .]=1.=1 

= (e,7]t/>A"'·····A"L(R A", ..... A"L(g)/)'I'o). (3.12) 

In view ofEq. (3.9) this proves (3) for all 'I' e PfiQL ' Finally, 
the proof of the 7] isometry for U is simply an application of 
(4). Take '1',<1> e Pfi QL and apply the 7] coincidence twice: 

(U( g)'I',7]U( g)<I» 

= (U( g)'I',7]V( g)<I» = (7]U( g)'I', V( g)<I» 

= (7] V( g)'I', V( g)<I» = ('1',<1». D 

It remains to prove the physical equivalence of the re
presentations V and U. At a first glance (but only at a first 
one) it seems to be a trivial consequence of the properties (3) 
and (4) of Theorem 3.2. Unfortunately, due to the unboun
dedness of both representations there are some hidden in
trinsic problems concerning domains and their invariance 
which force our steps right into the boring details and re
quire an additional assumption on 7]. On the other hand, the 
theorem below has some considerable interest of its own. In 
the following B denotes the completion of a linear subspace 
B in the norm of K and A the completion of a linear sub
space A of a factor space, for instance HI Ho, in the natural 
scalar product (['I'],[<I>])H: = ('1',<1». 

Corollary 3.2: If the metric operator satisfies the condi
tions ker 7]nPfin c;;.Ho and V(g)(PfinnH)c;;.PfinnH, then 
Pfi QL n H is an invariant subspace for the representation U of 
Theorem 3.2. 

Proof: If <I> is from Pfi n c;;.H, then 
V ( g)<I> e Pfi n n H, U ( g)<I> e Pfi n, and in view of the 7]-coin
cidence, 

U(g)<I> = V(S)<I> + 'I'(g,<I», 

with '1'( g,<I» e ker 7]nPfi n' Since ker 7]nPfi n c;;.Ho, this 
means U(g)(PfinnH)c;;.PfinnH. 

By means of Theorem 3.2( 1), the continuity of the repre
sentations R A", ..... ~L, and the continuity of the matrix ele
ments of the field operators it follows in the weak topology of 
Kforanysequence (I n)neN converginginS(dl , ... ,d L) to 

I 
w-lim U(g)t/>A",·····~L(I n)'I'o = U(g)t/>A",·····A"L(/)'I'o. 
n_ .. 

(3.13) 

By assumption A.IV Pfi n n H is dense in Pfi QL n H. Hence by 
definition of Pfi QL any 'I' e (Pfi QL n H) \ { 'l'o} is the limit of a 
sequence ('I' n)n e N from Pfi n nH of the form 

(3.14) 

·th (~n N Ilk)) WI ~k=1 ®j=1 iJ neN some Cauchy sequence in 
S (d II , ... ,d i)' 
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From the last two equations we obtain 

w-lim U(g)'I'n = U(g)'I'. 
n_ .. 

Since U (g)'I' n e Pfi n n H for all n e N and H is weakly com
plete, it follows U ( g)'I' e Pfi QL n H. D 

Theorem 3.3: Let EI,BI=EhH, respectively, 
Bh = EinHO' (i= 1,2) be linear subspaces of K with 
B In B 2 dense in H, G a group, and 
Wi:G-Aut EI, g-W;( g) 7]-isometric representations of G 
on E I. Furthermore, asume W;( g)B / c;;.B I and 7] coincidence 
onBlnB2 

Vge G, "1'1' eB InB2, 

7]WI(g)'I' = 7]W2(g)'I'· 

Then we have (a) -B-i/~B-:-j is unitary equivalent to -Kph = H IHo; this means there exists an unitary mapping .-.-. 
PI:B'IB~-Kph(i = 1,2); and (P) WI and W2 generate one 
and the same unitary representation 7I'":G_Aut K h of G 
on the physical Hilbert space. P 

Plainly, if we identify (Et,WI) with (PfiQL,U) and 
(E2,W2) with (PfinnH,V t (PfinnH)) we get the desired 
physical equivalence provided the condition of Corollary 3.2 
holds for 7], i.e., if (G, V) is a strict global symmetry. 

Proof: (a) Let ['1']: = 'I' +HoeH IHo and [<1>]; 
= <I> + B h e BII B h denote the equivalence classes generat

ed by 'I' e H, respectively, <I> e B i. Then the ordered pair 
{BiIBh;([ . ];o[ . ]i)B,: = (.,.)} is like {H IHo; 
([ • ],[ • ])H: = ( .,.)} a pre-Hilbert space. It has been 
shown by Mintchev et al. (Ref. 25, Lemma 1 and Theorem 2) 
that there exists a linear, injective, and isometric mapping 

p/:BIIBh-H IHo, ['I']i-Pi(['I'U = ['1'], (3.15) 

with the important property that the range of Pi is dense in 

HI Ho if B i = H. Therefore Pi has a unique extension to a 

unitary mapping Pi from Bt;B~ onto k liJo = K h' (No
tice that in the proofs of Lemma 1 and Theorem 2 it:' Ref. 25 
the nondegeneracy of 7] has not been used.) 

( P) Since WI :G_Aut E i is an 7]-isometric representa
tion of G, the linear mapping 

Wi(g):BiIBh_BiIBh, ['I'];-[Wi(g)'I']i (3.16) 

defines for any g eGan isometric automorphism of the pre
Hilbert space {BiIBh;([ . L[ . U B,}, which plainly pos
sesses a unique unitary extention Wi ( g) onto B il Ii h. More
over, the mapping WI :G-Aut A 'I B~, g-W; ( g) is a unitary 
representation of G. If Pi is the unitary mapping of part (a), 
then for any g e G the linear mapping 

7I'"i(g):£"'ph-K ph' 

['I']-(Pi O Wi( g)opi- 1)(['1']) = Pi(Wi( glol- 1(['1'])) 
(3.17) 

defines a unitary operator on Kph with 7I'"1(gt ·g2) 
= 7I'"1(gl) 7I'"1(g2)' Hence 7I'"1:G-AutKph ,g-7I'"1(g) is 
a unitary representation of G. According to part (a) the set 
( PI([<I>])/) = [<1>] e Kph 1<1> eB InB2} is dense in Kph . On 
the other hand, we obtain from (3.16), (3.17), and a unitarity 
of PI via a straightforward calculation for all ['1'] e K ph , 
<I> eB InB2, and ie {I,2} 
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(['I1],Y/( g)[~])H = (p;(['I11t),p/(W;( g)p;-I([~])))H 

= (['I1L,W/( g)p;-I([~]))BI 
= (['I1];.W;(g)[~])BI 

= (['11];.[ W;(g)~];)BI 

= ('I1,l1W;(g)~)K' 

Therefore the 11 coincidence on B In B 2 implies 
YI(g) = Y 2(g). D 

After we have established the physical equivalence of 
the representations Vand U we will drop the former and use 
exclusively the latter one in the remainder of this note. By 
virtue of Theorems 3.1 and 3.2 it is not difficult to construct 
the differential of U. However, we will postpone it until Sec. 
V. First we will investigate the existence of the closure U of U 
and the connection of the 11 isometry and the substitution 
rules with the unitarity of U in:Jr which we have mentioned 
in comment (iv) to Definition 2.1. The reader who is mainly 
interested in the confinement mechanism may directly pre
cede to Sees. VII and VIII. 

IV. THE CLOSURE OF U AND ITS UNITARITY IN :;r 
With one exception all results obtained in the present 

section are true only under the additional assumption that 
the vacuum '110 is an eigenvector of the metric operator 11 

11'110 = a '11 0' aelR +, (4.1) 

and they are immediate consequences of the following 
lemma. 

Lemma 4.1: Let G be a symmetry group and U the 11-
isometric representation of Theorem 3.2. Assume '110 is an 
eigenvector of 11. Then we have for all g, g'eG (i) f!}) QL 
!;D(U(g)*) and U(g)·f!})QL = f!})QL; (ii) U(g)· 
X U(g')·'11 = U(g . g').'I1, 'I1ef!}) QL; and(iii)foralid' I""'d' L 
e IG;fe S(d' I'''''d' d; LeN; and 'I1ef!}) QL: 

U(g)·¢ ..... ,····· ..... LIf)U(g-I).'I1 

= ¢ ..... ' ......... L(~ i: lR ..... ! .......... '/'(g-l)~ Lf)'I1. 

Proof: For an arbitrary 'I1ef!}) QL it follows from Eq. 
(2.19) 

(U(g)'I1,¢ ..... , .......... LIf)'I1o) = (¢ ..... ! .......... '/'(~ Lf)U(g)'I1,'I1o)· 

(4.2) 

By means of Eq. (4.1), the invariance of '110 under U (g), the 11 
isometry of U (g), the substitution rule in Theorem 3.2( 1), and 
last but not least Eq. (2.19) we easily get from (4.2) 

(U (g)'I1,¢.a', ..... .a'LIf)'I1o) 

= a-I(¢.a'! .... ,A '/'(~ L f)u(g)'I1,l1 U (g)'I1o) 

= a-I( U(g)-I¢.a'! ..... .a''/'(~ L f)U(g)'I1,11'1101 

= (¢.a'!·····.a''/'(R .a'! ..... .a''/'(g_I)~ Lf)'I1,'I1o) 

= ('I1,¢.a', ..... .a'L(~ L-IR .a'! ..... .a''/'(g_I)~ Lf)'I1o). (4.3) 

This proves (ii) since ~ L' ~ L I, andR .a'! ..... .a''/'(g_I) are anti
linear, respectively, linear bijections and every element of 
f!}) QL is a linear combination of states of the form 
¢.a' , ..... .a' L(f)'I1 o. Moreover the action of U (g). reads explicitly 
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U (g).¢ ..... , ..... .a' LIf)'I1 0 

= ¢.a', .......... L(~ i: lR ..... t .......... '/'(g-I)~ Lf)'I1o. (4.4) 

Now (ii) is a trivial consequence ofEq. (4.4) since R ..... ! .......... '/' is 
a representation of G (Theorem 3.1). Finally the proof of (iii) 
reduces by virtue of the Eqs. (2.18) and (2.19) and the tensor 
product structure of R ..... , .......... L (Theorem 3.1) to a simple cal-
culation 
U(g)·¢.a',·····.a'L(f)U(g-I).¢B, ..... BN(h )'110 

= U(g).¢ ..... ,····· ..... vB, ..... BN(f® [~N 1 

XR B~ .... ,Br(g)~ Nh ] )'110 

_ "' ..... , ..... BN(07 - I R B~ .... ,B'/' . .a't .......... '/'(g-I)~ 
-~ ~L+N L+N 

x(f ® [~N IR B~ .... ,B'/'(g)~ Nh ] ))'110 

= ¢ ..... , ..... BN(~ i:';'NR B~ ..... B'/' ...... ! ..... .a''/'(g_I) 

X [(R B~ .... ,B'/'(g)~ Nh) ® ~ Lf] ))'110 

= ¢.a'" ... ,BN(~ i:';'N [~Nh ®(R ..... !, ......... '/'(g-I)~ Lf)] )'110 

= ¢ ..... ' ..... .a'L(~ i: IR A! .......... '/'(g_I)~ Lf)¢B, ..... BN(h )'110' 

(4.5) 
D 

With this preparation it is quite trivial to show that every 
U(g), geG is a closable operator. 

Theorem 4.1: Let G be a symmetry group and U the 11-
isometric representation of Theorem 3.2. If either '110 is an 
eigenvector of 11 or 11 has an inverse (or both are valid), then 
U (g) is a closable operator in :Jr for every geG. 

Proof: Case 1: 1/10 is an eigenvector of 11: Then Theorem 
4.1 is a trivial consequence of Lemma 4.1, since the domain 
of U (g). contains the dense set of quasilocal states f!}) QL' 

Case 2: 11 has an inverse: From the 11 isometry of U (g) we 
deduce that D(u(g)·);;;211f!})QL' But if 11 is invertible then 
11f!}) QL is dense in:Jr, since f!}) QL itself has this property. For 
if 11 f!}) QL is not dense in :Jr, then there exists a vector ~ =1= tJ 
such that for all 'I1ef!}) QL we have ('11,114» = tJ and thus 
114> = tJ in contradiction to the assumption that 11 has an 
inverse. D 

In order to formulate and prove the announced neces
sary and sufficient condition for the unitarity of the closure 

U (g) [which implies for instance the commutativity of U (g) 
and 11] we need a further lemma. 

Lemma 4.2: Let K (d') denote the closed linear subspace 
of S (lR4, C ~ ) defined by 

K (d'): = {heS (R4'C~ )IV8e:Jr, V'I1ef!}) QL' 

(8,¢ ..... (h )'11) = OJ. 
Then K (d') has the following properties: (a) K (d') is invar
iant under the conjugation ~ I: h~~ Ih = h; (b) K(d') 
= K (d'.); and (c) If D (U (g).) is dense in:Jr, then K (d') is 
invariant under both R ..... (g) and R ...... (g). 

An example of a nontrivial space K (r) is provided by a 
conserved currentj,...r If). Then all elements of the form (a °h, 
a Ih,a 2h,a 3h ) with h arbitraryfromS (R4, ClbelongtoK (r). 

Proof: Let hI and h2 be the real, respectively, the imagi
nary part of an arbitrary heK(d') 
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11<,6~(hl + ih2)'IIII~ = 11<,6~(hl)'IIII~ + 11<,6~(h2)'IIII~ 
+ i[(<,6~(hl)'II,<,6~(h2)'II) 
- (<,6~(h2)'II,<,6~(hl)'II)] = O. (4.6) 

This equation plainly implies (a). However, (b) then follows 
direct1yfrom<,6~(ii)* = <,6~·(h ).Finally,forgeD (U(g)*)and 
'IIe..@QL we have (e,<,6~(R (g)h )'11) = (u(g)*e, <,6~(h) 
X U(g-I)'II). ThusK (.r#') is invariant under R ~(g)andcorre
spondingly K (.r#'*) under R ~.(g). In combination with (b) 
this proves (c). 0 

Theorem 4.2: [Unitarity of U (g)]: Let G be a symmetry 
group and U the 7]-isometric representation of Theorem 3.2. 
Assume that '110 is an eigenvector of the metric operator 7]. 

(i) The closure U (g) is an isometric operator on K if 
and only if for all .r#' e I G andleS (R4 , C;, ) 

(4.7) 

(ii) U: G_Aut K, g- U (g) is a strongly continuous un
itary representation if and only if the relation (4.7) holds for 
allgeG. 

For the proper orthochronous Poincare group P 1+ 

(R ~(a,alfr(x) = r M~(a,ar ./V(A(a-l)(x - a)), 
VETp,+ (~) 

the condition (4.7) says that the matrixM~'(a,a) according 
to which the adjoint of f/JI'.~ transforms has to be essentially 
equal to the complex conjugate of the matrix M~(a,a) with 
which the field f/JI'.~ itself transforms. 

It should be pointed out that the 7] isometry is a vital 
assumption for the proof that (4.7) is a sufficient condition. 

Proof: (i) (1 I::::}: Let 'II, <,6 be from ..@ QL' The isometry of 
U(g) and Theorem 3.2 imply 

('II,U (g)<,6~"(f)U (g-I)cf» 

= (U(g)~~if)U(g-I)'II,cf» 

= (~~(R (glf)'II,cf» = ('II,~~.( R ~(glf)cf», 

and therefore 

(2)<=: Consider 'IIe..@'QL and cf> = ~~I""'~LIf)'IIo. Then 
Theorem 3.2( 1) and Lemma 4.1 (iii) imply 

( U (g)'II , U (g)<,6 ~ I.···.~ LIf)'II 0) 

= ('II,U(g)*~~I'''''~L(R ~1""'~L(glf)'IIo) 

= ('II,~~I""'~L(1f L 1 R ~r ..... ~r(g-I) 

X 1f LR ~ I.···.~ L(glf)'II 0)' (4.8) 

Let(l:j=1 ®L h\Jl)neN beasequencefrom ®f=1 S(R4,C;,,) 
/=1 

converging to f Then from Eqs. (4.8) and (2.18), the contin-

uity of the matrix elements of <,6~ I.···.~ LIf), the tensor product 

structure and continuity of R ~1""'~L(g) (Theorem 3.1), and 
last but not least from the condition (4.7) and Lemma 4.2 we 
obtain 
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(U 18')'11, U (g)~ ~ I ... ·.~ LIf)'II 0) 

= lim ('II,~~I'''''~L(1f L IR ~r ... A'I'(g-I) 
n_oo 

X itl lil R ~i(g)h \Jl)'II 0) 
= ~~ ('II'itl JX ~~'(R ~r(g-I) R ~I(g)h \Jl)'IIo) 

= lim ('II, ± IT ~~i(h \)1)'110) = ('II,~~I·"··~V)'IIo). 
rI_oo j=li=l 

Thus U (g) is isometric on the dense subspace..@' QL and there

fore its closure U (g) is an isometric operator on K. 
(ii) If condition (4.7) holds for all geG the U (g) and 

U(g)-I = U(g-l) are both isometric operators on K and 
therefore unitary. 

It remains to extend the strong continuity in g from the 

operators U(g) [Theorem 3.2(2)] to their closures U(g). In 
view of the unitarity of U (g) it suffices to prove the weak 
continuity ing. Let (ga )aeD«) be a net which converges in the 
topology of G to the unit element e. Then once again the 

unitarity of U (g) implies that for every 'IIeK the net 
(u(ga)'II)ae1«) is bounded (in the norm) by II'IIIIJI"" There
fore according to Lemma 1.31 in Ref. 26, Chap. III, it suf-

fices to prove lim(cf>, U(ga)'II) = (cf>,'II) for every 'IIeK and 
a 

all cf> from a fundamental subset of K. The set of all vectors 

ofthe form ~ ~ I ... ·.~ LIf)'ll 0 represents such a fundamental set. 
Finally, by means of Theorem 3.2(1), Theorem 3.1, and the 
continuity of the matrix elements of the field operators it 
follows for all 'IIeK 

lim (~~I'''''~LIf)'IIo, U(ga)'II) 
a 

= lim (~~I'''''~L(R ~1'''''~L(g; V)'IIo,'II) 
a 

V. THE DIFFERENTIAL OF AN UNBOUNDED 
REPRESENTATION U 

o 

In the present and the following section we assume the 
symmetry group G to be a Lie group in its strictest sense 
(analytic manifold) and moreover countable at infinity (a 
countable union of compact subspaces). The main burden in 
the construction of the differential au of an unbounded rep
resentation U (this means an 7]-skew-symmetric representa
tion au of the Lie algebra g of G induced by U) has already 
been unloaded in Sec. III. Since the differentiation of contin
uous representations on countably normed spaces is a well
understood operation (Ref. 9, Chaps. 4.1-4.4), the explicit 
connection between the unbounded representation U in K 
and the continuous representations R ~ I ... ·.~ L on the counta

bly normed spaces S (.r#' I""'.r#' Ll established in Sec. III prac
tically dictates the promising path of argumentation. All we 
have to do is to introduce some suitable definitions, collect 
the relevant results about continuous representations on 
countably normed spaces from the literature,9 and transmit 
them by means of Theorems 3.1 and 3.2 to the pair (U,K). 
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If 0 is an open set of lRn then ~ 00 (O;S (si' I""'si' d) 
denotes the vector space of all infinitely often differentiable 
functions 

(5.1) 

such that for every relatively compact open set {} ~ 0 and 
every peN°, qeN~ the supremum 

(5.2) 

exists. Hence for every fixed yeO the function h together 
with all its derivatives in the first n variablesYi (i = 1, ... ,n) is 
an element from S (si' 1""'si' L)' More general, if G is a Lie 
group, a function h:G XlR4L ---+ ® 7= I C:." is said to be from 
~oo (G;S(si'I, ... ,si'L)) iffor any geG and a local chart (Oa, 
Va) of a maximal atlas with geO a the function 

hov;; I: Va [Oa] XlR4L---+®LC:"; (y,x}---+h (V;; l(y),x) 
;=1 ' 

(5.3) 

is an element from 1fOO (Va [Oa ];S(si'I, ... ,si'L))' Finally, an 
elementfeS(si'I, ... ,si'd is called a differentiable or ~oo 
vector for R ,W , ..... ,W L if the mapping 

fR: G---+S(si'I, .. ·,si'd, g---+fRIg) = R ,W, ..... ,WLlglf (5.4) 

is from 1fOO (G;S(si'I, ... ,si'd). Thesetofall1fOO vectors for 
R ,W, ..... ,W L is denoted by uOO (si' 1""'si' L): 

UOO(si'I,· .. ,si'L) 

: = {feS(si'I, ... si'dlfRe1fOO(G;S(si'I, ... ,si'L))}' (5.5) 

If g denotes the Lie algebra of G, f1 the universal enveloping 
algebra of its complexification gc = g + ig, and exp the expo
nential mapping from g into G, then the following facts are 
known about the differentiation of a continuous representa
tion R ,W,.···.,WL (Theorem 3.1) on a countable normed space 

S(si'iJ· .. ,si'd· 
(I) The set uOO (si' I""'si' L) of 1f 00 vectors is a dense lin

ear subspace of S (si' I""'si' d and invariant under the appli
cation of R ,W, ..... ,W LIg),geG. 

(II) For every Xeg andfeuoo (si' I""'si' L) the limit 

aR ,W, ..... ,WL(Xlf: = lim t -I [R ,W, ..... ,WL(exp tXlf - f) 
,-+0 

exists in the topology of S(si' I""'si' L) and defines a linear 
operator from uOO (si'I, ... ,si'L) into UOO(si'I, ... ,si'L)' 

(III) The differential 

aR,W······,WL: g---+EnduOO(si'I, ... ,si'd, X~R'w"""""'L(X) 

is a representation of g on uOO(si' iJ ... ,si' d. It has a unique 
extension to a representation a[#R ....... ··· ...... L of f1 on 
uOO (si'I, ... ,si'd. 

(IV) For all heuOO (BI, ... ,BN),feuoo (si' I""'si' d, and Xeg 
we have 

aR ,W, •.... ,WL,oB, ..... BN(X)(f®h) 

The first three statements can be found in Ref. 9, pp. 252-
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254. The last one is a direct consequence of the inclusion 

uOO(si' I""'si' L) ® uOO(BI,· .. ,BN)CUOO(si' I>''''si' L,BI,. .. ,BN)' 

the statement (II), and the following identity which is easily 
obtained from the tensor product structure of R ..... , ..... BNIg): 

t -I [R ..... , .......... L,oB, ..... BN(exp tX)(f® h) - (f® h)] 

- [(aR ,W •..... ,WL(Xlf)®h + f®(aR B, ..... BN(X)h)] 

= (t -I [R ,W, ..... ,WL(exp tXlf - f) 

_ aR ,W •..... ,W L(Xlf) ® h 

+ f® (t -1 [R B, .... ,BN(exp tX)h - h) 

- aR B •....• BN(X)h) 

+ (t -1 [R ,W •..... ,WL(exp tXlf - f]) 

® (R B •..... BN(exp tX)h - h). (5.7) 

Let ~ 00 (U) denote the dense linear subspace obtained 
from ~ QL by restricting the functionsfin Eq. (2.20) to the 
dense subspace uOO(si' I""'si' L)ofS(si' I""'si' L)' Explicitly it 
is given by the linear hull 

~oo(U) = LH{I,6,W······,WL(f)\f1olfeuoo(si'iJ ... ,si'L; 

si'1, ... ,si'Le/G; LeN}. (5.8) 

With these preparations it is not hard to demonstrate the 
existence of (what we call in possible misuse of the phrase) 
the differential au of U. 

Theorem 5.1: Let U and R ,W ........... L; si' I""'si' L e I G; LeN 
be the representations of a symmetry (Lie) group G described 
in Theorem 3.2, respectively, Theorem 3.1. Then for all Xeg 
and \f1e~ 00 (U) the strong limit (teR) 

aU(X)\f1 = s-lim t -I [U(exp tX)\f1 - \f1] (5.9) 
,-+0 

exists in JY and defines an unbounded linear operator from 
~ oo( U) to ~ oo( U) with the following properties. 

(i) For everyfeuOO(si'I, ... ,si'[);si'I, ... ,si'LeIG; LeN, re
spectively, \f1e~ oo( U) the operator au (X) satisfies the equa
tions 

aU(X)\f1o = tl (tl is the zero vectorin JYj, (5.10) 

[aU(X),I,6,W······,WL(f)] _ \f1 

(5.11) 

(ii) For every Xeg, aU(X) is ll-skew symmetric; this 
means 

"\f1,ct>e~OO(U), (aU(X)\f1,ct» = - (\f1,aU(X)ct». 
(5.12) 

(iii) The mapping au: g---+End ~oo(U), X~U(X) is a 
representation of the Lie algebra g on ~ oo(U) which has a 
unique extension to a representation a[# U of the universal 
enveloping algebra f1 of gc on ~ 00 (U). 

Proot The existence of the limit (5.9) for \f1 = \f1 ° and Eq. 
(5.10) are trivial consequences of the invariance of\f1o under 
U. Hence in order to prove the existence of the operator 
aU(X) and at the same time Eq. (5.11) for \f1 =F \f1o it suffices to 
show that for all finite linear combinations of the states 
1,6 ................ L(f)\f1o, which we abbreviate by (1c1,6)"'(f)\f1o, thefol-
lowing limit exists: 
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lim lit -I[ U exp tX)(lc;)"'(f)qto - (/c;)""'(f)qto] 
1-+0 

- (/c;)"" '(aR "'(X)f)qtoIIK = 0, (5.13) 

Due to Theorem 3.2(2) this is certainly true, if for all.feuoo 
(dl, ... ,dL); dl, ... ,dLeIG ; LeN we can show 

(5.14) 

Since IW"f, ..... ""'L(h )qtoll~ is a continuous linear functional 
on S(d!, ... ,dT)®S(dl> ... ,dL) there exists a smallest 
number peNo and a positive real number p = p(d I, .. ·,d L) 
such that 

11;""'I ..... ""'L(t -I [R ""'1 ..... ""'L(exp tX)f - f] 

- aR ""'1 ..... ""'L(X)f)qtoll~ 
<pI It -I [R ""'1 ..... ""'L(exp tX)f - f] 

-aR""' ..... ·""'L(X)fllp (5.15) 

X II1$' dt -I [R ""'1 ..... ""'L(exp tX)f - f] 

- aR ""'1 ..... ""'L(X)f)llp. 

Here 1$' L is the isometric bijection defined at the end of Sec. 
II. Now Eq. (5.14) follows from the inequality (5.15), the 
continuity of 1$' L' and statement (II) above. By means of 
statement (IV) and 

;""', ..... ""'LoB, ..... BN(f® h )'1'0 = ;.d, ..... .dL(f)¢/,· .. ··BN(h )'1'0' 

Eq. (5.11) can for any qte..@'oo(U)betraced back to that for 
'I' = '1'0' Furthermore (iii) is a simple consequence of (i) and 
statement (III). Finally, the TJ isometry of U leads directly to 
the TJ-skew symmetry of aU(X). Indeed for all qt,<I>e..@'oo(U) 
we deduce from Eq. (5.9) and the continuity of TJ 

(aU (X )<1>, '1') 

= lim t -I [(U(exp tX)<I>,TJqt) - (<I>,TJqt)] 
1-00 

= lim t -I [(<I>,TJU(exp t( -X))qt) - (<I>,TJqt)] 
1-+0 

= (<I>,aU( - X)qt) = - (<I>,aU(X)qt) 0 

If U is a continuous representation on 71" then it is well 
known 10.27 that the operators a U (X ) are closable. In the pres
ent case of noncontinuous representations U it turns out that 
the same restrictions of the metric operator TJ (Le., either TJ 
invertible or '1'0 an eigenvector ofTJ; see Theorem 4.1) which 
implied the operators U (g) to be closable also assure the exis-

tence of the closure aU(X) of aU(X) for every Xeg. 
Theorem 5.2: Let Ube the representation of a symmetry 

(Lie) group G described in Theorem 3.2 and au its differen
tial. Assume that either '1'0 is an eigenvector of TJ or TJ is 
invertible (or both). Then aU(X) is closable for every Xeg. 

Proo/:SincethedomainD(aU(X)) = ..@'oo(U)isdensein 
71", the adjoint operator [aU(X)]* exists. It has to be shown 
that its domainD ([aU (X )]*) is dense in K. The TJ-skew sym
metry of a U (X) implies for all qte..@' 00 ( U ) 

[aU(X)]*TJqt = - TJaU(X)qt, (5.16) 

and via Theorem 5.1(i) for the vacuum 
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[aU(X)]*TJqto = d. (5.17) 

Case 1: TJ invertible: By literally the same arguments as 
in the proof of Theorem 4.1 (case 2) it follows that ..@' 00 (U) 
dense in 71" implies TJ..@' 00 (U) dense in K. 

Case 2: TJqt 0 = aqt 0' aeR +: Then Eq. (5.17) says that '1'0 
is in the domain of [aU (X)]* and moreover 

[aU(X)]*qto = d. (5.18) 

Consider qte..@'oo(U) andfeuoo (d!, ... ,dT). Then 1$' i 1 f is 
fromS(d I, ... ,d L)and we obtain by means of Theorem 5.1(i) 
and Eq. (5.18) 

(aU(X)qt,;.d I 
..... ""'L(l$' L-Y)qtO) 

= - (;""'t ..... ""'T(aR ""'t ..... ""'T(X)f)qt,qto) 

+ (aU(X);.dt ..... ""'T(f)qt,qto) 

= - (qt,;.d" .... ""'L(l$' i 1 aR ""'t ..... .dT(X)f)qto). (5.19) 

Therefore D ([aU(X)]*) contains the linear space 

V: = LH{;""',·· .. ·.dL (l$' i Y)qtoifeuOO(d!, ... ,dT); 

dl, ... ,dLeIG ; LeN}. (5.20) 

Sinceuoo(d!, ... ,dT) is denseinS(d!, ... ,dT) and 1$' i 1 isa 
antilinear isometric bijection of this space onto 
S (d I, ... ,d d, the linear space 1$' i 1 u oo (d! , ... ,dT) is 
dense inS(d l , ... , dd. But then Vis dense in ..@'oo(U)and 
therefore in K. 0 

VI. INFINITESIMAL CHARACTERIZATION OF ~ 00 

VECTORS 

For the construction of the differential au in 71" the 
subspaces uoo(d I, ... ,d L) of ~ 00 vectors for the continuous 
representations R"'" I ... ·."'" L on the test function spaces 
S (d I, ... ,d d and the corresponding differentials aR "'" I ... • • .d L 

played a fundamental part. Even more, the results of Sec. III 
represent a first important step for the integration of a repre
sentation of a Lie algebra to an unbounded representation of 
the universal covering of a corresponding Lie group in K. 
By means of Theorems 3.1 and 3.2 this problem is complete
ly reduced to the construction of a bounded representation 
in the countably normed spaces S (d l, ... ,d L) and hence to 
the generalization of the well-known Banach space re
sultS9-18 to countably normed spaces. 

From the experience with the Banach space representa
tions it is obvious that a characterization of the subspaces u oo 

(d I, ... ,d d of ~ 00 vectors in terms of the differentials 
aR ""'I ... ·."'" L will be an unavoidable ingredient for the integra-
tion. Our aim in this section is to derive such an infinitesimal 
characterization. The remaining steps of the integration will 
be presented in a separate note. 

Since the indices d I, ... ,d L remain fixed throughout 
this section we replace them by dots. Moreover, the notions 
of a closed or closable operator T, of the closure T, of a T
convergent sequence, and of the graph of T in a countably 
normed space are literally taken over from the correspond
ing definitions in Banach spaces (Ref. 26. Chap. III, Sec. 5) 
by replacing the norm of the latter by the countable set of 
norms of the former. For instance, consider the direct pro-
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duct S ( ... ) X S ( ... ) consisting of all ordered pairs {f;h } with 
f,hES ( ••• ). By the standard definition of the linear operations 
it becomes a vector space over C. Futhermore it is a count
able normed space (separable, metrizable, complete, etc.; see 
Ref. 20, Chap. 1.3) if the countable set of pairwise compatible 
norms is defined by II {f;h } lip: = (WI I; + Ilh I 1;)1/2, peN'. 
Now the graph of an operator T with domain D (T) is the 
subset 

Y(T): = {{f;Tf} lfeD (T)}. (6.1) 

Exactly as in the case ofa Banach space, Tis closed ifY(T) is 
a closed linear subspace of S ( ... ) X S ( ••. ) and it is closable if 

the closure Y(T) [of the set Y(T)] is a graph. Finally if Tis 

closable then Y(f) = Y(T). 
For fixed Xeg the mapping 

px·: R_AutS(···), t-px·(t)=R···(exptX) (6.2) 

generates a strongly continuous one-parameter group of op
erators in S(···) whose infinitesimal generator dR ···(X) is 
defined by 

D(dR ···(X)) 

: = {feS(·· ·)Ilim t -I [R ···(exp tX)f - f]exists} , 
t-+O 

(6.3) 

dR·· ·(Xl(: = lim t -I [R·· ·(exp tXl! - f], 
t-+O 

feD (dR·· ·(X)). (6.4) 

From these definitions and the statement (II) in Sec. V it 
follows at once that 

dR ... (X) ;;;2aR .. ·(X) 

and therefore 

VneN, Xeg, 

u<X> ( •• • )k,D (dR ···(X)"). 

(6.5) 

(6.6) 

In order to sharpen these relations we will need the following 
lemma which represents the bridge to the results of Good
man II for Banach spaces. 

Lemma 6.1: Let Sp ( ••• ) (peN') denote the completion of 
S ( ... ) with respect to the norm II· . ·llp' R ~ .. (g) the unique 
continuous extension of R ... (g) to Sp( ••• ) and u;( .. . ), 
aR~· ·(X), respectively, dR ~··(X) the corresponding space of 
Crf <X> vectors, the dift"erential of R~··, respectively, the infini
tesimal generator of R ~. '(exp tX), teR. Then the following 
statements hold for all peN': 

(a) R ~.~ 1 (g) = R~· .(g) t Sp+ d,··) (t -restriction), 

(b) u;+ 1 ( •• • )k,U;( .. • ), 

(c) aR ~.~ 1 (X) = aR~· ·(X) t u;+ 1 ( ••• ), 

(d) dR ~.~ 1 (X)k,dR ~··(X), 

(e) u<X>( • •• ) = n u:( • •• ), 
"eN" 

(f) dR ~··(X) = aR ~··(Xr, where T~ denotes the clo
sure of the operator Tp in the Banach space Sp ( ••• ). 

Proof: By definition we have for all peN' 
sp+ d· . . )k,Sp( . •• ), (6.7) 
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and due to the statement (S.I) in Sec. II, respectively, Eq. 
(2.15) 

S(···) = n S,,(·· .). 
neN" 

(6.8) 

Then statement (c) obviously follows from (a) and (b). State
ment (d) is a direct consequence of (a), the definition [analo
gous to (6.3) and (6.4)] of the infinitesimal generator 
dR~· ·(X), and the pairwise compatibility of the norms 
II· . ·llp;peN'· Next observe that u;( . .. ) is dense in the Ban
ach space Sp ( ••• ) and stable with respect to R ~ .. (exp tX), teR 
[Banach space analog of statement (I) in Sec. V]. But then ( f) 
follows from a result of Poulsen (Ref. 27, Corollary 1.3), 
since the one-parameter group ({R ~··(exp tX)lteR},.) is 
strongly continuous and u;( . . . )k,D (dR~· ·(X)). 

It remains to prove (a), (b), and (e). We begin with the 
prooffor (a). Let hESp + d···) and (h")"eN be an arbitrary 
sequence with h"ES ( ••• ) which converges in Sp + 1 ( ••• ) to h. 
Since the norms are nondecreasing ( Ilf lip <: Ilf lip + 1 ) this se
quence also converges in Sp( ••• ) to h. However, from the 
validity of 

lim IIR ic· ·(g)h - R·· ·(g)h" Ilk = 0 (6.9) 
,,-oc 

for both k = p and k = p + 1 it follows that for every E > 0 
there exists an N (E)eN such that for all n >N (E) we have 

IIR ~.~ 1 (g)h - R ~··(g)h IIp+ 1 

<:IIR ~.~ 1 (g)h - R ···(g)h" IIp + 1 

(6.10) 
+ IIR~· ·(g)h - R .. ·(g)h" IIp + 1 

< EI2 + IIR~· ·(g)h - R .. ·(g)h" 11p+ 1 • 

The sequence (R~· ·(g)h - R .. ·(g)h")neN is a Cauchy se
quence in both norms II· . ·llp and II· . ·llp + 1 and converges 
to zero in the first one. Due to the pairwise compatibility of 
the norms it has to converge to zero also in the second one. 
Hence for every E > 0 there exists an N (E)eN such that for all 
n>N(E) we have 

IIR ~. ·(glh - R .. ·(g)h" lip + 1 < E12. (6.11) 

But the inequalities (6.10) and (6.11) together imply (a). 
Analogous to the definitions at the beginning of Sec. V,f 

is from uk(· .. ) if and only iffor any local chart (~~,va) ofa 
maximal atlas for G we have 

VqeN,!, 

sup { II (Ii ~)R ic· ·(v,; l(YI, .. ·,y"l! III (6.12) 
i= 1 (ayi)q, k 

(Y)t ... ,y,,)eva [~~]} < + 00. 

However, this statement in combination with (a) and the ine
quality Ilfllp <: Ilfllp+ 1 forfeSp + 1 ( ••• ) implies (b). 

Finally,fis from U OC
( ••• ) ifand only if the relation (6.12) 

holds for all keN'. Hence (e) is a simple consequence of (b) 
and the definition of Crf oc vectors in the various normed, 
respectively, countably normed spaces. D 

With these preparations we are now able to formulate 
and prove the announced infinitesimal characterization of 
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the subspace of ~ 00 vectors for the representation R .d I.··· • .d L 

ofG. 
Theorem 6.1: LetXI, ... ,x, be a basis for the Lie algebra 9 

of G. Then for any subset {..nf I'''''..nf d ~IG and LeN the 
following relations hold: 

(i) dR .d, ..... .dL(X) = BR .d, ..... .dL(X), Xeg, 

(ii) n n D(dR .d1 ..... .dL(Xjt) 
jell •...• ') neN 

= O'oo(..nf I'·"'..nf Ll 

~ n n D (dR .d, ..... .dL(Xn 
Xeg neN 

Among other things the first part of (ii) together with (i) says 
that the subspace of ~ 00 vectors for the representation 

R .d I.··· • .d L of the Lie group G is equal to the intersection of the 
domains of the closures of its differential operators 

BR .d1 ..... .dL(Xj),je{ 1, ... ,r) for a basis of the corresponding 
Lie algebra 9 and all their (positive integer) powers. This will 
be the starting point for the integration of a representation of 
g. In passing we mention another interpretation of (ii) due to 
Goodman, II which can also be taken over to the domain 
goo(U):fis a C(foo vector for R .d,.··· • .dL if and only iffis a 

common ~oo vector for its restrictions R .d,.··· • .dL t Gk , 

ke{ 1, ... ,r} to the one-parameter subgroups Gk = {exp(fXk)1 
teR} of G generated by the elements of a basis of g. 

Proof (of Theorem 6.1): (i) Let If" )neN be a dR .. '(X )-con
vergent sequence. Then there existf,heS ( ... ) such that for all 
peN° 

lim Ilfn -flip = 0, (6.13) 
n-oo 

lim IldR···(Xlfn-hllp=O. (6.14) 
n-oo 

From the definitions of the domains D(dR :::(X)) and 
Lemma 6.1(d) we deduce 

D(dR "'(X)) = n D(dR~"(X)), (6.15) 
peN" 

and moreover for every keD (dR" '(X)) and peNo 

dR "'(X)k = dR ~"(X)k. (6.16) 

By virtue of Lemma 6.1(t) the last four equations imply 

feD (dR' . '(X)) and h = dR .. '(X If. (6.17) 

This proves the closedness of dR .. '(X) and in view of the 
inclusion (6.6) also 

dR "'(X);;2 BR ·"(X). (6.18) 

In order to complete the proof of (i) it suffices to verify 
the following equality of the graphs: 

Y(dR .. '(X)) = Y( BR" '(X) ). (6.19) 

Let Y( BR .. '(X) f denote the completion of Y( BR .. '(X) ) 
with respect to the (single) norm II { ; }11p' It is a Banach 
space. 

Moreover, from 

Y( BR .. '(X)) = Y(BR" '(X)) 

we trivially obtain 
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(6.20) 

Y( BR "'(X)f = Y(BR "'(X))P, (6.21) 

and thus for every peN° 

Y(BR "'(X))~ Y(BR "'(X))P+ I~ Y(BR ···(X))P. (6.22) 

Since Y(BR "'(X)) is a complete, countably normed space 
the relations (6.20) and (6.22) imply (Ref. 20, Chap. I, Sec. 
3.2) 

Y( BR .. '(X) ) = n Y(BR' . ·(X))P. 
peN" 

(6.23) 

On the other hand, let Y p (T) denote the graph of the opera
tor Tin the Banach space Sp ( ••• ). Since all infinitesimal gen
erators dR .. '(X) and dR ~. '(X) are closed operators, their 
graphs are complete, countably normed, respectively, 
normed spaces which due to Lemma 6.1(d) and Eq. (6.15) 
satisfy the inclusion relations 

Y(dR "'(X))~Yp+ ddR ~'';' dX))~Yp(dR~' ·(X)). (6.24) 

Hence once again we obtain from Chap. I, Sec. 3.2 in Ref. 20 

Y(dR .. '(X)) = n Y (dR' "(X)). 
peN" p 

(6.25) 

0'00 ( ••• ) is a dense linear subspace of the Banach space Sp ( ••• ) 
and dR~' '(X) is the closed infinitesimal generator of a 
strongly continuous one-parameter group which leaves 
0'00( ••• ) invariant. In addition, from Lemma 6.1 we obtain 
the two further properties 

0'00( • • ')~O';(' . . )~D (dR~' '(X)), (6.26) 

BR "'(X) = dR ~"(X) t 0'00( .. • ). (6.27) 

These statements together are just the presumptions of Cor
ollary 1.3 in Ref. 27, from which it therefore follows: 

BR "'(XV = dR ~"(X) t O'oo( .. ·r = dR ~··(X). (6.28) 

Translated into the corresponding graphs this means 

(6.29) 

Equations (6.23), (6.25), and (6.29) imply Eq. (6.19) and 
therefore statement (i). 

(ii) In view of the relation (6.6) it suffices to show that 

n n D(dR ·"(Xjr)~O'oo( .. . ). (6.30) 
jell •...• ,) neN 

From Lemma 6.1(e) and the result of Goodman (Ref. 11, 
Theorem 1.1) in the case of Banach spaces we deduce 

0'00( ... )= n . n D(dR~··(Xjt). 
neN JEll •...• ') 

(6.31) 

peN° 

If e denotes the unit element of G it follows by means of the 
continuity of R .. '(g) thatfeD (dR" '(Xj In) ~ S ( ... ) if and only 
if 

lim lim ... lim [IT t j- I(R .. '(exp fjX) - R .. '(e))Y 
'1--<> ',--<> 'n--<> j = I 

exists in the norm of every Banach space Sp( •• • ), peNGo In 
combination with the equation 

R '''(g) = R ~"(g) t S( .. . ), (6.32) 

this impliesfeD(dR ~. '(Xj t) for every peN°, or equivalently, 

D(dR ···(x.r)~ n D(dR ···(x.n (6.33) 
J peN0 PJ 
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However, from the two relations (6.31) and (6.33) we just get 
(6.30). 0 

VII. THE POINCARE GROUP 

As an explicit example for the general investigations we 
present a class of representations for the universal covering 
group p t+ = SL(2,C)<2<lR4 of the proper orthochronous 
Poincare group, which on any strictly localizable space 
S8(R4,Cd ) has all continuity and boundedness properties 
required in Definition 2.1. This class contains the (up to now) 
physically most important representations including the 
"usual" ones, for which the restrictions to the subgroup of 
translations (R4, + ) are all one dimensional. 

We start with some standard notations: P t+ consists of 
pairs (a,a) with a E R4 and 

a=(a: 
ai 

a
2

) ~ E SL(2,C). 
a 2 

The composition law reads (a,aH /3,b ) = (a/3,a + A(a)b ). 
Here A(a) is the real 4 X 4 matrix with elements 

1 3 
A(aY'v = - L gp;.. tr(-rI'a~a'). 

2 A=O 

Here, -rI', (,u = 0, ... ,3) denote the Pauli matrices and 

(gPl = (glLv ) = (~ ~ 1) 

(7.1) 

the Minkowski metric tensor. Finally, a' is the complex con
jugate and transposed ofthe matrix a. The topology of P t+ 

can be defined in terms of the following neighborhood basis 
of an element (a,a): 

!n(a,a): = [Er(a)xFn (a) Ir,n E NJ, 
with 

Er(a): = {/3ESL(2,QI C.~I laJ _/3JI
2
Y12 <+}, 

(7.2) 

Fn(a): = {b E R41 (to la
j 
- bjl2Y12 < ~} . (7.3) 

Let M.1lf denote an ~ -dimensional matrix representation of 
SL(2,Q and T.1lf a representation of(R4, + ) of the form 

T;'(a • ax): = W(.QY") [j! I t ~/(a • ax)] W(.QY")- 1, (7.4) 

with l:~= I T j = ~. The matrices t~(a. ax) in the direct sum 
a:e explicitly given in Eq. (2.5) with q = 0 and W(.QY") is an 
.QY" -dimensional nonsingular matrix independent of a. Now 
by straightforward calculations one easily verifies that the 
mappings 

R .1lf(a,a): S8(lR4,Cd )-S8(R4,C.1lf), J ---+R .1lf(a,a)J, 

with 
(7.5) 

(R .1lf(a,a)JY'(x) 

: = L T;'(a. ax Y'pM.1lf(aY'vJV(A(a- IHx - a)), 
p,VE T I (.1lf) 

P + (7.6) 

define a representation of P t+ on S 8(lR4, Cd) if and only if for 
all a E SL(2,C) and a E lR4 we have 

M.1lf(a)T;'(a. ax) = T;'(a. ax)M.1lf(a). (7.7) 
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Hence unless T;'(a. ax) is the unit matrix 
(TI = T2 = ... = T.1lf = 1; "usual" representation) the repre
sentation M.1lf has to be reducible. Thus its general form 
reads 

M.1lf(a) = B (.QY"{~ I Sj(a - It)D n/(a - It)]B (.QY")-I, (7.8) 

with l:~= I nj = ~. Here again B (.QY") is an ~ -dimensional 
nonsingular matrix independent of a; D n denotes an n-di
mensional irreducible matrix representation28 and S. a one
dimensional representation of SL(2,C). The only im~ortant 
point for the following is that the elements of the matrices 
D n(a) are polynomials in theparametersa~, (i,k = 1,2) (Ref. 
28 and Ref.29, Chaps. 10.8 and 10.16). Therefore M.1lf(a) is 
~ntinuous in the. topology above if the functions S/(a) 
(I = 1, ... ,r) are contmuous. The latter will be assumed in the 
following without further comment. 

Theorem 7.1: Every homomorphism R.1lf 
:p t+ ---+Aut S8(lR4;Cd ), (a,al---+R .1lf(a,a) defined in Eqs. 
(7.4H7.8) is a continuous representation of P t+ • 

Proof: (1) In the first step we show that R .1lf(a,a) is a 
continuous automorphism of S8(lR4,Cd ). 

Using the abbreviations 

K(a) = ~2 max [ 1M (aY'v IIp,v E T pI (.QY")J, 
+ 

Z = ~2[max[ I W(.QY"Y'v I, (7.9) 

I(W(.QY")-IY'v IIp,v E T pl+ (.QY")J r, 
a"'+···+r' 

Dlrl( )-p - -(ap-O--,)"',..... ... -(ap-3-"" (7.10) 

we deduce via the Leibniz rule and tedious but elementary 
estimates from Eqs. (2.1) and (7 .4H7. 7) and the explicit ma
trices (2.5) (with q = 0) the following bound: 

IIR .1lf(a,a)JII~,p 

<K(a). z· sup {g ~ tto (pt)2) 

X [ir
o 

(1 + IJIlnl + lailt] 

X(2~nl + I(a 'p)l)d-IID1rl(p) 

X f d 4xJIL(A(a- l (x - a)))exp[ - i(p. x)] lIP E lR4; 

,.o, ... ,rE~'st/'<m;PETp,+(.1lf)}' (7.11) 

The application of an obvious change of variables, the Leib
niz rule, and the chain rule leads to the further estimate 

max {IDlrl(p) f d 4xJIL(A(a- IHx-a)) 

Xexp[ -i(P'X)]II,.o, ... ,rEN\tori<m} 

<d(a)m L~o HI + laslt] max {IDlrl(q(p)) 

X f d 4xJIL(x)exp[ - i(q(p). xl] II 

,.o, ... ,r E N°, ± ri<m} . 
j=O 
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Here we have used the shorthand notations q(P) = A(a -I)P 
and 

d(a) = 4 max [ I,A(a- IrvlJ.t,ve Tpt (d)}. (7.13) 
+ 

Feeding the inequality (7.12) back into (7.11) and observ
ing the inequalities 

• 3 • • 

(1 + J(a . p)!) ..... < II (1 + /pi!) ..... (1 + lai !) ..... , (7. 14a) 
i=O 

3 

(1 + I(A(a)qYlm<d(a-l)m II (1 + Iq/I)m, (7. 14b) 
/=0 

3 

[(A(a)q)ip<4d (a- I)2 L (q")2, (7.14c) 
v=O 

then by means of the monotonic growth of g we obtain the 
simple estimate 

IIR ..... (a,a)fll~.p 

«2..c;{')m [d(a-I)4d(a) /~!\ (1 + la/Wr+.a--I 

xZ .K(a)llfll~m+.a-),[a)p. (7.15) 

Here [a] denotes the smallest natural number larger or equal 
to 16d(a- I)2. The relation (7.15) plainly implies the auto
morphism R ..... (a,a) to be a continuous one. 

(2) In order to prove the continuity of R ..... (a,a)f as a 
function ofthe group elements (a,a) it suffices to show that 

lim IIR ..... (a,a)f - fll~.p = 0, 
(a,aHE,O) 

forallfeSg(R4'C~) and (m,p)eN>XN. 

Introducing the shorthand notation 

f(a,a) (x) =f(A(a-I)(x - a)), 

it trivially follows from Eqs. (7.4) and (7.7) 

IIR ..... (a,a)f - fll~,p 

<IIM ..... (a)T;j'(a. ax)f(a,a) - T;j'(a. ax)f(a,adl~,p 

(7.16) 

+ IIT;j'(a. ax)f(a,a) - f(a,adl~.p + lIf(a,a) - fll~,p· 
(7.17) 

We are going to show that every term on the right-hand side 
of(7.17) vanishes in the limit (a,a)-(E,O). From the explicit 
expression (2.1) for the norms we get at once 

IIM ..... (a)T;j'(a. ax)f(a,a) - T;j'(a. ax)f(a,a) 1I~,p 

<II T ;j'(a. ax)f(a,a) 1I~.p 

X L IM ..... (ay'v -M ..... (Ervl· (7.18) 
p.,ve T pt+ ( ..... ) 

On the other hand, by literally the same arguments as ap
plied in the derivation of the inequality (7.15) we obtain 

IIT;j'(a. ax)f(a,a) 1I~,p 

<[d(a- I)4 d (a).rr (1 + la/1)2]m+~-1 
• =0 

X(2dtzllfll~m+~),[a)p. (7.19) 

Consider the arbitrary but fixed neighborhood 
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./VIC,6(E,0) = {(a,a) ep t+ I (. ± laJ - EJ12)1/2 <K, 
")= I 

eto lavI2y12 <6} . (7.20) 

Then from Eqs. (7.13) and (7.1) it follows at once for all 
(a,a) e '/vIC,6 (E,O), 

d(a)<32(1 +K)2, d(a- I)<32(1 +Kf, (7.21) 

and moreover if n(K) denotes a natural number larger than 
[16(1 + K)]4, 

IIfll~m+ .a-),[a)p <lIfll~m + .a-),"(K~· (7.22) 

Now the upper bounds (7.19), (7.21), and (7.22) imply the 
first factor on the right-hand side of the inequality (7.18) to 
be a bounded function on NIC,6 (E,O). Therefore from the con
tinuity of M ..... (arvin a we deduce 

lim IIM ..... (a)T;j'(a. ax)f(a,a) - T;j'(a. ax)f(a,a) 1I~,p = O. 
(a,aHE,O) 

(7.23) 
It is obvious from Eqs. (7.4) and (2.5) that in the difference 
T;j'(a. ax) - T;j'(O. ax) there do not occur any nonzero ele
ments independent of a. This observation leads along the 
same lines as before to an improved upper bound compared 
to (7.19) 

IIT;j'(a. ax)f(a,a) - f(a,a) 1I~.p 

<max [ laI'llJ.t = 0, ... ,3J(2..c;{')mz [d(a-I)4d(a) 

3 ]m+.a--I 
X,:Vo (1 + la/12) IIfll~m+.a-),[a)p. (7.24) 

Hence, due to the first factor on the right-hand side it follows 
by means of the inequalities (7.21) and (7.22) 

lim IIT;j'(a. ax)f(a,a) - f(a,adl~,p = O. (7.25) 
(a,aHE,O) 

There remains the third term on the right-hand side of the 
inequality (7.17). Let (a",a"),,eN be an arbitrary sequence 
which converges in P t+ to the unit element (E,O). Then from 
the continuity of fIx) and A(a) we deduce that the sequence 
(f(a.,a.) - f)"eN converges in C.a- pointwise to zero; this 
means for every fixed x e R4 we have in the Euclidean topol
ogy ofC.a-

lim (f(A(a,,-I)(x - a,,)) - fIx)) = O. (7.26) 

Once again by literally the same arguments as applied in the 
derivation of the upper bound (7.15) we obtain 

lIf(a,adl~,p 

<[d(a- I)4 dIal ;[11 (1 + la'llrllfll~m,[a)p. (7.27) 

Hence in combination with the relations (7.20H7.22) this 
implies that the set [f(a.,a,.) - fin eN} is a bounded subset 
of Sg(R4'C~), According to our presumption (S.O) in Sec. II 
it is relatively sequentially compact. Therefore our sequence 
has at least one limit point in the topology of Sg(R4,C.a-) . 
Assume it possesses a limit point h ,t;0. Then there exists a 
subsequence U;(a a ) - f) N such that for all 

"'"), ""',.) ne 
(m,p)eN>xN, 
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(7.28) 

in contradiction to Eq. (7.26), since convergence in the topol
ogy of sg(lR4,C ..... ) implies pointwise convergence in C ...... 
Thus we obtain for all (m,p) E N°XN 

lim lI.I(a.a) - fllm.p = O. 
(a.aHE.O) 

(7.29) 

VIII. CONFINEMENT 

By now we have gained the necessary insight into the 
structure of unbounded representations for symmetry 
groups and especially the Poincare group in order to present 
the details of the confinement mechanism which we shortly 
indicated in comment (iv) to axiom A.III. Throughout this 
section we assume that the test function space is a Jaffe space 
and the basic fields transform under translations with the 
representations 

T;(y.ax ) 

= W(Y) [j~1 t;'(y.axl]W(y)-1 (8.1) 

= [exp(y. q(Y))] W(Y) [j~ 1 t ~'(y. ax)] w(y)-I 

= [exp(y.q(Y))]T[(y.ax ), 

where t;(y. ax) is explicitly given in Eq. (2.5) and 
y = :I~ = 1 'Tj • We denote by qR (Y) the real part ofthe com
plex quadruple q(Y). Plainly, we assume q( &) = 0 for the 
trivial field rpt!! (f) = id,;y S d 4xf(x). 

Theorem 8.1: (Confinement): For any subset 
{Y1""'YL J c;;,fT with the property :If= IqR(Yj)#O we 
have 

VfESg(yl,· .. ,yL ), 

¢,7, ..... ,7L(f)'I'o E Ko: = {'I' E KI ('1','1') = OJ ::JHo. 

Proof: If I", lop denotes the operator norm of", and T the 
representation of Theorem 3.2 corresponding to T of the 
translation group, it follows from the", isometry of T, the 
substitution rule Theorem 3.2( 1), and Eq. (8.1) for all y E R4 

I (¢,7, ..... ,7 L(f)'I' o,¢,7,·····,7 L(f)'I' 0) I 

= exp [2 jtl (y. qR(Yj ))] I (¢,7, ..... ,7L 

X(®"L T"[I(y. axlf)'I'o,¢,7,·····,7L 
;=1 I 

X(j~ ~ T"[l(y. ax)f)'I'o) I 
<1",lop exp [2 jtl (y. qR(Yj ))] 1I¢,7'·····,7L 

X(®"L T"[I(y .ax)f)'I'oll~. 
;=1 I 

(8.2) 

Since the Hilbert space norm is a continuous linear func
tional on sg(Y!, ... ,YT,Y1, ... ,Yd there exist a pair 
(mo, Po) E N° X N and a positive real number 
K = K(Y1, ... ,YL ) such that 
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11¢,7,·····,7L (;!~ T"[I(y. ax,)f )'I'oll~ 

<KII ~ L [i L T"[I(y. ax,)f] Ilg 
1=1 mo. Po 

X II ®"L T"[l(y .ax)fll
g 

J= 1 mo. Po 

=K(II;!~ T"[I(y.ax,)fll:o.poY (8.3) 

In the last step we have used the isometry of the conjugation 
operator Ctf L' Finally, by literally the same arguments as 
applied in the derivation of the inequality (7.15) we obtain 
the upper bound 

II ®"L T"[I(y. ax,)f Ilg 
1=1 rno.po 

[ 

3 ]LmO + 1.7"1 
<Z L 2mL II f II~Lmo + 1.7"1).p JUI (1 + I i12) , 

o L 

IYI=IYj • (8.4) j=1 
From the three inequalities above, Theorem 8.1 follows im
mediately by taking y to infinity in a suitable direction. 0 

Theorem 8.1 offers a sufficient condition for states of 
~ QL to be from Ko, respectively, a necessary condition to 
be from K\.Ko. 

If we take Y 1 = Y 2 = ... = Y L = Y then in case 
qR(Y)#O Theorem 8.1 says that neither ¢,7(h) for any 
h E S g(R4,C,7) nor any polynomial of it can create states 
with nonzero", norm from the vacuum. On the other hand, 
due to the completeness axiom A.IV the products 

nf= 1 ¢,7I(hj) of different field operators with qR (Yj) #0 but 
:If = 1 q R (Yj) = 0 create states from the vacuum which are in 
K\.Ko and hence lead to observable states. Of course if 
q(y)#O for some Y EfT then the corresponding field ¢,7 
cannot be Poincare covariant. Hence Poincare symmetry in 
the sense of Definition 2.1 cannot hold in Ko and therefore 
not in the entire Hilbert space K. However, in order to save 
the Poincare invariance in the physical Hilbert space Kph 

= ~ it suffices that Lorentz symmetry holds in the sense 
of Definition 2.1 and in addition Poincare symmetry on the 
linear subspace 

LEN and jtl q(Yj) = oJ, (8.5) 

which is dense in K\.K o. To be precise, in order to describe 
a gauge quantum field theory with confinement of some or 
all basic fields and Poincare invariance in the physical Hil
bert space Kph we replace the axiom A.III by the following 
one, in which the representations T; of the translation 
group are explicitly given by Eqs. (8.1) and (2.5). 

A.III.C: Confinement and Poincare quasisymmetry: 
There exist ",-isometric representations T of (lR4 , + ) and .!/ 
ofSL(2,q on a dense linear subspace Dp;2 ~ QL which leave 
~ QLn H invariant and share the following properties. 
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(1) (Invariance of the Vacuum): There exists a unique 
vacuum state '110 such that ('110,'110) = 1 and 

VyeR4, T(y)'I1o='I1o 
(8.6) 

Va e SL(2,q, 2"(a)'I1o = '110' 

(2) (Covariance): There exists a decomposition of l' into 
a countable union T =uYel 1'1 (S')X {Y] of pairwise dis-

p p 0 

joint finite subsets 1'lp (S') X {Y] and for every Yelp a Y-

dimensional matrix representation MY of SL(2,q, respec
tively, T{(y. ax) = exp[(y. q(S'))]T[(y. ax) of (R4, +) 
on S g(R4 ,y) with Y = y* and 

MY(a)T[(y. ax) = T[(y. ax)MY(a), (8.7) 

such that for all Y j e Ip, (i = 1, ... ,L ),L e N, the substitution 
rules hold: 

L L 
T(y) IT <,6Y'(.t;)'I1o = IT <,6Yi(T-;-i(y. aX)/;,(E,Y))'I1o, 

j=1 j=1 
(8.8) 

L L 

2"(a) IT <,6Yi(/;)'I1o = IT <,6Yi(M
Y

'(a)/;,(a.o,)'I1o, (8.9) 
j=1 j=1 

with q = q(S') e C4 '/;.(a.y)(x): =/;(A(a-I)(x - y)) and E the 
unit element ofSL(2,q. 

Now the Poincare invariance in the physical Hilbert 
space Kph is easily ve~fied. _ 

Theorem 8.2: Let T and 2" denote the representations 
on IiJ QL of Theorem 3.2 corresponding to T, respectively, 
2". Then there exists an ,.,-isometric representation U of the 
proper orthochronous Poincare group P t+ on IiJ e 

U: pt+ _Aut IiJ e, (a,y)-U(a,y) = T(y)2'(a), 

which leaves '110 invariant and lifts to a strongly continuous 
unitary represent~ion ~ _of P t+ on K ph' 

Proot Since T and 2" are representations of (R4, + ), 
respectively, SL(2,q on IiJ QL the linear mapping 

U(a,y):IiJQL -IiJQL , 'I1_T(y)2'(a)'I1 (8.10) 

is for every y e R4 and a e SL(2,q an automorphism of IiJ QL 
and by virtue of Theorem (3.2)(2) strongly continuous in 
(a, y). Explicitly we obtain from Theorem 3.1 and Theorem 
3.2 

U(a,y)'I1o = '110, (8.11) 

U(a,y)<,by •..... y L (f)'I1o 

=exp [jtl (y.q(Yj ))] <,6y •..... y L 

XC!~ [T;;J(y.aXJ)MYJ(a)]/ta.y))'I1o. (8.12) 

According to Theorems 7.1, 3.2, and 3.1, without the expo
nential factor on the right-hand side ofEq. (8.12), U would be 
an ,.,-isometric representation of P t+ on IiJ QL' Therefore its 
restriction to IiJ e 

U: P ~ -Aut IiJ e, (a, y)-U (a, y) = U (a, y) ~ IiJ e 
(8.13) 

is an ,.,-isometric representation of P t+ on IiJ e and strongly 
continuous in (a, y). 
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Consider the vector spaces B QL: = IiJ QL n Hand B gL 
: = IiJ QLn Ho. Then obviously B gL is invariant under every 
U (a, y) and B QL can be represented as the vector space sum 

BQL=(IiJenH) + BgL. (8.14) 
• 

Let the elements and the natural scalar product of the factor 
space B QL / B gL be denoted by ['11] QL = '11 + B gL, respec
tively,([. ]Qu[' ]QL)QL:= (.,. ). DuetoEq. (8.14),forev
ery '11 e B QL there exist '11 e e (IiJ en H) and () e B gL with 
'11 = '11 e + () and therefore ['11] QL = ['11 e ] QL' Hence in 
view of the,., isometry of U the mappings 

['I1]QL -+W(a,y)['I1]QL 

: = [U(a,y)'I1]QL = [U(a,y)'I1clQL 

generate an isometric, strongly continuous representation 
W: pt+ _AutBQL/BgL,(a, y)-W(a,y) of the Poincare 
group on the pre-Hilbert space (B QL / B gL;( .,. )QL) which has 
a. uni9u~ unitary extension W onto the Hilbert space 
BQL/BgL. Moreover, in literally the same way as in the 
proof of Theorem 4.2(ii) it follows that Wis strongly contin
uous. Finally, according to Theorem 3.3(a) the Hilbert space 
B·QL/B~L is unitarily equivalent to K ph ' If P denotes the 
corresponding unitary mapping then the representation ~ 
is just given by pWp-l. 0 

Finally, let us make some short remarks about the appli
cation of the confinement mechanism above to quantum 
chromodynamics. In this model in addition to the Poincare 
quasisymmetry the color group SU(3)col should be a symme
try group (or at least a quasisymmetry). Hence instead of 
p t+ the fundamental group G is a combination of P t+ and 
SU(3)col' Last but not least all physical states are color sing
lets. Therefore all basic quark and gluon fields together with 
all those products of them, which do not belong to SU(3)col 
singlets, must be confined [qR(Y)#O for all YeIG ]. 

Moreover the covariance condition A.III.C(2) has to include 
the color group in such a way that by a suitable choice for the 
set of quadruples { g(S')#O!Y eIG ] the subspace IiJ e con
tains only Poincare covariant color singlet states. Indeed for 
an SU(3) model with a quark triplet, an antiquark triplet, and 
a self-conjugate gluon octet as basic fields in which the four 
vectors q R (S') are essentially determined by the color charge 
of the basic fields, it can be shown30 that (i) the basic quark, 
antiquark, and gluon fields are confined; (ii) every vector in 
the physical Hilbert space is an SU(3)-color singlet state; and 
(iii) Poincare invariance holds in the physical Hilbert space. 
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A mathematical deduction of the fiber bundle theory of interaction from Utiyama's theory is 
drawn, in order to get some deeper insights into the geometry of classical gauge theories. 

I. INTRODUCTION 

Utiyama's theory 1 deals with the invariance properties 
of interacting particle and gauge fields, defined as local fields 
on space-time up to gauge transformations. 

The current formulation of this theory2 embodies all of 
its results within a geometrical framework where the inter
acting fields are defined as geometrical objects on a principal 
fiber bundle, assumed to be the basic space of the theory. 

The transition from the former to the latter formula
tion-formally suggested by the behavior of the fields under 
gauge transformations-is only inductively explained 
through qualitative motivations, which would presume to 
force the above fiber bundle approach upon us as it were due 
to our own perception of nature. 3 

Surviving to such motivations is, however, in our opin
ion, the question whether this approach is merely superim
posed on, or rather ingrained in the physical theory-in fact, 
as long as the transition is not a mathematical deduction, one 
can exhibit only a possible but not any essential role of the 
involved geometrical structures. 

The aim of this paper is then to answer the question, by 
drawing a mathematical deduction of the current interaction 
theory from Utiyama's theory. 

To this end we start (Sec. II) from a coordinate setting of 
Utiyama's theory, implied by the invariant theoretical re
sults of a previous paper.4 

Hence we infer (Sec. III) the view that Utiyama's theory 
is nothing else but the passive viewpoint of a geometrical 
gauge theory, deduced from the former through a quotient 
operation defined by gauge transformations. 

Then we develop (Sec. IV) the active viewpoint of this 
gauge theory as a consequence of the passive one, so em
bodying the current fiber bundle approach to interaction. 5 

Finally we remark (Sec. V) how the above geometrical 
theory naturally includes the classical and relativistic space
time theories of gravitational interaction. 

II. UTIYAMA'S THEORY 

Let 

Eo=MXFn 

be the Cartesian product of a four-dimensional, oriented 
space-time manifold M and an n-dimensional vector space 
F n over F=R or C.6 

(i) Let (gaP) be a maximal cocycle, over an open covering 
(Ua ) of M, of G-valued transition mappings 

gaP:Ua n Up-+G, 

G being a Lie group acting on Fn as a closed subgroup of 
GL(n,F). 

A coordinate particle field is any section "'a of local 
phase space Eo defined on an open set Ua of the above cover
ing, up to gauge transformations 

"'p =gPa . "'a (1) 

on nonempty intersections (Ua n Up). 
(ii) Let (Fa) be an atlas, over (Ua ), of rvalued one-forms 

ra :Ua-+L (TM,9') 

(9' being the Lie algebra of G ), obeying the adjoint, pseudo
tensorial gauge transformation law 

rp =ad(gapl).ra +~8. (2) 

The jet extension of a coordinate particle field "'a into 
local jet space 

Eo = Eo ED L (TM,Eo) 

is the section j a'" a of Eo, the image of "'a under the map 

ja =id ED Da , 

where 

Da=d+ra 

is the differential operator characterized by r a • 

The jet extension is gauge covariant,7 that is, 

jp"'p = gpa . ja "'a (2') 

[whenever Eqs. (1) and (2) hold true]. 
(iii) Let 

!f:Eo-+R 

be a G-invariant real function on Eo-i.e., it is invariant un
der a (local) vertical automorphism of Eo iff this is character
ized by a G-valued transition mapping on M. 

The action density of a coordinate particle field "'a' in
teracting with coordinate coupling field r a' is the real func
tiononM 

defined by local Lagrangian .Y and jet extension map j a . 

Owing to the G invariance of !f, the action density is 
gauge invariant,8 that is, 

(3) 

[whenever Eqs. (1) and (2) hold true]. 
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III. GEOMETRICAL THEORY: PASSIVE VIEWPOINT 

Let 

E=E
0/

_ 

be the quotient of Eo-under the equivalence relation - de
fined by cocycle (gaP)- regarded as a (nontrivial) vector 
bundle over M.9 

(i) Let 

11:PE-GL(n,F)/G 

be the Higgs metric on E defined by ( gaP)' 10 

Coordinate particle fields (t/I a) related to each other by 
gauge transformations (1) are all pullbacks 

t/la = 41 ;; I 0 t/I, 
through sections 

41 a :Eow" --Ew" 
of G-principal fiber bundle ker(11), of a unique section t/I of E. 

Then any section t/I of phase space E is called a particle 
field, undergoing, after changes of sections (or gauges) in 
ker(n), passive gauge transformations (1). 

(ii) Let 

(J):PE--L (T(PE),p:t'(n,F)) 

be the Yang-Mills connection on E, compatible with Higgs 
metric 11, defined by IF a) (Ref. 11) and then undergoing pas
sive gauge transformations (2). 

Jet extensions U a t/I a) of coordinate fields (t/I a) corre
sponding to a particle field t/I, are all pullbacks 

'.1, _~-lo·.I, Jaora - a Jor, 

through the covariant extensions of (41 a ), of a unique section 
jt/J of 

E=EfIJL(TM,E), 

the image of t/I under the map 

j=idfIJD", 

where D" is the covariant derivative defined by (J) in E.12 
Thenjt/J is called the jet extension of particle field t/I into 

jet spaceE. 
Owing to Eq. (2'), jet extension jt/J is covariant under 

passive gauge transformations. 
(iii) Let 
L::E __ R 

be the real function on E whose restrictions to (Ua) are 
- -I 

LWa = ..? 0 41 a 

[L is well defined, i.e., the above restrictions agree on inter
sections (Ua n Up), for sections (41 a) are related to each other 
by (gaP) and"? is G invariant]. 

Action densities (J(t/la,ra))-t/la and ra undergoing 
gauge transformations-are all restrictions to (Ua ) of a 
unique real function J (t/I,(J)) on M, given by 

J(t/I,(J)) =L 0 jt/J. 

Then J (t/I,(J)) is called the action density of particle field 
t/I, interacting with coupling field (J), defined by Lagrangian L 
and jet extension map j. 
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Owing to Eq. (3), the action density is invariant under 
passive gauge transformations. 

IV. GEOMETRICAL THEORY: ACTIVE VIEWPOINT 

Let 
g:E __ E 

be a vertical vector bundle automorphism of E, also charac
terized by a vertical principal bundle automorphism of PE 

g:PE __ PE. 

The pullback of Higgs metric 1J, defined by 

g*1J = 1J 0 g, 

is a Higgs metric, too [due to the variance properties of g and 
1J under the action of GL(n,F) on PE]. 

If, in particular, 1J is preserved 

g*1J = 1J, 

then g is also characterized by a vertical principal bundle 
automorphism of ker(1J)-the restriction g of g to ker(1J). 

(i) Let g be a vertical vector bundle automorphism of E 
which preserves 1J (fiber isometry). 

Then the pullback of a particle field t/I, defined by 

is an active gauge transformation of t/I. 
If the particle field is described by means of a Higgs 

zero-forml3 

~:ker(1Jl-F", 
then the above transformation corresponds to the ordinary 
pullback 

g*~= ~og. 
(ii) Pullback 

g*(J) = (J) . Tg 

of Yang-Mills connection (J) under a fiber isometry g of E, 
defines an active gauge transformation of (J); it is a Yang
Mills connection, too, compatible with 1J, which yields the 
jet extension map 

g*j = id fIJ D g"",. 

Then jet extension jt/l is covariant under active gauge 
transformations, that is, 

( g*J)( g*t/I) = g*Ut/I) 

(where, on the right-hand side, g* denotes the pullback ac
tion onjt/J of the covariant extension g of g). 

In fact, if we introduce the connection one-form on 
ker(1J) 

iij = (J)1ker('7" 

the above covariance law can be given, in terms of Higgs 
forms, the following known 14 expression: 

g*~fIJDr;;;(g*~) =g*(~fIJD;;;~). 
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(iii) Lagrangian L is invariant under fiber isometries of 
E, due to the G invariance of its coordinate expression .!/. 

Consequently, for any isometry g, 

L 0 (g*J)( g*f/!) = L 0 g*{jf/!) = L 0 g-I 0 if/! = L 0 if/!. 

Then action density is invariant under active gauge 
transformations 

J( g*f/!, g*w) = J(f/!,w). 

v. CONCLUDING REMARK 

The above general theory of interaction is then based 
upon a G-invariant Lagrangian L defined on the jet exten
sion of the phase space E (,."w) of a particle field-a vector 
bundle E over space-time M, carrying a Higgs metric ,., 
[which spontaneously breaks, through ker(,.,), the structure 
group of E down to G] and a Yang-Mills connection w 
[which is assumed to be reducible to a connection one-form 
on ker(,.,)]. 

In particular, the Lagrangian of a free particle is de
fined-as is well known-on the jet extension of the tangent 
bundle E = TM of space-time. 

In this case, ,., and w come out to be a G structure and a G 
connection (i.e., a generalized metric structure and a compa
tible linear connection) on space-time. 

The choice of G structure,., determines the classical or 
relativistic kind of theory, IS whereas G connection w is the 
geometrical description of the gravitational field interacting 
with a free particle. 
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onPE. 

12See Ref. 7. 
13 A. Trautman, "The geometry of gauge fields," Czech. J. Phys. B 29, 107 

(1979). 
14See Ref. 2, Theorem 3.3.6. 
IS A. Trautman. "A classification of space-time structures," Rep. Math. 

Phys. 10 (1976). 
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Recurrence relations for the analytic calculation of Feynman integrals in the 
axial gauge: The case of massless particles 
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An algorithm is described which enables the calculation of Feynman integrals in the axial gauge. 
The algorithm is based on recurrence relations, which are used to simplify integrals associated 
with both massless and massive particles. Detailed formulas are presented for the case of massless 
particles. They can be used to tabulate all Feynman integrals that are relevant for the calculation 
of propagators in axial gauge quantum chromodynamics and quantum gravity. 

I. INTRODUCTION 

The Feynman integrals for nontrivial field theories are 
known analytically only in the simplest cases of one or, at 
most, a few loops. If the field theory is a non-Abelian gauge 
theory then the necessary effort for the analytic computation 
crucially depends on the choice of gauge. Although the class 
of Lorentz covariant gauges introduces fictitious particles, 
the propagators and vertices get a simple form. The axial 
gauge is a competitor of the covariant gauge because the 
ghost particles decouple. 1 However the propagator for the 
gauge field has a much more complicated structure involv
ing two scalar functions instead of one, together with a de
pendence on the axial vector niL. 

The axial gauge has been used especially in nonpertur
bative studies ofthe infrared (IR) behavior ofthe gluon pro
pagator in quarkless quantum chromodynamics.2

-
5 One as

sumes a reasonable ansatz for the triple gluon vertex, 
consistent with the Slavnov-Taylor identity which attains its 
simplest form in the axial gauge. This ansatz is inserted into 
the Dyson-Schwinger equation for the gluon propagator 
and, in the first instance, the quadruple gluon vertex is 
dropped. The result is a closed, nonlinear integral equation 
for the gluon propagator in momentum space, the BBZ (Ba
ker, Ball, Zachariasen) equation.3 The solution of this equa
tion for momenta If' for which p2 -0 gives the IR behavior of 
the gluon propagator. If the propagator is very singular for 
p2-o, then its Fourier transform, which is the Born approxi
mation to the Wilson-loop potential, leads to a color confin
ing force. 

Analytic calculations are cumbersome in this approxi
mation scheme because of the complex nonlinear nature of 
the BBZ equation. They have mostly been done with the 
major simplifying restriction of p·n = 0 (see Ref. 4). One cal
culation has been done with p·n # 0, in order to study the 
self-consistency of the BBZ equation in the IR limit.5 The 
results of the present paper were used in that analysis. 

Another area of application is quantum gravity. The 
ultraviolet (UV) divergent part of the one-loop self-energy 
for the graviton, in the axial gauge, has been calculated expli
citly.6,7 The result is quite remarkable; not only do the neces
sary counterterms depend on the axial vector, indicating the 
nonrenormalizability of quantum gravity, but the infinite 
part of the self-energy also fails to be transverse. It has been 
shown that the imaginary part of the graviton's self energy is 

transverse.7 How this works out for the combination of the 
axial gauge and the background field quantization method is 
still an open question. 

With regard to these problems, the purpose of this paper 
is to describe a systematic procedure for the analytic compu
tation of single-loop Feynman integrals, as they occur in the 
calculation of propagators in the axial gauge.5

-8 In particu
lar we will consider integrals of the form 

IiL""iLN(p ) a"a,,1 ;m 1,m2,X 

_ 'J dDq qIL''''qN 
- I (21Tf ((q + p)2 _ mi + iE)a'(q2 _ m~ + iEt' 

x[iJl 1 . (1.1) 
(q.n+x)1 

The integration is carried out over D-dimensional momen
tum space with the integration variable q, which has one 
time and D-l space components. Here, If' is an arbitrary 
vector in this D-dimensional momentum space on which the 
scalar product, P'q, is defined by 

D 

p.q = If'q"giL" = Pof/o - L Piqi' 
;=1 

The axial vector, characterizing the axial gauge, is denoted 
as niL and it will always be assumed to be a spacelike vector, 
n2 < 0, so that 

(p.n)2/n2 <0. (1.2) 

In formula (1.1) m 1 and m2 are mass parameters whereas a 1 

and a 2 are positive integers. The parameter 1 is a non-nega
tive integer and the singularity q·n + X = 0, present in the 
integrand for I> 1, is regularized by taking the principal val
ue, defined as 1 

[iJl 1 =lim~{ 1 
(q.n + X)I ,,10 2 (q.n + X + ird 

+ . 1 } 
(q·n + x-ird 

(1.3) 

For 1 = 0 the rhs of (1.3) is replaced by the value 1. For the 
parameter X usually the equalities X = 0 or X = p·n hold. 

Because (1.1) is a tensor on the D-dimensional momen
tum space, the index N will be called the rank of the integral 
and for N = 0, it will be understood as 
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'J dDq 1 
= I (21T)D ((q + p)2 _ mi + iE)a'(q2 _ m~ + iEt' 

X&1 1 . 
(q.n+x)1 

In Sec. II we will show that the computation of (1.1) for 
N> 1 can be simplified via certain recurrence relations to 
integrals of rank N = 0, with I = 0 or I = 1 only, i.e., 

/I-""'I-'N(p'm m .v) 
a.tal,1 , l' 2'A 

= L L L T~:;::N(p,n,g;x,D) 
a I' =0.1 n>O 

X f dx Xnua.l'( - xp;xmi + (1 - x)m~ - Xp2,X), 

(1.4) 

where T~:;::N (p,n,g;x,D ) is a tensor of rank N, which in gen
eral depends onpl-', nl-', g-'v and scalars formed from combi
nation of the vectors pi-' and nl-', and on X and D. The function 
Ua•1 is given by Eqs. (2.9b) and (2. lOb). 

There remains the integration over the Feynman vari
able, x. This will be taken up in the third section, for the case 
of massless integrals. There formula (1.4) will be simplified 
further and the finite part will be expressed in terms of a 
single, nontrivial, transcendental function. 

The last section contains conclusions and an outlook on 
further applications of the techniques developed in this pa
per. 

II. DERIVATION OF THE RECURRENCE RELATIONS 

In this section we will derive formulas that enable the 
calculation of the Feynman integral (Ll) recursively. In
stead of dealing directly with (1.1) we will consider a more 
general type of Feynman integral. This new form is in fact 
essential for the derivation of the desired recurrence rela
tions. 

The integrals (Ll) can be rewritten with the Feynman 
trick 

1 rIa +a) 11 xa,-I(I-xt,-1 ___ = I 2 dx , 
A a'B a, r(at!r(a2) 0 (Ax + B (1 _ x))a, + a, 

in the form 

/~''''I-'N(p;ml,m2;X) 

1 11 = dx xa, - I( 1 - xt, - I 
2a, + a'F (al)F (a2 )(41T)DI2 0 

XF~:·:::,./( - xp;xmi + (1 - x)m~ - Xp2,X)' (2.1) 

Here the following class of generalized Feynman integrals 
has been defined as 

F~:;"I-'N(P;C,X) 

= 2ar(a)iJ dDq q'"', ... qN &1 1 , 
~/2 (q2 _ 2p.q - C + iEt (q.n + X)I 

(2.2) 

where P'"' is again an arbitrary, D-dimensional, momentum 
vector, and C and X are arbitrary parameters, not necessarily 
related to P'"'. 
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Instead of considering (2.2) for the few positive integer 
values of D where the integral might exist, we adopt the 
principle of dimensional regularization and consider D as a 
complex variable. Then the right-hand side (rhs) of (2.2) ex
ists if D, N,a, and I satisfy the inequality Re D < 2a + I - N. 
However, in the following we will assume that 

ReD<2amin - 1 (2.3) 

holdswhereamin = a - [N 12], [N 12] defined as the greatest 
integer equal to, or smaller thanN 12. Once the left-hand side 
(lhs) of (2.2) is known for these values of D, the principle of 

analytic continuation can be used to find the value of F~:;"I-'N 
in the entire complex D plane and to locate its singularities. 
These will be interpreted as the UV divergences of the inte
gral (2.2). 

Now we state the recurrence relations for the functions 
(2.2) which express an integral of rank N>2 in terms of inte
grals of rank N - 1 and N - 2. Two separate cases are con
sidered below. The case 1=0 is given by Eq. (2.4) whereas 
the case of general I> 1 is covered by Eq. (2.5). The bar over a 
Lorentz index 1", i.e., jl in the following formulas, indicates 
the absence of that Lorentz index. 

Lemma: For I = 0, we have, for N = 1, 

and, for N>2, 

FI-',·"I-'NI .. ·C ) a.1 II:'> ,X 
= """Fji",1-',···I-'NI"·C ) 

Y a,l IJ', ,x 
N __ 

~ ..I-'II-',pl-',I-',···I-' ... ·J.'NI .. ·C ) + ~ S a - 1.1 IJ', ,X· 
i=2 

For 1>1, N = 1, 

F~:/(P;C,X) 

= (p'"" - [(p.n + X)/n2]nJ.")F~:/(p;C,X) 
+ (nJ."ln2)F~:I_ I (P;C,X), 

and, for N>2, 

FI-',"·I-'NI .. ·C ) a.1 IJ', ,X 

= (p'"" - [(p·n + x)ln2]nJ.")F~:~' .. ·I-'N(p;C,X) 

+ (nl-"ln2)F~f~··iN(p;C,x) 

+ ~ (..1-"1-" _ nJ."nl-")Fji,'J."·"ji,r"I-'NI"'C ) 
~ S 2 a - 1.1 IJ', ,X· 
i=2 n 

(2.4a) 

(2.4b) 

(2.5a) 

(2.5b) 

The seemingly special role, played by the index 1"1' is illu
sory, since (2.2) is totally symmetric under permutation of 
the indices. 

Proof of the Lemma: The proof of the lemma is based on 
the following two simple identities, which are true for any 
N>O: 

(2.6) 

(2.7) 

Here it has been assumed that C and X are independent of p. 
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Although the index a is changed by the two operations 
(2.6) and (2.7), the combination of both leaves a invariant; 
only the value of the rank N is changed by 1, as is shown in 
the formula 

FI',···I'NI'Ir.·C ) 
a.1 11", 'x 

= -~ioo dC'~FI"·"I'N'r.·C' ). 
2 a- a.1 11", ,X 

C 'PI' 
(2.8) 

These three identities, (2.6H2.8), will now be exploited for 
the proof of (2.4) and (2.S). 

First the relations (2.4b) and (2.Sb) may be proved by 
induction. Suppose they hold true for 2<N<./Y'. Then the 
integral (2.2) ofrankN =./Y' + 1, and with given a andl,can 
be expressed in terms of the integral of rank./Y' with the same 
a and I, via Eq. (2.8). Substituting the rhs of(2.4b) into the rhs 
of(2.8), and using (2.7) shows that Eq. (2.4b) again holds, but 
now for N =./Y' + 1. This proves (2.4b) for any N>2, once 
the case N = 2 has been demonstrated. The proof of (2.Sb) 
carries through in a similar fashion. It therefore remains to 
consider (2.4b) and (2.Sb) with N = 2. These equations readi
ly follow from Eq. (2.4a) and (2.Sa), respectively, by using the 
identities (2.8) and (2.7) once more. 

For the proof of(2.4a) and (2.Sa), the explicit form of the 
integrals (2.2), for N = 0, has to be used. For I = 0, the inte
gral is well known and the answer is 

Fa.oljj;C,X) = - Ua.oljj;C,X), (2.9a) 

with 

Ua.oljj;C,x) = (_ 2tr(a -D/2)1jj2 + C)-a+DI2. 
(2.9b) 

Substituting (2.9) into the rhs ofEq. (2.8) then gives (2.4a) for 
1=0. 

The evaluation of Fa,l Ijj;C,X) is more elaborate, using 
either the Feynman or the Schwinger representation, togeth
er with the principle value prescription (1.3). In both cases 
we get the same answer, that is 

Fa,lljj;C,X) = - (Ijj.n + xl/n2] Ua,lljj;C,X), (2.1Oa) 

with 

Ua,lljj;C,X) 

- U ,r.·C)zF (a 1 _ D 1'~' Ijj·n + X)2 ) 
- a+l,OIl'" ,X 1 + 2"2'1jj2+C)n2 ' 

(2.1Ob) 

where zFl(a,b;c;z) is the hypergeometric function, To prove 
(2.Sa) for I = 1 we first rewrite (2.10), using the integral rep
resentation of the hypergeometric function, as 

Fa.lljj;C,X) 

= ( - 2)ar (a + 1 - D /2)Ijj·n + x)/n2 

xf dt(l - t)-1/2 

Xljj2 + C _ t Ijj.n + x)2/n2) - a - I + D12. (2.11) 

Substituting this into the rhs of the identity (2.8), returning to 
the zFI notation and using the relation 

zFI(a + 1,1;c + 1;Z) = (c/az)( - 1 + zFI(a,l;c;z)) (2.12) 

finally gives (2.Sa) for I = 1. 
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To complete the proof of (2.Sa) we use the following 
relation, which holds for any N;;.O and for 1';;.2: 

F::;"I'NIjj,C,X) 

( 1)/-1 al-l 
- - __ FI',·"I'NIr.·C ) 
- r(1) aXI - 1 a,l 11", ,X· (2.13) 

This formula enables us to express Fa,l Ijj;C,X) in terms of 
integrals with I replaced by I - 1 and I - 2 and also a 
changed in value. Differentiating Fa.1 Ijj;C,X) as written in 
the form (2.11) with respect to X' returning to the zFI nota
tion, and using (2.12) again gives 

~ Fa.lljj;C,X) 

= (l/n2)(Fa + l.OIjj;C,X) -Ijj·n + X)Fa + 1.IIjj;C,X)), 

so in general, for 1";;.2, 
al _ 

aXI Fa.lljj;C,X) 

1 { ~-2 _ 
= - 2' (/- 1) a I 2 Fa+ 1.IIjj;C,x) 

n X-
_ ~-I _} 

+ Ijj.n + X) aXI - I Fa + 1.IIjj;C,X) 

and with (2.13), for N = 0, we finally get 

Fa.IIjj;C,X) 

= [l/(/-1)n2J{ -Fa+ l.I - 21jj;C,X) 

+ Ijj·n + X)Fa + 1.1- IIjj;C,X)}' (2.14) 

Now Eq. (2.Sa) can be proved for 1>2 by induction, making 
use of (2.7), (2.8), (2.14), and (2.Sa) fori = 0 and 1= 1. This 
completes the proof of the lemma. 

One can extend the formula (2.14) to integrals of rank 
N> 1. Using (2.8) we find, for 1>2, another recurrence rela
tion, 

F::;"I'NIjj;C,X) 

= 1 {~nl'/FI',,,,prI'NIr..c) 
(1_ 1)n2 i~1 a.I-1 11", ,X 

+ Ijj.n + x)F:':;~j _ IIjj;C,X) 

- F:':;~j _ 21jj;C,X)} . (2.1S) 

We want to make a final comment to the proof. For a 
precise derivation of the results it is actually correct to use a 
finite upper limit of integration in (2.7) and (2.8). So f.i. in
stead of (2.8) we have to consider the difference 

FI',·"I'NI'Ir.·C ) _ FI',·"I'NI',r.;A ) a.1 11", ,X a.1 II" ,X 

= - ~ iA 

dC' ~ FI',·"I'NIr.·C' ). 
2 a- a.1 11", ,X 

C 'PI' 

The formulas (2.4) and (2.S) also hold for this difference. 
After using these iteratively, we get eventually for (2.2) the 
expression 
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~ ~ SI-',···I-'N/r. ,D ) + "'- "'- a',l' \/",n,g;x 
a';>amin I' = 0,1 

X {Ua,,1'(P;C,X) - Ua',I,{P;A,x)}, 

whereamin has already been defined by Eq. (2.3). The explicit 

form of F::;"I-'N (P;A,X), as given by (2.9), (2.10), and (2.14), 
shows that, for Re D < 2amin - 1, this function vanishes for 
A--+oo. Therefore the A-dependent terms can be dropped in 
the above formula, and using(2.1), (2.9a), and (2.1Oa), Eq. 
(1.4) follows. 

The results derived so far are valid for the general case of 
integrals that carry Lorentz indices, such as (1.1). In addition 
they are also valid for the case where some of the vectors 

ej", ... ,qN are contracted with an external vector or the met
ric tensor. These integrals frequently occur in the computa
tion of propagators.S

-8 Therefore it is more useful to work 
without explicit Lorentz indices and to saturate them all by 
contraction of (1.1) with the external momentum pI', the axi
al vector nl-', and the metric tensor g'v. So we are led to con
sider integrals of the following type: 

Ya,I{P;C,x;r ,s,t) 

(2.16) 

where always r>O, S>O, t>O, and N = r + S + t. 
Recurrence relations for Ya,1 (p;C,x;r ,s,t) can be de

duced from (2.4) and (2.5). For the derivation we assume that 
pi' and jI'" are proportional, 

(2.17) 

where R is a scalar. This relation is certainly satisfied for the 
cases in which we are interested, i.e., R = - x in (1.1). 

To be able to use (2.4) and (2.5) we assume that N> 1 and 
consider different cases. There are three possibilities, corre
sponding to either r> 1 and S + t>O, s> 1 and r + t>O, or t> 1 
andr + s>O. We also distinguish between the cases 1 = ° and 
1>1. 

The recurrence relations are generated by substituting 
the rhs of (2.4) and (2.5) into the rhs of (2.6) with the Lorentz 
index III in (2.4) and (2.5) replaced by A. I , VI' and PI' corre
sponding to, respectively, r> 1, s> 1, and t> 1. For example, if 
r> 1, S + t>O we write (2.4b) in the form 

F A' ... A,V, ... V,p,···PI7, .. ·CTt/r.·C ) 
a,O \/", ,X 

= r'F!:~""A,V, ... v'P""PI7''''CTt{P;C,X) 
r .._ 
~ A,A,F"-,A, ... A,..A,V, ... v,p, .. ·PI7, .. ·CT,/r.·C ) + "'- g a-I,O \/", 'x 

1=2 

~ A,v'Fl 'A, ... A,V, ... vr··v,p, .. ·PI7, .. ·CT,/r.·C ) + ",-g a -1,0 \/", ,X 
1=1 

t _ 
~ ArP'Fl 'A, ... A,V, ... v,p' .. ·pr··PI7,···CTt/r.·C ) + "'- g a-I,O \/", ,X 

1=1 

~ A,CT,pl,.A, ... A,V, ... v,p, .. ·PI7,···Ur CTt/r.·C ) + ",-g a-I,O \/", ,X· 
;=1 

Substituting this into the rhs of (2.16) gives 
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Ya,O (p;C,X:r ,s,t ) 

= Rp.nYa,o{p;C,x;r - 1,s,t) 

+ (r - 1 )n2 Y a _ 1,0 (p;C,x;r - 2,s,t) 

+ sp.nYa_l,o{p;C,x;r - 1,s - l,t) 

+ 2tYa _ I ,0{p;C,X;r,s,t - 1). 

Similarly, for 1 = 0, s> 1, and r + t>O, we get 

Ya,o (p;C,x;r ,s,t ) 

= Rp2 Y a,O (p;C,x;r,s - 1 ,t ) 

+ rp·nYa _ 1,0 {p;C,x;r - 1,s - 1,t) 

+ (s - 1)P2 Y a _ 1,0 (p;C,x;r,s - 2,t) 

+ 2tYa _ I ,0{p;C,X;r,s,t - 1), 

and for 1 = 0, t> 1, and r + s>O, we get 

Ya,o (p;C,x;r ,s,t) 

= RYa,o (p;C,x;r,s + 1,t - 1) 

(2.18) 

(2.19) 

+ (r + s + 2t +D - 2)Ya_ I ,o{p;C,x;r,s,t - 1). 
(2.20) 

The case I> 1 is treated in exactly the same way, now 
using (2.5b). It is not necessary to consider r> 1 because 
Y a , I (p; C, x; r, s, t ) can be expressed in terms of 
Ya,o (p; C,X; r, s, t) with r>O and in Y a, I (p; C,X; 0, s, t) 
with 1>1. 

For 1 = 1, r = 0, s> 1, and t = 0, we get 

Y a , I (p; C,X; 0, s, t) 

= (Rp2 - (Rp . n + X)P . nln2) 

XYa , I (p; C,X; 0, s - 1, t) 

+ [(P' n)/n2]ya,0{P; C, X; 0, s - 1, t) 

+ (s - 1)(P2 _ (p. n)2In2) 

X Y a _ I, I (p; C, X; 0, s - 2, t) 

+ 2tYa _ I, I (p; C, X; 0, s, t - 1) 

- 2t [(P. n)/n2]ya_ I ,0{P; C,X; 0, s - 1, t - 1) 

+ 2t [(P. nx)/n2]ya_ I • I {p; C,X; 0, s - 1, t - 1), 

and for r = 0, s = 0, and t> 1, we get 

Y a , I (p; C, X; 0, s, t) 

= ~{Rn2 Y a, I (p; C, X; 0, s + 1, t - 1) 
n 

- (Rp. n + X)Ya,o{p; C,X; O,s, t- 1) 

+ (Rp. n + X)XYa, I{P; C,X; O,S, t - 1) 

+ Ya,o{p; C,X; 1,s, t - 1) 

+ sn2 Y a _ I, I (p; C, X; 0, s, t - 1) 

- sp· nYa-l,o{p; C,X; 0, s - 1, t - 1) 

+sp· nXYa-l, I{P; C,X; O,S - 1, t -1) 

+ (2t+D- 3)n2y a_ l, t{P; C,X; O,S, t-1) 

- 2(t - l)Ya - t,o{p; C,X; 1, s, t - 2) 

+ 2(t - l)XYa-t,o{P; C,X; 0, s, t - 2) 

- 2(t - 1)X2Ya_l, I{P; C,X; O,S, t - 2)}. 
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The analog of(2.15) becomes, for 1>2 and r = 0, 

STa.I{P; C,X; O,s, t) 

1 2 {sp . nST a. 1_ I (P; C, X; 0, s - 1, t ) 
(/-l)n 

+ 2tSTa,I_2{P; C,X; 0, s, t - 1) 

- 2txSTa,I_1 (P; C,X; 0, s, t - 1) 

+ {P • n + X)STa + 1,1- I (P; C, X; 0, s, t) 

- STa+ 1,1-2{P; C,X; O,S, t)}, (2.23) 

and this relation holds for s + t>O. It expresses 
ST a, 1 (P; C, X; 0, s, t ) for I> 2 in corresponding functions with 
I replaced by I - 1 and I - 2, and with different indices a, s, 
andt. 

A practical strategy would be to calculate 
STa,o (P; C, X; r, s, t) for a given range of values ofr, s, and t, 
using (2. 18H2.20). Next the calculation of 
STa ,1 (P; C, X; 0, s, t) can be done with (2.21) and (2.22) for 
the appropriate values of s and t. Finally 
ST a,1 (P; C, X; 0, s, t) can be calculated for 1>2 with Eq. 
(2.23). In this way any integral of type (2.16) can be broken up 
into a sum of terms which only contain the two basic inte
grals (2.9) and (2.10), i.e., 

STa,o{P; C,X; 0, 0, 0) = - Ua, 0 {P; C,X) 
and 

STa, 1 (P; C,X; 0, 0, 0) = - [(P. n + x)/n2 ]Ua. I{P; C,X)· 

To treat the remaining integrals of (1.4) in a uniform 
way, we want to reexpress the functions Ua,1 (P; C, X) in 
terms of U

aIJo 
1 (P; c, X), where aD is a finite number. Since 

eventually we are interested in the physical case D = 4, the 
preferred choice for aD is aD = 2. This is motivated by the 
fact that in the calculation of propagators one usually en
counters (1.1) with a I = a 2 = 1. In fact, a = 2 is an excep
tional point because for a.;;;;2, Ua,o (P; C, X) has a sequence of 
poles left of, and including, the point D = 4. This is also the 
case for Ua,1 (P; C,X) ifa';;;;1. ThepoleatD = 4 will be inter
preted as the usual UV divergence ofthe integral (2.2). 

The relation between Ua,1 (P; C, X) and Uar> 1 (P; c, X) 
follows, for I = 0, from Eq. (2.9b), i.e., 

Ua,o{P; C,X) 

= - [1I(la _D)]{P2 + C)Ua+ I,O{P; C,X). (2.24) 

The corresponding recurrence relation in the case I = 1 fol
lows from (2. lOb), (2.24), and another property of the hyper
geometric function, 

~I(a, 1; C; z) 

= [1I(a+ l-c)]I1-c+a(l-z)~I(a+ 1, l;c;z)J. 

The result is 

Ua , I (P; c, X) 

= - [1I(la + I-D)]{Ua+l,o{P; C,X) 

+ {p2 + C - {P • n + x)2/n2)Ua + I, I {P; C, xl}. (2.25) 

Conversely, the relations to lower the index a are 

_ la-2-D _ 
Ua,o{P; C,X) = - p2 + C Ua-I,o{P; C,X) (2.26) 

and 
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Ua , I (P; c, X) 

= - [P2+C-{p.n+x)2/n2]-1 

X{Ua,o{P; C,X) + (la - I-D)Ua_l, I{P; C,X)}. 
(2.27) 

Equations (2.24) and (2.25) can be used to simplify the 
rhs ofEq. (1.4) and to reexpress it in integrals of the form 

fdXX"Ua,/( -xp;xmr + (l-x)m~ - Xp2,X), 

with n>O and a>aD. The remaining exercise is to simplify 
this integral and express it in terms of one or perhaps more 
basic transcendental functions. 

In the next section this program will be carried out for 
the simpler case of integrals associated with massless parti
cles. 

III. FEYNMAN INTEGRALS FOR ZERO MASS 
PARTICLES 

In this section we start with (1.4) and set m l = m2 = 0, 
so the quantities p, C, and X of Sec. II now become 

jf'= -xpl', C= _Xp2, X=O or x=p·n. (3.1) 

Besides UV divergences, the integral I:::':2~1 (p; 0, 0, X) can 
also have IR divergences and, according to power counting, 
it exists in a domain of the complex D plane, determined by 

la2 + I-N<ReD<lal + la2 + I-N. 

For these values of D the integral can be expressed as 

= r r r T::·;.:~N(P, n, g; X, D ) 
a;;>amio l' = 0, 1 n>D 

(3.2) 

where the upper limits of summation for a and n, although 
not specified, can be determined and are finite. Outside its 

domain of existence, I::: ~~1 (p; 0, 0, X) will be defined by the 
analytic continuation of the rhs of (3.2) in D. 

An important simplification of (3.2) is possible if we 
compare the integrals over x with X = ° and X = p . n for 
I' = 1. According to (2.9b) and (2. lOb) we may write 

fdX x"Ua, I ( - xp; - Xp2,p. n) 

= (- 2)a+ Ir(a + 1 - ~)t - p2)-a-l+D12 

X fdXX"(X(I-X))-a-I+DI2 

( 
D 3 (1 -x)(P. n)2) 

X ~I a + 1 - -, 1; -; - 2 2 • 
2 2 xp n 

If we now replace the integration variable x by 1 - x then 
this integral becomes 
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(_ 2t+ Ir(a + 1 _ ~)! _ p2)-a-1 +D/2 

X fdx(l-X)n(X(l-X))-a-I+DI2 

X ,.. (a + 1- D 1 ~. _ (l-x)(P· n)2) 
2"'·1 2' '2' 22 xp n 

= fdX(l - x)"Ua. I ( - xp; - Xp2, 0). 

This corresponds to the shift of integration variable 
q-q - pin (1.4). So we find the relation 

fdxxnUa.l( -xp; _ Xp2,p. n) 

= fdX(l - x)nua. I ( - xp; - Xp2, 0), (3.3) 

and therefore the integrals on the rhs of (3.2) only have to be 
evaluated for X = O. 

If amin < 2 then the lower range of summation for a can 
be restricted to a>2 with the use of (2.24) and (2.25). Since 

eventually we want to separate that part of/ :::;::.~ (P; 0, 0, X) 
that contains a divergence if .0-4, it will be convenient to 
define the complex variable 

E=2-DI2 (3.4) 

and to study the singularites of the rhs of(3.2) as a function of 
E. With this notation and (3.1), Eqs. (2.24) and (2.25) can be 
written as, respectively, 

Ua. o( - xp; - Xp2, 0) 

and 

= [x(1-x)p2/2(a-2+E)]Ua+I.0 ( -xp; - Xp2, 0) 
(3.5) 

Ua. t ( - xp; - Xp2, 0) 

= - [l/(2a - 3 + 2E)]{Ua+I.0 ( -xp; _Xp2, 0) 

-x(1-1Jx)P2Ua+l.d-xp; - Xp2,0)}, (3.6) 

where 

1J = 1 - S, S = (p. n)2Ip2n2. (3.7) 

With the aid of Eq. (3.3) and the three formulas above, Eq. 
(3.2) can be brought into the form 

/1-'1" 'I-'N(p 0 0 ) 
a"Q2,1 ; , ,X 

= L L LT::·;.:~N(P, n, g; S, E) 
a>2 I' = O. I n>O 

X fdxxnUa.l'( -Xp; _Xp2, 0) (3.8) 

and we only have to consider integrals of the type 

Wa. l• n(p2,S) = fdxxnUa./(-XP; _ Xp2,0), (3.9) 

for a>2, 1= 0 or 1= 1, and n>O. Explicit formulas for the 

tensors T':;:;.:~N will not be given as they follow from the 
recurrence relations of Sec. II. So we will be contented with 
studying (3.9) in the remaining part of this section. 

If a = 2 then, with (2.9b), (3.1), and (3.4) we get 

W2.0• n(P2, S) = 4r(E)( - p2)-EB(n + 1- E, 1 - E), 
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where the symbol B represents the beta function. It has the 
following Taylor series expansion around E = 0: 

B (n + 1 - E, 1 - E) 

= _1_{1 + E(_2_ + i ~) + &(~)}. 
n + 1 n + 1 1=1 I 

Thus, for n>O, 

W2• O. n (p2, S, E) 

=_4_( _p2)-E{r(E) +_2_+ i ~+ &(E)} 
n + 1 n + 1 1= I I 

(3.10) 

The occurrence of r (E) with its pole at E = 0 is interpreted as 
a UV divergence. 

Next we consider W2• 1• n' Using (2.9b) and (2. lOb), we 
may write 

W2. I. n (p2, S, E) = (8/p2)( - p2) - EtIJ n _ I (S, E), (3.11) 

where we have defined 

tlJn(S, E) = fdx xnh (x, S, E), 

with 

h (x, S, E) = r(l + E)x-E(l - X)-t-E 

(3.12) 

X~I(1 +E, 1;~; -xs/(l-x)), (3.13) 

for integer n. The integral (3.12) exists for E-o, only if n>O, 
and, in that case we define 

tlJn(S) = tlJn(S,O) = fdxXnh(X,S), (3.14) 

where now 

h (x,S) = h (x, S, 0) 

= 1 log 1 + ~XS 1(1 -1Jx ) . 
2~x(1 -1Jx)S 1 - ~XS 1(1 -1Jx) 

(3.15) 
For n> 1 the function tlJn (S) can be related to tlJo(S), or 

tIJ Ie-) - rl
dt 1 10 1 + t (3 6 O~ - Jo S+t2(1-S) g 1-t' .1 ) 

by using the following recurrence relation: 
tlJM) = (l/21J)(tlJo(S) -log(4S")), (3.17a) 

tlJn(S) = (l/2n1J){[2n - 1 + 2(n - 1)1J] tlJn _ I (S) 

- (2n - 3)tlJn_ 2(S) - l/(n - II}, n>2. 
(3.17b) 

For n < 0 and Re E < - n + 1 the following recurrence 
relation holds: 
tlJn(S, E) 

= - 1 {r(l +E)B(n + 1-E, I-E) 
2n+1-2E 

- [2n + 3 - 2E + 21J(n + 1 - 2E)] tIJ n + I (S, E) 

+ 21J(n + 2 - E)tlJn+2(S, E)}. (3.18) 

With this formula, tIJ n (S, E) can be expressed as a sum of beta 
functions and the functions tlJo(S, E) and tlJl(S, E). This en
ables the analytic continuation of tlJn (S, E) to 
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Re E> - n + I, where its singularities are determined by 
the beta functions. The singularity at the point E = 0 is a pole 
which is interpreted as an IR divergence. 

We next consider the case a>3 which is also relevant for 
calculations in nonperturbative quantum chromodynamics 
and quantum gravity.s.8 As a shorthand notation we define 
the function 

(3.19) 
I 

Then (2.26) and (2.27) for X = 0, together with (2.9b), (2. lOb), 
(3.1), and (3.12), give the following expressions for Wa • I, " : 

and 

Wa,o, ,,(p2, s) = (- p2)-€(p2)-a+22ar(a - 2 + E) 

XB (n - a + 3 - E, - a + 3 - E), 

a>2, (3.20) 

W (p2 S) = (_ 2) -€(p2) -a+ 12aF(a - ~ + E)i ldx{ai
3 
r(! + E)F(a - k - 2 + E) 

a, I, ", P F (! + E) 0 k = 0 F (a - ~ - k + E) 

Xx- a+ 1(1 _x)-a+k+ 2(1 _7]X)-k-lg(X, E) + 2x- a+2(1 _7]x)-a+2h (x, S, E)l, a>3. (3.21) 

The integrand of(3.21) depends on the integration vari
able x through terms that are not the product of a rational 
functionofxandeitherg(x, E)orh (x, S, E). Therationalfunc
tions are of the form x" (1 - x) - m, (x - 1/7]) -m" wherem l 
and m2 are non-negative integers and n can take on integer 
values. They can be rewritten as sums of partial fractions, so 
that Wa, I,,, (p2, s) becomes a linear combination ofintegrals 
of the following type: 

(a) f dx x"g(x, E) 

=r(l + E)( _p2)-€B(n + 1 - E, 1- E), 

(b) fdX(I-X)-mg(x, E) 

=F(1 +E)( _p2)-EB(I_E, -m + I-E), 

(c) fdX(X- ~)-mg(X'E)=Gm(S'E)' 

(d) fdX x"h (x, S, E) = ep,,(S, E), 

(e) fdX(X - ~) -mh (x, S, E) = Hm(S, E). 

This list exhausts all possible integrals that occur in the pro
cess of decomposing the rational part of the intergrand of 
Wa • I, ,,(p2, s) into partial fractions. Furthermore, m is al
ways a positive integer and n an integer. The function 
ep" (S, E) has been studied before so the only new types of 
integrals are given by (c) and (e). Since m > 0 the functions 
G m (S, E) and H,m (S, E) are well defined in the limit E--+O. The 
former is given by 

GI(S, 0) = log S, 
Gm(S, 0) = [( - It/(m - 1)]7]m-l(S -m+ 1_ 1), 

(3.22) 

form>2. 
The latter, H m (S, 0), can again be calculated via a recur

rence relation, which we will now describe. 
Define 

(3.23) 

2983 J. Math. Phys., Vol. 26, No. 11, November 1985 

I 
where 

W m (S ) = f dt [ 1 + (~ - l)t 2 r -I log ! ~: ' (3.24) 

then the following properties of this function can be proved: 

Wo(S) = sepo(S), (3.25a) 

WI(S) = log 4, (3.25b) 

and, for m>2, 

Wm(S)[1/(2m - 1)]{«(2m - 3)/S + 2(m - 1) 

XWm_I(S)- [2(m-2)1s]Wm _ 2 (S) 

+ [1/(m - 1)](S -m+l_l)}. (3.25c) 

The collection offormulas (3.9H3.25) provides an ade
quate algorithm for the calculation of the function 
Wa,l, n (p2, s), defined by (3.9), with a and n integers, satisfy
ing the conditions a>2, n>O, and with the integrand given 
by (2.9b) for J = 0 and (2. lOb) for J = 1. We conclude that the 
finite part ofthe integral (3.2), after application of this algo
rithm, is expressed in terms of If', nl', g"'v, the scalars 
p2,p . n, n2

, the dimensionless quantity S = (p . n)2/p2n2
, 

and the functions log sand epo(S ). The singularities of(3.2) at 
E = 0 are either of the form F (S) or B ( - E, 1 - E), corre
sponding to, respectively, UV and IR divergences. 

IV. CONCLUSIONS 

In this paper I have described an algorithm for the cal
culation of Feynman integrals related to the propagators of 
non-Abelian gauge theories in axial gauge. Besides giving in 
Sec. III a complete treatment of integrals associated with 
massless particles, generally useful recurrence relations also 
were given in Sec. II. The latter also apply to the case of 
massive particles, i.e., both m l and m2 unequal to zero in 
formula (1.1) and an algorithm, similar to that of Sec. III for 
massive Feynman integrals in the axial gauge can be found. 8 

As the algorithms are based on recurrence relations they 
can be optimally used if implemented in a computer program 
for algebraic computation.9,l0 

After completion of this work I was informed about sim
ilar results, claimed by Lee and Milgram. II These authors 
have given explicit formulas for massless Feynman integrals 
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in the form of truncated and infinite power series. For practi
cal calculations, which should preferably be done on a com
puter, the use of recurrence relations seems to be advanta
geous above an explicit formula in the form of power series. 
The hard part of the calculation of a large set of integrals (1.1) 
is the simplification to sums of basic integrals, i.e., (1.4) or 
(3.16), which cannot be done analytically anyhow. 

The foregoing argument will hold even more for the case 
where all particles are massive and for which explicit formu
las, as in Ref. 11, have not been given yet. Here recurrence 
relations may provide the only viable way to tackle Feynman 
integrals. 8 
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The character table for S (1080), the largest point-group-like subgroup of SU(3), is presented. So is 
the reduction of the first 28 SU(3) characters to S (1080) characters. These tables are needed in a 
recently proposed systematic description ofSU(3)-invariant lattice gauge theories by effective 
S ( 1080)-invariant theories. Problems encountered in an alternative systematics, using only local 
S (1080)-invariant theories, are discussed. 

I. INTRODUCTION 

The color symmetry group of QCD, SU(3), has a largest 
point-group-like subgroup S (1080) with 1080 elements. 1,2 It 
has recently been suggested that numerical simulations of 
QCD on a lattice might be facilitated by the use of S (1080) 
instead of SU(3), when the differences between the two 
groups, the degrees of freedom residing in the coset SU(3)/ 
S(1080), are properly accounted for.3,4 In doing so, argu
ments based upon invariance with respect toS(1080) are ex
tensively used. Hence, a knowledge of the irreducible repre
sentations of S(1080) is necessary. So is a knowledge of the 
character expansion inS (1080) ofSU(3) characters restricted 
to S (1080). Both are presented here. 

The present study of S (1080) is useful not only for a 
systematic decimation of SU(3) to S(1080) along the lines 
advocated in Refs. 3 and 4. Starting with a local gauge theory 
with fields in SU(3), the outcome of such a decimation is at 
best a quasilocal gauge theory with fields in S (1080). The 
latter theory may be preferable to the former in numerical 
simulations, because it drastically reduces memory require
ments, and increases the speed of multiplication. But the 
quasilocality of the effective action is an unattractive feature, 
which reduces the advantages ofthe effectiveS (1080) theory. 
Therefore it may be useful to notice that a given local gauge 
theory with a continuous gauge group may be well approxi
mated by a gauge theory with a discrete subgroup for a whole 
range of effective actions.s This universality with respect to 
change of both action and group is just an extension of the 
much-studied universality amongst lattice actions for fixed 
gauge groupS.7-14 With this universality in mind, we may try 
to construct the one-plaquette effective action of S (1080), 
which gives the best possible approximation to a given SU(3)
invariant theory. If this approximation is not found satisfac
tory, we may proceed to search amongst the simplest actions 
involving also two plaquettes. The building blocks for such 
construction are the characters of S (1080), and the resolu
tions of SU(3) characters on them. This is the other reason 
for the present study. 

In Sec. II the characters of S (1080) are found and their 
table given. In Sec. III the restrictions to S (1080) of the 28 
lowest-lying representations of SU(3) are expanded on 
S (1080) characters and the problems encountered in any at
tempt to describe a local SU(3)-invariant theory by a local 
effective S (1080)-invariant theory are discussed. 

II. THE CHARACTERS OF 5(1080) 

The group S (1080) covers three times a 360-element 
subgroup of SU(3 )/Z3' which is isomorphic with A6, the al
ternating group of six letters. 1,2 Hence S (1080) has four gen
erators. In the three-dimensional representation corre
sponding to the fundamental representation of SU(3), the 
generators may be chosen as2 

A = H ~ 1 ~ J (2.1) 

E = {~ ~ ~}, (2.2) 
100 

w= - ~ t: ~: ~J (2.3) 

B=nl 
~ ~+ (2.4) 

where 

(2.5) 

and 

m=exp(i1r/3) = (1 + ;../3)12. (2.6) 

We remark that A, E, and Ware real, and generate the 60-
element icosahedral group in its defining representation. 
Since S (1080) has only 1080 elements it is easily generated 
and studied on a computer. It has 17 different classes, shown 
with the classes ofSU(3) in Fig. 1. The classes of S (1080) were 
found by sorting its elements according to the values of their 
traces, and checking for transitivity of the adjoint action of 
S(1080) on elements with the same trace values. Only the 
elements with trace zero do not form a single class. They fall 
in two classes, each containing 120 elements. 

Any irreducible representation of SU(3), .@ (..1.,/,)' A.,f.l 
e {O, 1,2,3, ... J, is also a representation of S (1080), though not 
necessarily an irreducible one. Hence, in terms of irreducible 
representations .@; of S (1080), we may write 

.@(..1.,p.) = e .@;, 
1E{..1.,p.) 

(2.7) 
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hau where m(A-oI'),r is a non-negative integer equal to the number 
of times !!J ~ occurs in !!J (AoI')' We introduce the scalar pro-
duct amongst class functions on S (1080), 

1 1 
\, (x,lf) = 1080 CI~ cncX·(c)tP(c), (2.9) 

\', 2i 
where nc is the number of elements in the class c. In this \ , 

\ 72'-
\ . " product 
\ " , 90 ' .... 4J \ • (x(~), XWol",) = Lm(~),rm(A'oI")r (2.10) 72 ........ 
I . .... .... 

45
1 ......... 

72 120 90 7t --- These products are shown in Table I for the 28 irreducible 
120 .,., .. 2-- Reu 

1 .--'-- representations !!J(AoI') ofSU(3) having-t + 1'<:..6. 
I • .-- ....-
I 7~"" From Table I we see that the eight irreducible represen-
I • I 90 .... 45 tations ofSU(3) characterized by 
I. ,/ 

/ 72/" (-toIL) = (0,0), (1,0), (0,1), (1,1), (2,0), 
1/ 

(0,2), (2,1), and (1,2), (2.11) 1/ v , 
also are irreducible representations of S (1080). So are !!J (3,0) 

1 
and !!J (0,3)' but they form one, self-conjugate representation, 
when considered as representations of S(1080). These nine 
representations !!J i , ... ,!!J;, and their corresponding char-
acters X i '''''X;, are the only ones identical for SU(3) and 

FIG. 1. The number of elements in each class of S (1080) is shown next to the S (1080), as we shall see. 
complex value of trace u, for u belonging to the class. There are 17 classes, Reading on in Table I, we find two of them having vanishing trace. The values of trace U, UeSU(3), fall 
within the dashed lines. 

(x(2,2) ,X(2,2)) = L m~,2),r = 4. (2.12) 

where re(-t,p) is a shorthand notation for !!J ~ being con- Hence !!J (2,2) is reducible, either to four different irreducible 
tained in !!J(AoI')' Taking the trace on both sides, we obtain representations of S (1080), or to one irreducible representa-

X(AoI') = Lm(AoI'~rX;' (2.8) 
tion occurring twice. The second possibility is ruled out by 
the fact that !!J (2,2) is 27 dimensional, i.e., has odd dimen-

r 

TABLE I. Scalar products ofEq. (2.10). 

(A..p) (0,0) (1,0) (0,1) (1,1) (2,0) (0,2) (2,1) (1,2) (3,0) (0,3) (2,2) (3,1) (1,3) (4,0) (0,4) (3,2) (2,3) (4,1) (1,4) (5,0) (0,5) (3,3) (4,2) (2,4) (5,1) (1,5) (6,0) (0,6) 

(0,0) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
(1,0) 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 
(0,1) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 
(1,1) 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 I 1 
(2,0) 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 1 0 0 
(0,2) 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 1 0 0 0 
(2,1) 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 2 0 0 0 0 1 0 0 2 2 0 0 0 
(1,2) 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 2 0 0 1 0 0 2 0 0 2 0 0 
(3,0) 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 2 0 0 0 0 0 0 
(0,3) 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 2 0 0 0 0 0 0 
(2,2) 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 2 2 0 0 5 0 0 0 0 3 3 
(3,1) 0 0 0 0 0 0 0 1 0 0 0 2 0 0 1 0 3 0 0 1 0 0 4 0 0 3 0 0 
(1,3) 0 0 0 0 0 0 1 0 0 0 0 0 2 I 0 3 0 0 0 0 1 0 0 4 3 0 0 0 
(4,0) 0 0 0 0 0 1 0 0 0 0 0 0 1 2 0 1 0 0 0 0 0 0 0 4 2 0 0 0 
(0,4) 0 0 0 0 1 0 0 0 0 0 0 1 0 0 2 0 1 0 0 0 0 0 4 0 0 2 0 0 
(3,2) 0 0 0 0 0 0 2 0 0 0 0 0 3 1 0 6 0 0 0 0 3 0 0 6 5 0 0 0 
(2,3) 0 0 0 0 0 0 0 2 0 0 0 3 0 0 1 0 6 0 0 3 0 0 6 0 0 5 0 0 
(4,1) 0 0 0 1 0 0 0 0 1 1 2 0 0 0 0 0 0 4 4 0 0 6 0 0 0 0 2 2 
(1,4) 0 0 0 1 0 0 0 0 1 1 2 0 0 0 0 0 0 4 4 0 0 6 0 0 0 0 2 2 
(5,0) 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 3 0 0 3 0 0 2 0 0 3 0 0 
(0,5) 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 3 0 0 0 0 3 0 0 2 3 0 0 0 
(3,3) 0 0 0 1 0 0 0 0 2 2 5 0 0 0 0 0 0 6 6 0 0 12 0 0 0 0 5 S 
(4,2) 0 0 0 0 2 0 0 2 0 0 0 4 0 0 4 0 6 0 0 2 0 0 12 0 0 8 0 0 
(2,4) 0 0 0 0 0 2 2 0 0 0 0 0 4 4 0 6 0 0 0 0 2 0 0 12 8 0 0 0 
(5,1) 0 1 0 0 0 1 2 0 0 0 0 0 3 2 0 S 0 0 0 0 3 0 0 8 7 0 0 0 
(1,5) 0 0 1 0 1 0 0 2 0 0 0 3 0 0 2 0 5 0 0 3 0 0 8 0 0 7 0 0 
(6,0) 1 0 0 1 0 0 0 0 0 0 3 0 0 0 0 0 0 2 2 0 0 5 0 0 0 0 S 5 
(0,6) 1 0 0 1 0 0 0 0 0 0 3 0 0 0 0 0 0 2 2 0 0 5 0 0 0 0 s S 
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sion. So we have encountered four more irreducible repre
sentations of S (1080), iiJ;o,iiJ; I ,iiJ;2 and iiJ;3' in 

iiJ (2.2) = iiJ;o + iiJ; I + iiJ;2 + iiJ;3' (2.13) 

Two additional irreducible representations, a conjugate 
pair, occurin iiJ(3.1) and iiJ(I.3)' These 24-dimensional repre
sentations are both reducible to two representations of 
S(1080), one of which is iiJ9 = iiJ(I.2l' respectively, 
iiJ 8 = iiJ (2.1)' The latter representations are 15 dimensional, 
hence we have found a conjugate pair of nine-dimensional 
representations iiJ;4 and iiJ;s' The corresponding char
acters are 

X;4 = X(3.1) - X(I.2)' 

X;s = X(I.3) - X(2.1)· 

Reading on in Table I, we find 

iiJ (4.0) = iiJ ~ Ell iiJ;s, 

(2.14) 

(2.15) 

(2.16) 

iiJ (0.4) = iiJ; Ell iiJ ;4' (2.17) 

i.e., both representations are reducible to representations of 
S(1080) already encountered. New irreducible representa
tions occur in iiJ (3.2) and iiJ (2.3) 

iiJ(3.2) = iiJ; EIliiJ; EIliiJ;s EIliiJ', (2.18) 

where iiJ' = iiJ;6' and iiJ;6 and its conjugate representation 
iiJ i7' contained in iiJ (2.3)' are three dimensional. The corre
sponding characters are 

X ;6 = X(3.2) - X(2.1) - X(1.3)' (2.19) 

X;7 = X(2.3) - X(I.2) - X(3.1)· (2.20) 

Now we have encountered all 17 irreducible representa
tions of S (1080). But we still have to find expressions for the 

four characters X io,x i I ,X i2' and X ;3 making up X (2.2)' Ta
ble I shows that iiJ(4.1)' which equals ~ (1.4)' contains two of 
the four irreducible representations contained in ~ (2.2)' So 
does iiJ (3.3) , and it contains one of them twice. A small calcu
lation based on the table yields that they are the same two 
representations-let us call them iiJ;2 and iiJ;3' that they 
are eight and nine dimensional, and that the corresponding 
characters may be expressed as 

X;2 = X(3.0) + X(2.2) + X(4.1) - X(3.3)' 

X;3 = - X(I.I) - 2X(3.0) - X(2.2) + X(3.3)· 

(2.21) 

(2.22) 

The two characters remaining to be found, X;o and 
X;I' cannot be expressed in terms ofSU(3) characters. Only 
their sum 

X;o + X ; I = X(2.2) - X;2 - X ;3 (2.23) 

is a class function also on SU(3). As all such functions, in
cluding the hitherto-determined characters of S ( 1080), it 
takes the same value on both classes of S (1080) elements hav
ing zero trace. This is so, because the traceless elements in 
SU(3) form one class within SU(3). But since X;o - X;I is the 
last class function to be determined, it is uniquely character
ized as being orthogonal to X; ,,,,,X9, X;o + X;I ,X;2,,,,,X;7 
with norm ,fi and a non-negative, integer value on the 
group's unit element. 

The character table of S (1080) is given in Table II. In the 
seven representations iiJ; ,iiJ 4,iiJ 9,iiJ;0,iiJ; I ,iiJ;2' and 
iiJ;3 the center Z3 of S (1080) is represented by the unit ma
trix. Hence, they are also representations of S (1 080)/Z3' and 
the seven corresponding characters have already been given 
in Table IV of Ref. 2. 

TABLE II. Character table for S(1080). The first column numbers the characters as in the text. The first row numbers the classes according to decreasing 
values of the real part of the character in the fundamental representation, i.e., X 2' The second row shows the number of elements in each class, together with 
the kind of cycle generated by those elements. #1 = (I - -./5)12; #2 = (1 + -./5)/2; w = (1 + i.J3)12; w* = (1 - i.J3)12. 

CLASSES 

LAS I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 

~ IE 72C
5 

90C
4 

45C
6 45C~ 72CI~ 72ci5 120C3 120C) 90CI2 90ci2 72CS 72C

15 72C;5 45C2 IC~ Ie;' 

I I I I I I I I I I I I I I I I I I 

2 3 I * -l1 w* 0 0 * * -I -3w* -3w 112 w w -Il IW -w -w III -1l2W -1l2W 

3 3 112 I w* w -Il w* -IlI W 0 0 * III -w -w -1l2W -1l2W * -I -~w -3w* 

4 8 Ilz 0 0 0 III III -I -I 0 0 III 112 112 0 8 8 

5 6 I 0 -2w* -2w -w* -w 0 0 0 0 I -w -w* 2 -6w -6w· 

6 6 I 0 -2w -2w* -w * 0 0 0 0 I -w* -w 2 -Ew* -6w -w 

7 15 0 -~ w Uj* 0 0 0 0 w· w 0 0 0 -I -L~w· -15", 

8 15 0 -I w* w 0 0 0 0 w w* 0 0 0 -I -15w * -15w 

9 10 0 0 -2 -2 0 0 I I 0 0 0 0 0 -2 10 10 

10 5 0 -I I I 0 0 -I 2 -I -I 0 0 0 I 5 5 

II 5 0 -I I I 0 0 2 -I -I -I 0 0 0 I 5 5 

12 8 III 0 0 0 llz llz -I -I 0 0 112 III III 0 8 8 

13 9 -I I I I -I -I 0 0 I I -I -I -I I 9 9 

14 9 -I I -w* - w w* w 0 0 * -I -w -w w * I -9w* w -9w 

15 9 -I I -w - w* w w* 0 0 -w* -I * -w w w I -9w* -9w 

16 3 I * -lJ..,w -1l2w* 0 0 * -Il
l

w* -I -3w* -3w III w w -w ··W 112 -Il
I
W 

17 3 III I w* * 0 w -1l2W "2w 0 -w _·w· 112 -Ill w -Ill w* -I -3w -3w* 
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III. REDUCTION OF SU(3) CHARACTERS TO 5(1080) 
CHARACTERS 

Having found the characters of S (1080), we can expand 
the SU(3) characters restricted to S(1080) in this orthonor
mal basis 

17 

X(A,p) = 2: C(A,p),rX;, in S(1080), (3.1) 
r= I 

The expansion coefficients C(A,p).r are given in Table III. This 
table is useful in the construction of effective S (1 080)-invar
iant lattice gauge theories designed to approximate SU(3)
invariant ones. The problem to be circumvented by such an 
effective theory is the following. 

Any SU(3)-invariant lattice gauge theory with a local 
Boltzmann weight exp s may have its Boltzmann weight ex
panded on SU(3) characters 

exps(U) = t;P(A,p)X(A,I')(U)' UeSU(3). (3.2) 
( ,I') 

Typically, P (A,p) is positive and decreasing sufficiently fast 
with increasing A. + P. so that only a limited number of coef
ficientsPA,p need be considered. IS Restricted to S (1080), Eq. 
(3.2) reads 

17 

exps(n) = 2:P;X;(u), uES(1080), (3.3) 
n=1 

with 

(3.4) 

TABLE III. Coefficients c(A",).,. A + 1L<6. r = 1.2 ..... 17. defined in Eq. (3.1). 

SU(3) S(1080) 2 3 4 5 6 7 

(0.0) 1 0 0 0 0 0 0 
(1.0) 0 1 0 0 0 0 0 
(0.1) 0 0 1 0 0 0 0 
(1.1) 0 0 0 1 0 0 0 
(2.0) 0 0 0 0 1 0 0 
(0.2) 0 0 0 0 0 1 0 
(2.1) 0 0 0 0 0 0 1 
(1.2) 0 0 0 0 0 0 0 
(3.0) 0 0 0 0 0 0 0 
(0.3) 0 0 0 0 0 0 0 
(2.2) 0 0 0 0 0 0 0 
(3.1) 0 0 0 0 0 0 0 
(1.3) 0 0 0 0 0 0 1 
(4.0) 0 0 0 0 0 1 0 
(0.4) 0 0 0 0 1 0 0 
(3.2) 0 0 0 0 0 0 2 
(2.3) 0 0 0 0 0 0 0 
(4.1) 0 0 0 1 0 0 0 
(1.4) 0 0 0 1 0 0 0 
(5.0) 0 0 1 0 0 0 0 
(0.5) 0 1 0 0 0 0 1 
(3.3) 0 0 0 1 0 0 0 
(4.2) 0 0 0 0 2 0 0 
(2.4) 0 0 0 0 0 2 2 
(5.1) 0 1 0 0 0 1 2 
(1.5) 0 0 1 0 1 0 0 
(6.0) 1 0 0 1 0 0 0 
(0.6) 1 0 0 1 0 0 0 
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From Table III we read, for example, that 

P; = Pto,O) + 2/3(6,0) + ... , 
P 2 = P ~ = P(1,O) + p(O,S) + P(S,I) + .... 

(3.5) 

(3.6) 

The first term in the series expansion of the free energy 
ofthe SU(3 )-invariant theory is proportional to In P (0,0)' IS 
For the S(1080)-invariant theory the equivalent term is 
In P ; . Hence, the S (1080)-invariant theory obtained by sub
stitutingS(1080) for SU(3) in an SU(3)-invarianttheory, with 
no accompanying change in the Boltzmann weight, has for 
this first term 

In P; = In( p(O,O) + 2/3(6,0) + ... ). (3.7) 

The discrepancy between this result, and the desired one 
In P (0,0)' is of order six in P in the case of Wilson's action 

s = PiLr(I,o) + X(O,I))' (3.8) 

The relative discrepancy between the desired result and the 
one obtained increases for higher coefficients; for example, 
everywhere, wherep(I,O) is desired, P(I,O) + p(O,S) + ... is ob
tained, i.e" a discrepancy of order 4 in p. 

For the lower coefficients p;, the cure seems obvious. 
One should use an action for the approximate S (1080) the
ory, which is defined by having P; = p(O,O),/3 2 = P(1,O)' etc., 
for the first eight coefficients. This strategy does lead to an 
S ( 1080)-invariant theory, which reproduces the series expan
sion of the SU(3)-invariant theory, that it is to approximate, 
to all 16 orders known. IS For the present it is not known, 
however, how one optimally assigns coefficients P; to the 

8 9 10 11 12 13 14 15 16 17 

0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 1 1 1 0 0 0 0 
1 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 1 0 
2 0 0 0 0 0 1 0 0 1 
0 1 0 0 1 1 0 0 0 0 
0 1 0 0 1 1 0 0 0 0 
1 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
0 2 1 1 1 2 0 0 0 0 
2 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 1 0 0 
2 0 0 0 0 0 1 0 0 0 
0 0 1 1 0 1 0 0 0 0 
0 0 1 1 0 1 0 0 0 0 
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last nine characters in the character expansion of the Boltz
mann weight. So, whereas the problem just posed is well 
defined, the solution is not, at present. Some tools necessary 
for an attack on the problem have been presented here. 
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The Belinskii-Zakharov teehnique is applied to find a soliton solution for self-dual SU(3) gauge 
fields with axial symmetry on a Euclidean four-dimensional flat space. We find that for the special 
case of solutions generated from a special class of diagonal seed solutions the obtained soliton 
solutions reduce to quadratures. 

I. INTRODUCTION 

Yangl has written the self-dual SU(2) gauge field equa
tions in complexified Euclidean space in the R gauge in 
terms of one real variable (t/J ) and two complex variables (p 
and pl. Prasad2 has examined the self-dual SU(3) gauge fields 
in the R gauge in terms of two real variables (t/JI and t/J2) and 
six complex variables (PI,PI,P2,P2,P3' andp3)' 

The self-dual equations3-S may be derived by appropri
ate variations from Lagrangian densities for the SU(2) and 
SU(3) Lie groups. These are, respectively, 

2'[SU(2)] = J d 4
x ;2 

X [( t/Jp t/J" + PI' p,,)gP" + e'''pp p,,], (1.1) 

2'[SU(3)] 

= J d 4
x {:f [( t/Jip t/Jiv + t/J2Plp PI,,)g#''' 

+ e'''t/J2PIp PI"] 

+ :~ [(t/Jlp t/J2" + t/JIPlp P2")~" + e'''t/JIPlp P2,,] 

+ t/Jl
1
t/J2 [( P3p - P2 PIp)( P3" - P2 PI,,)( gI''' + e''1 

- t/Jlp t/J2" gI'''] } , (1.2) 

where the only nonvanishing elements in the metric gpv are 

gyy =gyY =gzi = gh = 1, (1.3) 
A A 

e''' = e'v"uIY" Yu +Z"zu), 

with e'""u = 1, when/LVAU=YYu, (1.4) 

and 

d 4x=dy dY dz Oz. (1.5) 

The explicit forms of the self-dual field equations for the 
Euclidean SU(3) theory are 

(ayay + azaz)ln t/JI + (t/J2/ t/JI)(Ply Ply + Plz PIZ) 

+ (lIt/JI t/J2)[(P3y -P2Ply)(P3y -P2Ply) 

+ (P3z - P2Plz)(P3Z - P2Plz)] = 0, 

(ayay + az az)ln( t/J l/t/J2) + (t/J2/ t/JI)(Ply Ply + Plz PIZ) 

(1.6a) 

- (t/Jl/t/J~)(p2Y P2y + Plz Pn) = 0, (1.6b) 

(1.6c) 

[
p3Y -P2PlY] + [P3Z -P2PIZ] =0, 

t/JI t/J2 Y t/JI t/J2 z 

(t/J2~IY) + (t/J2~1z) 
t/JI ji t/JI z 

- (ilt/JI t/J2)[ P2ji(P3y - P2Ply) 

+ Prz(P3z - P2P3z)] = 0, 

(t/J2~IY) + (t/J2~1Z) 
t/J2 y t/JI z 

- (lIt/JI t/J2)[P2y(P3ji - P2Plji) 

+ Plz(P3z - P2Plz)] = 0, 

(t/J2~2Y) + (t/JI~lz) 
t/J2 ji t/J2 z 

+ (lIt/JI t/J2)[ Plji(P3y - P2Ply) 

+PIz(P3z -P2PIZ)] =0, 

(t/JI~2ji) + (t/JI~n) 
t/J2 y t/J2 z 

+ (1It/Jlt/J2) [Ply(P3ji -P2Plji) 

+PIz(P3z -P2PIZ)] =0, 

(1.6d) 

(1.6e) 

(1.61) 

(1.6g) 

(1.6h) 

where the subscripts denote partial differentiation and 

.,fiy = XI + iX2' Jiz = X3 - ix4, 
(1.7) 

.,fiY = XI - ix2, .,fiz = X3 + iX4' 

whereas xI' IJl = 1,2,3,4) are the complexified Cartesian co
ordinates. 

Recently, Letelier6 has found soliton solutions for self
dual SU(2) gauge fields extending the Belinskii-Zakharov7 

solution-generating technique used in general relativity. The 
purpose of this paper is to find explicit pure soliton solutions 
to Eqs. (1.6a)-(1.6h) for self-dual SU(3) gauge fields. Thus in 
Sec. II we present the Belinskii-Zakharov new solution-gen
erating algorithm for the SU(3) group. In See.III we find 
explicitly the function \flo specializing the go as in Eqs. (3.8). 
In Sees. IV and V we derive the one- and two-soliton solu
tions, respectively. 

II. THE BELINSKII-ZAKHAROV NEW SOLUTION
GENERATING ALGORITHM 

Werestrictt/JI, t/J2,PI,PI,P2,P2,P3' andp3 to be functions 
only of r = ~2yy and (l) = (11 .,fi)(z + Z) and we find that Eqs. 
(1.6) read as 
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</>MI" + (1/r)t/>lr + </>1"",,) - </>~r - </>t" 

+ </>2( Plr Plr + PIO) PIO») 

+ (</>I/</>2)[(P3r -P2Plr)(P3r -P2Plr) 

+ (P30) - P2PIO»)(P3OJ - P2PIO»)] = 0, (2.1a) 

(1/</>~)[ </>I( </>1" + </>IJr + </>1"",,) - ;~r - ;~O) 

+ </>2(PlrPlr +PIO)PIO»)] 

- (1/;~)[ ;2(;2" + (1/r);2r + ;2OJOJ) - </>~r -;L 
+;I(P2rP2r +P2l»P2l»}] =0, (2.1b) 

2 ) [P3r - P2Plr] 77' ~3r - P2Plr + r .J. J. 
r"'l .,,2 r"'l .,,2 r 

+ [P30) - P2 PI.,] = 0, 
;1;2 ., 

2 I;; - - ) + [P3r -P2Plr] 77' 'l"'3r - P2Plr r .J. J. 
r"'l '1'2 r"'l '1'2 r 

+ [P3., - P2 PI&>] = 0, 
;1;2 w 

2;2~lr + r (</>2~lr) + (;2~1&» 
n;1 n;1 r ;1 &> 

- (1/;1 </>2)[ P2AP3r - P2Plr) 

+ P2l»(P3&> - P2PIW)] = 0, 

2;2~lr + r (;2P
2
Ir) + (;2~1&» 

r;) r;\ r ;\ &> 

- (1/;) ;2)[ P2r(P3r - P2P\r) 

+ P2&>(P3&> - P2P\ ... )] = 0, 

2;1~2r + r (;\P:r) + (;\~I&» 
r; I r;2 r ;2 '" 

+ (1/;1 ;2)[ Plr(P3r - P2Plr) 

+ PI",(P3w - P2PI&»] = 0, 

2;1~2r +r(;IP:r) + (;I~I{))) 
r;2 r;2 r ;2 w 

+ (1/;) ;2)[P)r(P3r -P2Plr) 

+PI{))(P3w -P2P)w)] =0. 

(2.1c) 

(2.1d) 

(2. Ie) 

(2.U) 

(2.1g) 

(2.th) 

The system of equations (2.1) can be written as follows: 

~U+~V=~ ~~ 

where 

U=Tgrg-t, V==Tgz g-t, 

and 
r l ., 

g=
;1 

(2.3) 

X (;1 PIPI !1</>V;2 PIP3 +~2(;V;2) ). 
P3 PI P3 + P2(;V;2) P2P2(;V;2) +;) </>2 (2.4) 

From the definition (2.4) we have g = g+ I and det g = ",I.,. 
Note that in order to satisfy Eq. (2.2) we need n = 3, e.g., 
detg = r. However, we have included the parameter 11 to 
facilitate the comparison of the SU(3) case with the SU(2) 
one; we shall return to this point in the last section. 
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The Belinskii-Zakharov (BZ) method for finding soliton 
solutions of Eq. (2.1) focuses attention on the problem of 
finding a solution of g appearing in Eqs. (2.2) and (2.3). The 
key point is the association to the system (2.1) of the linear 
"eigenvalue" problem 

Dr 1/1 = [(rU + AV)/(A. 2 + r)] 1/1, 

D{)) 1/1= [(rV -AU)/(A 2 + r)] 1/1, 

where 

(2.5a) 

(2.5b) 

Ur U 2 

Dr==Or + 2 r OA., D.,==Ow - 2 r OM (2.6) 
A + A + 

A is a complex spectral parameter, and \(I(A.,r,tu) is a three
dimensional complex matrix function, which satisfies the 
condition 

\(I(A = O,r,tu) = go. (2.7) 

The solitonic character of the solutions of Eqs. (2.2) is 
associated with solutions of the form 

(28) 

with 

(2.9) 

where 1/10 is a solution to Eqs. (2.5) for a particular seed solu
tion to Eqs. (2.2). The Rk are complex matrix functions of r 
and tu only, and the J.t k are scalar complex functions of r and 
tu only. The number of solitons appearing in the solution 
depends on the number of poles existing in the matrix X. 
Note that for A = 0, Eq. (2.8) gives 

g = X(A = O,r,tu)go' (2.10) 

The condition g+ = g is insured for the present case re
garding the expression 

g = X( - r/I,r,tu)go[X(A,r,tu)] +. (2.11) 

The last condition tells us that if go = go+ , then g = g+ when 
g is given by (2.7). 

Hence, knowing the 1/10' a solution 1/1 can be generated 
by purely algebraic operations if one assumes that 1/1 is the 
product of a three-dimensional matrix, with n simple poles 
in the complex A plane and 1/10' Equation (2.11) shows that an 
n-soliton solutiong(r,tu) can then be found. The explicit pro
cedure is as follows: From Eqs. (2.5H2.11) one obtains 

J.tk,r = 2rJ.tk/(r + J.ti), J.tk.OJ = - 2r /(r + J.ti). (2.12) 

The solution ofEq. (2.12) is the so-called "pole trajector
ies" J.tk' which are 

J.tk = Ok - tu ± .J(Ok - tu)2 + ?, k = 1,2, ... , (2.13) 

where the Ok are the arbitrary complex constants. 

The new solution generated by this method is complete
ly determined by the function 1/10 as follows: 

g = (1 - f Rk) go, 
k= I J.tk 

(2.14) 

where (Rk )ab=='7]!:,lm\,"l, '7]!:') can be obtained from 

'7]!:,I==Dlk(N~I/Jil)' (2.15) 

where 

(2.16) 
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r ( (k) -(/))/(-2 - ) r-kl=m ·m r+I'-kl'-1 = lk' 
with 

m1k ). m(/)=m~){gO)abm~) 

and 

(k)_ (k)[tTI-I/" )] ma =moc '1" 0 1fA'k,r,O) ca' 

Finally one can derive the matrix g by 

N(k)D N(l) 
I,. ) ~ a kl b gab = \60 ab - _ 

. I'-kl'-l 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

Equation (2.20) is a solution to Eq. (2.2) but it is not a solution 
to the field equations because the matrix whose elements are 
(2.20) is Hermitian in general, and it is not possible to cast it 
in the form (2.4) since detg = r. It can be shown that the 
determinant of g is 

detg = ( - l)Nr 2N (IT ~) detgo' 
k=lI'-k 

(2.21) 

The problem can be remedied by defining a new matrix 

g"h=tg(detg)-1/2, (2.22) 

that satisfies the conditions (gph) + = gPh and det gPh = r. 
One can prove that gPh satisfies Eq. (2.2) whenever g is a 
solution. 

Expression (2.21) shows that only for N even will the 
signature of go and g coincide. For N odd one will need a 
nonphysical seed to obtain a matrix with the physical signa
ture; e.g., 

g~ =diag{rln~I-I, rln~I~2-I, -rln~21, (2.23) 

with 

det g~ = - r (n = 3). (2.24) 

III. THE FUNCTION 1[/0 

The function 1[/0 obeys the differential equations (2.5) 
with g replaced by go, i.e., 

and 

Dr 1[/0 = [(rUo + A. Vo)/(A. 2 + r) J 1[/0' 

D., 1[/0 = [(rVO - A.UO)/(A. 2 + r)J 1[/0' 

(3.1a) 

(3.1b) 

(3.2) 

Recently, Letelier has found exact solutions for 1[/0 in 
the case of the SU(2) group when go is a diagonal metric.6 

Also, Letelier8 showed that for a general diagonal seed solu
tion the integration of (3.1) along the pole's trajectories re
duces to a single quadrature. 

In this section we study the system of equations (3.1) 
with the boundary condition (3.2) when go is diagonal for the 
SU(3) group. 

The set of equations [(3.1) and (3.2)] is equivalent to the 
equations 

Dr 1[/0 = [(rUo + A. VO)/(A. 2 + r) J 1[/0' 

A. ar 1[/0 + r a., 1[/0 = Vol[/o, 

and 
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(3.3a) 

(3.3b) 

(3.4) 

Assuming that go and 1[/0 are diagonal matrices, Eqs.(3.3) 
and (3.4) yield 

Dr In(det 1[/0) = 2r/(A. 2 + r), 

(A. ar + ra.,)ln(det 1[/0) = 0, 

(3.5a) 

(3.5b) 

with 

(det I[/o)..t=o = r. (3.6) 

A solution to Eqs. (3.5) with the condition (3.6) is 

det 1[/0 = r - UO) - A. 2. (3.7) 

Furthermore, we specialize go as follows: 

{g0)1l = r 2(1 - bvneX" (3.8a) 

{gob = r 2(1 + bVne X" (3.8b) 

{gOh3 = rke X
, (k = const), (3.8c) 

and 

{gOb2 = {g0)21 = {g0)13 = {gohl = {gOb3 = (gOh2 = 0, (3.3d) 

where X j = - [ajCtJ + c;(r/2 - CtJ2)] with i = 1,2,3 and 
a/,c j arbitrary real constants. Note that in this case Eq. (2.2) 
reduces to 

(3.9) 

i.e., to the usual Laplace equation in cylindrical coordinates. 
The condition det g = r61n (n = 3) gives 1.:= 1 XI = 0, which 
implies 

3 3 

L a j = L Cj =0. (3.10) 
j=1 /=1 

Combining Eqs. (3.8), (3.3), and (3.4), one obtains 

D 1 (tTl) 2(1 - b )1J- 1r - CI~ - A. (air - 2cI CtJr) 
r n '1"0 II = -"----'-""-----...::'---=--'-""----'-....!. 

A. 2 + r 

(A. ar + ra.,)ln(I[/O)ll = - r(a l - 2cI CtJ), 

In( 1[/0)1I1..t = 0 = In go· 

A straightforward computation gives 

(1[/0)11 = (r - UCtJ - A. 2)(1 - b Vn 

xexp{ - [al(CtJ + A. /2) 

+ cl(r/2 - (CtJ +A. /2)2)J I. 

(3.11a) 

(3. lIb) 

(3.12) 

(3.13) 

Using a similar procedure and with the aid of Eq. (3.6) we 
obtain 

(I[/Ob2 = (r - UCtJ - A. 2)(1 + b)ln 

X exp{ - [a2(CtJ + A. /2) 

+ c2(r /2 - (CtJ + A. /2)2)J I. (3. 14a) 

and 

(I[/Oh3 = (r - UCtJ - A. 2)k 12 

X exp{ - [a3(0) + A. /2) 

+ c3(r /2 - (CtJ + A. /2)2) J }. (3. 14b) 

In the case that go has a negative determinant one can take 
the following expression for go and 1[/0: 
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and 

(W~)II = (Wo)w (W~h2 = (Woh2' (W~h3 = - (Woh3' 

(3.16) 
I 

where 

~ '==Im~l W2W31
2 - Iml:1 WI W3 12tPltP2 

+ Im~lW2WI12(tP~/tP2)' 

I' =a -Cd +~(a _Cd)2 ± ?, 
W1W2W

3 
= - (_ 2p.a)2In+kI2, 

with 

tPl = rblne - x" tP2 = r 2blne x,. 

The "physical" g is given by the expression 

gr>h = (II'I)/rlg. 

V. TWO-SOLITON SOLUTION IN SU(3) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

In the case where the matrix X has two poles we have 

X==I + Rl/(A. - 1'1) + R2/(A. - 1'2) (5.1) 

and 

(5.2) 

where 

~ =~ = .-::---~ 
_ m(1) • m(1) m(2). m(2) _ 1 m(1) • m(2) 12 

r + 11'12 r + 11'12 r + 11'12 ' 
(5.3) 

mlk ). mIl) 

-m(k)(g) m-(I) - m(k)m-II ) (4a211. -;; )(b-I)/n 
= a Oab b - 01 01 r-kr-I 

xr211- b)/n exp{al [Cd + !!/.tk + iLl)] 
-2 2 - 2::l 

+ CI [r/2 - Cd - Cd!/.tk + 1'1) -l!/.tk + I'd} 
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IV. THE ONE-SOLITON SOLUTION IN SU(3) 

According to the theory already established in Sees. II 
and III the one-soliton solution in SU(3) for odd number 
solitons can be written as the following: 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

+ m~)m~i (4a 2I'kiLl) - Ib + 1)/n 

Xrll +b)/n exp{a2[ Cd + !!/.tk + iLl)] 
-2 2 - 2::l +c2[r/2-Cd -Cd!/.tk +1'1)-l!/.tk +1'1)11 

+ m~) m~H4a2I'kiLl)-k12 

Xr k exp{a3 [ Cd + !!/.tk + iLl)] 

+ c3 [r/2 - Cd2 
- Cd!/.tk + iLl) -1!/.t~ + jq) 11 , (5.4) 

with 

N\k)==m~)( _ 2al'd(b-I)/nr 11- b)/n 

xexp (!all'k -cI(I'U2+Cdl'k)}, 
Nik)=m~)( - 2a I'k) -Ib + I)Inr II + b)/n 

X exp (!a2 I'k - c2!/.tU2 + Cdl'k)} , 

N~k)=m~~)( - 2al'k) - k12r k/2 

Xexp {!a3 I'k - c3!/.tU2 + CdI'd}, 

The physical g is obtained from the relation 

gPh = (II'I 1'21/rlg. 

(5.5a) 

(5.5b) 

(5.5c) 

(5.6) 
The procedure can be repeated n times to give the n-soliton 
solution in the SU(3) Lie group. 

Note that for n = 2, tPl = tP2 = tP, PI = P2 = 0, and 
P3 = P Eq. (2.4) gives theg of the SU(2) Lie group.S.6 Further
more, by setting n = 2 and k = 0 in Eqs. (3.8), (3.12), and 
(3.13), we find the corresponding go and Wo of the SU(2) pre
sented in Ref. 6. 
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Using generating function methods, branching rules for Sp(6) ~ Sp(2)XO(3) are derived. The 
branching rules suggest an integrity basis, or set of elementary permissible diagrams, in terms of 
which the subgroup basis states are defined; they correspond to vibrational, or Bohr-Mottelson 
type, states in the nuclear symplectic model. 

I. INTRODUCTION 

We refer the reader to the earlier papers in this seriesl
-

3 

for general literature references and for a historical and 
physical introduction to the subject. The nuclear symplectic 
model combines the features of the Bohr-Mottelson and El
liott models. 

The basis states of a nucleus of n + 1 nucleons are taken 
to be the energy eigenstates of an isotropic 3n-dimensional 
harmonic oscillator. The symmetry group is then SU(3n) and 
the states are those of symmetric representations (all repre
sentation labels zero except the first one). The metaplectic 
irreducible representations (IR's) [(l/2)3n), [(I/2t'- I, (3/2)] 
ofSp(6n) are spanned by the SU(3n) states of even, odd repre
sentation labels, respectively. 

The physically significant subgroup of Sp(6n) is 
Sp(6)xO(n), and for the IR's ofSp(6n) under consideration 
the Sp(6) and O(n) IR's are correlated; see Eq. (3.1) below. 
The Hamiltonian for nuclear collective motion is assumed to 
be in the enveloping algebra ofSp(6). 

The Sp(6) basis states may be classified according to the 
U(3) subgroup, yielding Elliott or rotational type states, or 
according to the subgroup Sp(2) X 0(3), yielding Bohr-Mot
telson, or vibrational type states. It is our purpose in this 
paper to derive the integrity basis, or elementary permissible 
diagrams (epd's) with their syzygies (incompatible products); 
they define vibrational, or Sp(2) X 0(3), type basis states for 
general IR's ofSp(6), corresponding to open shells. 

In Sec. II we derive the generating function for 
Sp(6) ~ Sp(2)XO(3) branching rules and interpret it in 
terms of a finite set of epd's. The basis states are defined in 
terms of products of powers of the epd's, with certain combi-, 

nations forbidden because of syzygies (polynomial identi
ties). The basis states obtained are not orthonormal, but are 
complete, nonredundant, and analytic. 

In Sec. III we discuss briefly the problem of computing 
generator matrix elements of Sp( 6) between our states; it is in 
terms of them that the Hamiltonian operator for collective 
nuclear motions is defined. 

Section IV shows how to convert the Sp(6) ~ U(3) gen
erating function to that for Su(n) ~ O(n), all but the first 
three labels of SU(n) zero, and how to convert the 
Sp(6) ~ Sp(2)XO(3) to 0(3n) ~ 0(3)XO(n),allbutthefirst 
label ofO(3n) zero; the respective generating functions (and 
the branching rules) are related because of complementarity 
conditions. 

We use Dynkin representation labels A; for the compact 
groups O(n), SU(n): 

A; = 2(M;t la;}/(a;la;), 

where M;t is the highest weight of the IR (A ), and a; are the 
simple roots; the exception is SO(3), where we use A /2 = I as 
the IR label. For (noncompact) Sp(6) we use the labels (p,q,d) 
of the "bottom" U(3) IR; (p,q) are its SU(3) labels and (d) its 
"vertical" weight component. The O(n) labels (al l ,al2,al3) of 
Ref. 3 are related to the Dynkin labels used here by 

all = AI + A2 + A3, al2 = A2 + A3, al3 = A3 for n;>9; 

for 0(8) we have al3 = A3 = A4; and for 0(7), al3 = A3/2. 

II. Sp(6) ~ Sp(2) X 0(3) BRANCHING RULES 

We begin our derivation ofSp( 6) ~ Sp(2) X 0(3) branch
ing rules with the known4 generating function for 
Sp(6) ~ U(3) branching rules 

F(P,Q,D; AI.BI; A,BiZ) = [(1 - a)(1 -.B)(1 - r)(l - r*)(1 - 8)(1 - 8*)(1 - €)(1 _ €*)] - 1 

X [(1 + 1/ + 0 + K + ~1/* + 1/0 + 1/K + 1/1/*)(1 _ ~)-I 

+ (~ * + 1/* + 0 * + K* + ~ *1/ + 1/*0 * + 1/*K* + ~ *1/1/*)( I _ ~ *) -I]. 

oj Member ofInstituto Nacional de Investigaciones Nuc1eares and El Cole
gio Nacional. 
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The letters on the right stand for the epd's: 

a=Z3, P=DZ, r=PA, 8=Q 2A/Z, 

E=A I
2A 2Z, ~=P2A/B2Z, ",=PB/BZ 2, 

()= PA I
2ABZ, K = PQAI2BZ. 

The "conjugate" of an epd, denoted above by an asterisk, is 
obtained by the replacements P~ Q, A/Z ~B/Z2, 
A ~ B; the generating function (2.1) is conjugation symmet
ric, i.e., is unaffected by these interchanges. Equation (2.1) 
withAl andBI set equal to unity is just Eq. (3.6) of Ref. 4. 
Strictly, the labels al,b l, carried as exponents by the dum
mies AI,BI' are not necessary; we comment below on their 
usefulness. When (2.1) is expanded in a power series 

the coefficient C, summed over al,b l, gives the multiplicity 
of the U(3) multiplet (a,b,z) in the Sp(6) IR (p,q,d). 

Throughout this paper we follow the convention that 
representation labels, denoted by lowercase letters, are car
ried as exponents by the corresponding uppercase letters. 

The exponents in (2.2) (or in the epd's) provide instruc
tions for constructing the basis states (or the epd's): couple 
the U(3) multiplet (a l ,bl ,al/2 + bl)' whose components are 
polynomials of degree a l /2 + bl in the Sp(6) raising genera
tors [they form the U(3) multiplet (2,0,1) and are the B;j of 
Eq. (3.2a) or B I~ of Eq. (3.6) of Ref. 3], to the bottom U(3) 
mUltiplet (p,q,d) of the Sp(6) IR to obtain the U(3) multiplet 
(a,b,a I/2 + bl + d). The U(I) label is greater than all 
2 + bl + dby three times the degree in a, the SU(3) scalar of , 
H(P,Q,D; AI,BI; A,B; Z,L) 

third degree in the raising generators. 
The labels al,bl help in the interpretation of the epd's 

and of the basis states. For example, without them, one 
might, erroneously, think that ~ * is the square of ",*. When 
(2.1) has been converted to give Sp(6) :> Sp(2) X 0(3) branch
ing rules, the difficulties and ambiguities in interpreting it in 
terms of epd's are greatly increased. It is important to keep 
labels like al,bl. 

The subgroup SU(3) of Sp(6) is converted to SO(3) by 
substituting into Eq. (2.1) the SU(3) :> 0(3) branching rules 
generating function 

G(A,B,L) 

= [(I-A2)(I-B2)(I-AL)(I-BL)]-I(1 +ABL). 
(2.3) 

The substitution is accomplisheds by evaluating 

F(P,Q,D; AIBI; A',B',z)G (A ,-IA,B ,-IB,L ) I A 'OB'O. 

The SUbscript A ,0 B ,0 is an instruction to retain only the term 
inA' and B ' of degree zero. The variablesA,B are inserted to 
retain the SU(3) representation labels; as noted above, we 
will need all the labels we can get. The U(I) label z now 
becomes the weight label of the Sp(2) subgroup. The U( 1) 
group is converted to (noncompact) Sp(2) simply by multi
plying by l-Z, or, more precisely, I-M *, whereM * is the epd 
A 12A 2Z defined below. Thenz, the exponent ofZ, is the Sp(2) 
representation label, the lowest weight of the Sp(2) multiplet. 

The result of the above operation is the desired 
Sp(6) :> Sp(2)XO(3) generating function. It is given as fol
lows: 

= [(I-a)(l-p)(I-J)(I-J*)(I-K)(I-K*)(I-M)]-1 
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X{[{1- 0)(1- a*)(1 - c)] -1[0* + e + r+ a*h + i* +o"'k + / +o*n + ci +ck* 

+ u + ch * + q + eq + U* + a*s] + [(1 - a)(1 - 0*)(1 - c*)] -I[C* + c*e + r* + oh * + i + ok * 

+ /* + an* + c*i* + c*k + u* + c* h + q* + eq* + c*U* + c*s] + [( 1 - 0)( 1 - c)( 1 - d)] - I [c + v + cp + ch 

+ cf + ck + cg + cn + cdi + cgh + du + cfh + cfg + cfn + cfi + cs] + [(1 - 0*)(1 - c*)(1 - d*)] -I[c*d* 

+ v* + c*p* + c*h * + c* f* + c*k * + c*g* + c*n* + c*d *i* + c*g*h * + d "'u* + c* f*h * 

+ c* f* g* +c* f*n* +c* f*i* + c*d*s] + [(1 -0)(1 - b*)(1 - d)] -1[1 +j +p + h +f+ k +g+ n +di 

+gh + fp + fh + fg+ fn + fi +s] + [{1-a*)(I- b )(1 - d*)] -I[d* +d*j* +p* + h * + f* + k* 

+ g* + n* + d *i* + g*h * + f*p* + f*h * + f*g* + f*n* + d * f*i* + d *s] 

+ [(1 - a*)(1 - b )(1 - c)] -I[a*b + j* + t + a*bh + bi* + o*x + b/ + a* f*h + cf* + bck * + w 

+ bch * + hs + k *w + f*i* + o*bs] + [(1 - a)(1 - b *)(1 - c*)] -I[b *c* + c*j + t * + ab *h * + b *i 

+ ox* + b */* + afh * + c* f + b *c*k + w* + b *c*h + h "'s + kw* + c* fi + b *c*s] 

+ [(1- b )(I-c)(I- d)] -I[bc + hm +cm +bch + bcf + cx + bcg+cf*h +cdf* 

+ bcgh + dw + bcfh + dhs + cms + cff* + bcs] + [(1 - b *)(1 - c*)(1 - d*)] -I[b *c*d* 

+ h *m* + c*m* + b *c*h * + b *c* f'" + c*x* + b *c*g* + c* f h * + c*d * f + b *c*g*h * + d *w* 

+ b *c* f*h * + d*h *s + c*m*s + c· ff* + b ·c"'d*s] + [(1 - b)(1 - b ·)(1 - d)] -I[b + y 

+m +bh +bf+x+bg+f"'h +df· +bfg+fm +bfh +bfg+ ms+ff* +bs] 

+ [(1- b)(I- b*)(I-d·)] -I[b *d* + d·y + m'" + b·h '" + b· f· +x* + b .g* + fh * +d· f+ b*g*h '" 

+ f"'m· + b * f*h * + b • f·g· + m·s + d • f f'" + b *d *s]}. (2.4) 
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The epd's a,/3 in Eq. 12.4) are the same as in 12.1); the 
others are as follows [the notation is (pq,a,b"ab,l) which 
stands for PPQqA,"'B/'A "B bZ(1I2)a, +b'L I]: 

J = 102,20,00,0), K = 110,00,10,1), M = 100,02,02,0), 

a = 120,00,20,0), b = 100,20,20,2), e = 120,20,02,0), 

d = (20,20,02,2), e = (11,00,11,1), /= (10,02,01,1), 

g = 111,20,01,1), h = 110,20,11,1), i = (11,20,20,0), 

j = (10,02,12,2), k = 120,02,11,1), / = (12,20,02,0), 

m = 110,20,11,2), n = 121,20,11,1), p = (20,20,21,1), 

q = 121,22,02,0), r = 121,20,22,0), s = 111,22,11,1), 

t = (11,20,12,1), u = 130,22,22,0), v = 130,20,12,2), 

w = (20,22,12,1), x = 110,22,21,2), y = 100,22,22,3). 
The conjugate of an epd, denoted by an asterisk in Eq. 

(2.4) obtained by interchanging the SU(3) labels in each of the 
three pairs: (pq,a,b"ab,)* = Iqp,b,a"ba,); the epd's a,/3,e,s,y 
are self-conjugate. The generating function in (2.4) apart 
from the missing denominator factor 1 - M *, removed in 
converting from UIl) to Sp(2), is conjugation symmetric, a 
fact which was helpful in writing it in terms of the epd's. The 
generating function was also subjected to what may be called 
consistency checks. For example, the coefficient of i in Eq. 
12.4) 

[(1 - a)ll - a*)ll - e*)] - 1 + e[l1 - a)(1 - a*)ll - e)] - 1 

+d[l1-a)ll-b*)ll-d)]-1 +b*[I1-a) 

X(I-b*)(I-e*)] -I 

+ed[(I-a)ll-c)ll-d)] -I. 

It may be verified that each product of powers of three de
nominator epd's which appear in the same fraction linclud
ing those in which one or more exponents are zero) appears 
just once in the above expression; this check was made sepa
rately for each numerator epd and for each product of nu
merator epd's. As a final check we converted the expression 
in Eq. 12.4), by appropriate substitutions, into a generating 
function for SO(3) weights instead ofS0(3) multiplets; it was 
then compared with the corresponding weight generating 
function obtained by converting (2.1) directly; since an ana
lytic comparison would be prohibitively laborious, the nec
essary substitutions were made by a computer program and 
the two generating functions compared for random values of 
their arguments. 

III. CONSTRUCTING THE BASIS STATES 

The Sp(6) ~ Sp(2)XOI3) generating function, as given 
in Eq. 12.4) defines the epd's lintegrity basis) in terms of 
which all subgroup representations are given as stretched (all 
representation labels additive) products; epd's which are in
compatible because of syzygies may be read from the gener
ating function: they never appear multiplied together. 

It is straightforward to construct the epd's, using their 
labels (p,q;a"b,;a,b;/): couple the SU(3) IR(a"b l ), of degree 
a l /2 + b, in the raising Sp(6) generators, to the bottom SU(3) 
multiplet (p,q) to obtain the IR la,b ); in every case the cou
pling is nondegenerate, i.e., unique. Next, choose the SO(3) 
multiplet contained in the SU(3) multiplet (a,b); again, the 
multiplet I is always nondegenerate. Apart from their useful-
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ness in constructing the epd's, the labels a"b"a,b were in
valuable in sorting out the epd's and their syzygies. Finally, 
to ensure that the states we are constructing are bottom 
states of Sp(2) multiplets, they must be rendered traceless 
Iharmonic) by the use ofEq.14.7b) of Ref. 3. 

The bottom [lowest Ull)] multiplet of the Sp(6) IR (pqd) 
is best visualized in terms of the epd's for 
Spl6n) ~ Sp(6)XOln). 

The branching rules generating function 

[(1 - PD '/2H)ll _ QDJ)(1 _ D 3/2K)]-1 

= LHhJiKkPhQJD(I12)(h+2i+3k) 13.1) 
hJk 

shows that the Oln) IR Ihjk) is correlated with the Sp(6) IR 
(pqd) with p = h, q = j, d = (h + 2j + 3k )/2; integer values 
of dbelong to even metaplectic Sp(6n), m)3,,], half-odd values 
of d to odd metaplectic Sp(6n), m)3,,- "fl. Each of the three 
epd's stands for an elementary Sp(6)XOln) multiplet, and is 
conveniently represented by the state of the multiplet which 
has the highest Oln) weight and, for Sp(6), the lowest U(I) 
and highest SU(3) [or SO(3)] weight. The exponent of D is one 
half the number of quanta in the state in question. Then 
PD 1/2H is represented by 7Jw where the first SUbscript de
notes the highest state of the SU(3) [or SO(3)] triplet while the 
second one implies the highest state of the Oln) multiplet 
1100 ... 0). The epd QDJ, represented by 

I ~:: ~:: I ' 
is the highest state of an SU(3) antitriplet [or 0(3) triplet] and 
the highest state of the Oln) multiplet 1010 ... 0). The third 
epd D 3/2K is represented by 

71 11 71 12 71 13 

7121 7122 7123 ; 

7131 7132 7133 
it is an SU(3) [or 0(3)] scalar and is the highest state of the 
Oln) multiplet 10010 ... 0). Thus the bottom states of the Sp(6) 
IR(Pqd) are defined by the product of powers of the three 
epd's with respective exponents p, q, 12d-p-2q)/3. These 
states are annihilated by the Sp(6) lowering lannihilation) 
generators, and no steps are needed to render them traceless. 

The 21 generators of Sp(6) decompose under the sub
group Sp(2) X 0(3) into three irreducible tensors which can 
be denoted by (1,0),10,1), (1,2). The first two triplets are just 
the generators of Sp(2) and 0(3); their matrix elements are 
well known. The matrix elements of only the (1,2) IS-plet 
need to be computed between our basis states. For that pur
pose it is necessary to compute only its reduced matrix ele
ments between pairs of subgroup multiplets; although 
straightforward, that task is made laborious by the size of the 
integrity basis and the consequent large number of types of 
subgroup multiplet. We hope to complete it in a future publi
cation. 

IV. RELATED BRANCHING RULES 

Complementarity relations in group--subgroup chains 
imply connections between apparently unrelated branching 
rules. Thus the generating functions of Eqs. (2.1) and 12.4), 
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for Sp(6) :::> U(3) and Sp(6) :::> Sp(2)XO(3), respectively, im
ply branching rules generating functions for SU(n) :::> SO(n), 
all but the first three SU(n) labels zero, and for 0(3n) 
:::> 0(3) X O(n), all butthe first 0(3n) label zero, respectively. 

Although not needed for the theory of nuclear collective 
motions, we present the results here since we get them at no 
extra cost. 

For the chains of subgroups 

Sp(6n) :::> Sp(6)xO(n), 

Sp(6n) :::> Sp(2)XO(3n), 

(4.1a) 

(4.1b) 

complementarity relations hold (see Ref. 3, Sec. II). This 
means that, since the representation of Sp(6n) is [(!)3n] or 
[H)3n - 1 ,(~)] (the metaplectic ones), the IR ofSp(6) determines 
the IR ofO(n) and vice versa in (4.1a) and the same holds for 
Sp(2) and 0(3n) in (4.1b). 

Because of the complementarity in the chain in Eq. 
(4.1a) we can convert the generating function (2.1) giving the 
branching rules for Sp(6) :::> U(3) to a generating function for 
the chain SU(n) :::> O(n) [all but the first three labels ofSU(n) 
zero] by the substitutions 

P_G I/3H, Q_G 2/3J, D_G I /3K, A_EG- I /3, 

B -FG -2/3, Z _ G 2 /3, Al _ 1, BI _ 1; 

the SU(n) nonzero labels are denoted by (e,f,g) and the O(n) 
ones by (h,j,k ). 

The above substitutions are valid when n>9. For n = 8 
the substitution for D changes to D _ G 1/3 KK', where the 
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nonzero 0(8) labels are (h,j,k,k') with k = k', and for n = 7 
the substitution for D is D _ G 1/3 K 2 [here the three 0(7) 
labels are (h,j,k I]. We do not consider the case n<6. 

Similarly, starting with the generating function for 
Sp(6) :::> Sp(2) X 0(3) given in Eq. (2.4) we get the branching 
rules generating function for the chain 0(3n) :::> 0(3) X O(n), 
all but the first label ofO(3n) zero, by the substitutions 

P-UH, Q_U 2J, D-UK, Z_U 2
, L-L, 

Al - 1, BI - 1, A_I, B_1; 

(u) labels 0(3n) IR's, (I) labels 0(3) IR's, and (h,j,k) are the 
O(n) labels (all but the first three zero). These substitutions 
hold for n >9. The substitutions for D become D - UKK' 
(n = 8) and D _ UK 2 (n = 7). 
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The lattice sums involved in the definition of Madelung's constant of an NaCI-type crystal lattice 
in two or three dimensions are investigated. The fundamental mathematical questions of 
convergence and uniqueness of the sum of these, not absolutely convergent, series are considered. 
It is shown that some of the simplest direct sum methods converge and some do not converge. In 
particular, the very common method of expressing Madelung's constant by a series obtained from 
expanding spheres does not converge. The concept of analytic continuation of a complex function 
to provide a basis for an unambiguous mathematical definition of Madelung's constant is 
introduced. By these means, the simple intuitive direct sum methods and the powerful integral 
transformation methods, which are based on theta function identities and the Mellin transform, 
are brought together. A brief analysis of a hexagonal lattice is also given. 

I. INTRODUCTION 

Lattice sums have played a role in physics for many 
years and have received a great deal of attention on both 
practical and abstract levels. The term lattice sum is not a 
precisely defined concept: it refers generally to the addition 
of the elements of an infinite set of real numbers, which are 
indexed by the points of some lattice in N-dimensional space. 
A method of performing a lattice sum involves accumulating 
the contributions of all these elements in some sequential 
order. Unfortunately, the elements of the set are not, in gen
eral, absolutely summable so the sequential order chosen can 
affect the answer. In this paper we are concerned with the 
particular lattice sums involved in Madelung's constant. In
deed, attaining specificity in the definition of Madelung's 
constant is our primary motive. Although we are dealing 
with purely mathematical questions it is our belief that the 
results presented here may shed some light on the physics of 
crystals. Other researchers 1-3 have expressed concern about 
the ambiguities involved in summing a nonabsolutely con
vergent series in a different manner, but it appears that no 
one has confronted it fully. 

Let L be a lattice in N-dimensional space and let 
A L = [al : lEL } be a set of real numbers indexed by L. There 
are two basic approaches to summing the elements of A L : by 
direct summation or by integral transformations. The major 
factors involved in choosing a method are physical meaning
fulness and speed of convergence. 

The direct summation methods involve an orderly 
grouping of the elements of AL into sequentially indexed 
finite subsets increasing in size to eventually include any ele
ment of A L . Sometimes fractions of elements are included in 
the subsets to maintain a physical principal such as electrical 
neutrality. Two commonly used direct summation methods 
are due to Evjen4 and HtSjendah1.5 

The most commonly used integral transformation 
method is known as the Ewald method.6 More recently the 
Mellin transformation applied to theta functions has been 
used to put the integral transformation methods in a general 
context. An excellent review article by Glasser and Zucker 1 

gives a development of these methods and an extensive bib
liography. 

In this paper we deal primarily with NaCl-type ionic 
crystals in two or three dimensions. This is for two main 
reasons: the ease of notation and the fact that almost every 
textbook introduces Madelung's constant on this crystal 
first. From a mathematical and physical point of view there 
are two very reasonable simple direct summation methods 
that could be applied to give Madelung's constant for an 
NaCI-type ionic crystal. One could take a basic cube cen
tered at the referenced ion with sides parallel to the basic 
vectors and let the cube expand as the contributions from all 
lattice points within the cube are accumulated. Alternately 
one could use expanding spheres centered at the reference 
ion. This latter method is intuitively appealing since all ions 
an equal distance from the reference ion are given equal 
treatment. Thus, many textbooks 7,8 (and some research arti-

cles) write down the resulting infinite series (6 - 12/{j. + 8/ 

J3 - 6/ J4 + ... ) as giving Madelung's constant for an NaCl
type ionic crystal. Unfortunately, this infinite series does not 
converge. This was proven by Emersleben9 and, in light of 
the fact that most people are unaware of this divergence, we 
include a short elementary proof in Theorem 3. 

Section II is devoted to the two-dimensional square lat
tice while Sec. III contains the above-mentioned result on 
expanding spheres. In Theorem 4 we prove that the method 
of expanding cubes converges. In Sec. IV, the mathematical 
tools become more sophisticated as we consider integral 
transformation methods and their relation to the direct sum-
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mation methods dealt with in Sec. III. We have included, in 
Sec. V, a careful analysis of some direct summation methods 
in two dimensions in light of the property of being analytic in 
the inverse power exponent. This analysis is quite illustrative 
of the relations between the various summation methods. In 
Sec. VI we do a brief analysis of a two-dimensional hexagon
allattice. Section VII gives our conclusions. 

II. TWO DIMENSIONS 

It is convenient to introduce the notation in the two
dimensional case of a simple lattice in the plane with unit 
charges located at integer lattice points (j,k) and of sign 
( - 1 Y + k. The potential energy at the origin due to the 
charge at (j,k) is - (- ly+k /V + k2)1/2. If we want the 
total potential energy at the origin due to all other charges, 
then we must sum all the numbers in the following set: 

A = {( - 1 Y + k /V + k 2)1I2:(j,k )eZ/(O,O) 1, 
where Z denotes the integers. Because the elements of the 
subset of A withj = k form a set of positive numbers with 
divergent sum, it is clear that the value of the sum is highly 
dependent on the order in which the elements of A are added. 
It is not immediately clear that any reasonable method will 
produce a convergent series. In addition, for the model to be 
physically relevant, all "reasonable" methods should con
verge to the same number. Here are two very reasonable 
methods. 

First, consider the total potential due to all the charges 
within a circle of radius r about the origin and let r-+ 00 • This 
leads to the series 

. ~ (- l)nC2(n) (1) 
n~1 nl/2 

' 

where C2(n) is the number of ways of writing n as a sum of 
two squares of integers (positive, negative, or zero). In deriv
ing (1), use the fact that ( - l)l+ k = (- 1)f+k2 = (- It, 
for any j,keZ withf + k 2 = n. We will refer to (1) as the 
method of expanding circles. 

Second, there is the method of expanding squares. This is 
intuitively appealing, as a perfect crystal grows by expansion 
of the shape of a basic unit cell. For each natural number n, 
let 

{
(_l)J+k } 

S2(n)=L (f+k2)112: -n<;..j,k<;..n and (j,k)#(O,O) . 

Then 

(2) 

is a way of expressing the series obtained by expanding 
squares. 

It turns out that both these methods converge as we will 
now show. 

Theorem 1: The series in (1) converges. 
Proof: To carry out the proof that the series in (1) con

verges we introduce some notation and standard facts from 
number theory. Fer any sequence of real numbers {an l:~ I 
and P real we write an = 0 (nP) if the sequence {n -11 an 1 is 
bounded. LetAn = Z k'= I C2(k ),for each natural number n. 
ThenAn denotes the number of non origin lattice points in
side or on a circle of radius n 1/2. It is fairly easy to see that A n 
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should be approximately 1Tn; in fact, the reader can easily 
show that An -1Tn = O(nI/2). However, this is not quite 
good enough for us here so we quote a stronger result, which 
can be found in Dicksonlo: 

An -1Tn = o (na
), for some a, 1 <a <j. (3) 

For a natural number n, a divisor ofn is a natural num
ber d such that d divides n. Let d (n) denote the number of 
divisors of n and let d k (n) denote the number of divisors d of 
n with d congruent to k modulo 4, for k = 1 or 3. With this 
notation, Theorem 278 of Hardy and Wright ll implies 

C2(n) = 4(dl(n) - d3(n)). (4) 

This together with Theorem 315 of Hardy and Wrightll im
plies that 

C2(n) = O(ns), for any 8>0. (5) 

Note that, dk(2n) = dk(n), for k = lor 3 and any n. So 

C2(2n) = C2(n), for all natural numbers n. (6) 

LetBn = l:k=d -1)kC2(k). Then 
2n 

B2n = L (-1)kC2(k) 
k=1 

n n 

= L C2(2k) - L C2(2k-l) 
k=1 k=1 

n 2n 

= 2 L C2(2k) - L C2(k). 
k=1 k=1 

Using (6), 

B 2n = Un - A 2n' 

From (3) and (7), we have that, with a as in (3), 

B 2n =O(nQ). 

Furthermore, this along with (5) implies that 

B2n + 1 =BZn - C2(2n + 1) = o (na
) 

Therefore, 

Bn = o (na). 

Now consider the partial sums ofthe series in (1): 

T = i ( - WC2(k) = Bn 
n k=1 kl/2 (n+1)112 

n 

+ L Bdk -1/2 - (k + 1)-112] 
k=1 

n 

(7) 

(8) 

=O(na - 1I2)_ LBd(k+ 1)-1I2_k-1/2 ]. (9) 
k=1 

By the mean value theorem, I(k + 1)-112 _ k - 1/21.qk -3/2 
and therefore 

IBd(k+ 1)-I12_k-1/2]1 =O(k a - 312). 

Since a - 3/2 < - 1, l:k= I Bd(k + 1)-1/2 - k -1/2] con
verges absolutely. Since a -! <0, limn_ oo Tn 
= - l:k= I Bk [(k + 1)-1/2 - k -1/2] exists. That is, the se

ries in (1) converges. Q.E.D. 
We now tum to the limit in (2). We need an easy lemma 

from calculus that will be left to the reader to verify. This 
lemma will also be used in the proof of Theorem 4. 
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Lemma: For any positive real numbers, a,b, and s, each 
of the following functions are strictly decreasing in t, for 
O<t< 00: 

11 .. (t)=t-', 

12 .. (t) = t-' - (t + a)-', 

h .. (t ) = t -, - (t + a) -, 

- (t + b) -, + (t + a + b) - '. 
Theorem 2: The limit in (2) exists. 
Proot We apply the lemma to 12" with 

a = (k + 1)2 - k 2 and s =!. Then, if j>O and k>O with 
j + k>l, we have 

12,1/2 (f + k 2) >/2,112 ((j + 1)2 + k 2). 
Explicitly this is 

(f + k 2) - 112 - (f + (k + 1 )2) - 112 

- ((j + 1)2 + k2}-1I2 + ((j + W + (k + W}-I12>O. 
(10) 

Let g(j,k ) denote the left-hand side of (10). Then ( - 1) J + k 

Xg(j,k) is the contribution to the potential at the origin due 
to a basic cell of four adjacent ions with the closest ion at 
(j,k). Inequality (10) says that the contribution always has 
the same sign as that of the nearest ion. 

Rewrite S2(n) using the symmetries to get 

S2(n) = 4Q(n) + 4X(n), 

where 
n (_ I)J+k 

Q (n) = J,t;, I (f + k 2)112' 

n ( l)k 
X(n) = L---' 

k=1 k 
Since limn-.co X(n) = -In 2, if we prove that limn_co Q(n) 
exists, then the limit in (2) will exist. We will establish a 
number of properties of the sequence {Q(n)}:= I' which will 
be used to prove its convergence. 

Property 1: 

Q(2n) - Q(2n - 2»0, for all n>2. 

That is, the even indexed elements increase. To see this we 
group the terms ofQ (2n) - Q (2n - 2) into basic cells of4, as 
is illustrated in Fig. l(a) for Q (6) - Q (4). Thus, 

Q(2n) - Q(2n - 2) 
n n-I 

= Lg(2/- 1,2n -1) + L g(2n -1,2m - 1), 
I-I m=1 

where as before, g(j,k ) denotes the left-hand side of (10). So 
property 1 holds. 

Property 2: 

Q(2n+ 1)-Q(2n-l)<0, foralln>1. 

That is, the odd indexed elements of the sequence decreases. 
Referring to Fig. l(b) and correcting for the overlap at the 
(2n,2n) point we are led to the following grouping: 

Q(2n + 1) - Q(2n - 1) 
n n 

= I~I [ - g(2/- 1,2n)] + ~I [ - g(2n,2/- 1)] 

- [l/n..[2 -l/(n + 1)..[2] <0. 
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Property 3: 

Q(2n + 1) - Q(2n»0, for all n>1. 

Thus, the odd indexed elements are all greater than any even 
indexed element. This is clear again from a simple grouping 
of terms and using the monotonicity of/l ,I/2 ofthe lemma: 

Q(2n + 1) - Q(2n) 

lim Q(2n - 1) - Q(2n) = O. 
n-.co 

Thus, the difference between successive elements goes to 
zero. To see this, simply note that 

0<Q(2n+ 1)-Q(2n)<21[1 +(2n+ W]1I2 

+ l/(2n + 1 )..[2-0, as n_ 00 • 

It is now easy to see that properties 1-4 imply that limn-.co 
Q(n) exists. Q.E.D. 

This completes the proof of Theorem 2. Thus, we have 
shown that two of the most obvious methods of summing for 
a Madelung constant in two dimensions converge. At this 
point, no indication has been given that the two methods 
yield the same number. That this is indeed so will be shown 
in Sec. V. 

III. THREE DIMENSIONS 

In this section, the three-dimensional case will be con
sidered. For Madelung's constant of an NaCI-type crystal 
one must investigate ways of summing the elements of the 
following set: 

B = {( - 1)i+ k + I /(f + k 2 + P)I12: 

(j,k,1 )eZ3/(0,0,0)} . 
In analogy with the two-dimensional case we will consider 
the method of expanding spheres about the origin and the 
method of expanding cubes. 

Our next theorem is a negative result, which is quite 
startling. Many textbooks in physical chemistry and solid 
state physics give the series dealt with in Theorem 3 as Ma
de1ung's constant for a NaCI-type crystal.7

,8 It also appears 

7 
1-1 

Ql-9 Ql-9 (I 
I I I I 

6 9-(1 9-Q) 9-Ql 6 9-Q) 9-Ql 9-1-1 

~-~ I I I I 
5 (1-9 (1-9 5 (I 9 Ql e Ql e-Ql 

4 e (I a e e-(I 4 e Ql a (I e e-a 

3 Q) 9 (I 9 ~-~ 3 (I e (I 9 (I ~-~ 
2 a (I e (I 9-Ql 2 e Q) 9 Q) e T-~ I I (I 9 (I e (I-a (I 9 (I a Q) a-(I 

I 2 3 4 5 6 I 2 3 4 5 6 7 

(a) (b) 

FIG. 1. Illustrations of (a) property 1 and (b) property 2. 
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in research articles. Although no one sums this series direct· 
ly, it is physically misleading to believe that it converges to 
anything. 

Let e3(n) denote the number of ways of writing n as a 
sum of three squares. If we consider a sphere centered at the 
origin in three-space, add all the elements of B that corre
spond to lattice points within the sphere, and then let the 
radius go to infinity, we are led to the infinite series 

(11) 

Theorem 3 (Emersleben'): The series in (11) diverges. 
Proof It is interesting that the proof that the series in 

(11) diverges is much less sophisticated than the proof in 
Theorem 1 that the series in ( 1) converges. Our main tool is a 
simple estimate of the number of nonzero lattice points on or 
inside a sphere of radius r. Call this number L,. Notice that, 

for Iii <r<.J1i+T, . 

" L, = 2: e3(k). 
k=l 

We leave to the reader the easy task of verifying that 

L, - trr = 0 (r). 
This implies that 

lim L,/r = f1T. (12) 
"""'00 

Proceeding with a proof by contradiction we assume 
that 

co ( 1)"C (n) L - 3 converges. 
,,=1 ,[ii 

This implies that €" = e3(n)l Iii -0, as n-+- 00 • For a natural 
number N, let MN =max{€,,: n>N}. Then MN-o, as 
N-+- 00. Fix N for the moment and consider, for n > N, 

L.f1I3 = n-3/2 [ i €k{k] 
(,[ii) k = 1 

<n-3/2[ f €k&] + MNn-3/2[ ± &]. (13) 
k=l k=N+l 

Now, 

" 1"+1 2: &< tl/2dt 
k=N+I N+I 

= H(n + 1)312 - (N + 1)3/2]. 

Inserting this in (13) implies that 

L.f1I <n-3/2[ f €k$] 
(m)3 k= I 

+ ~M,,[(n;lr/2 _(N;lyIT 
Letting n-+-oo , we see that lim suP" .... ", LJIi/(..Jn)3<jMN,for 
any N. Since M N-o as N-+- 00, we have that 

This is a contradiction of (12). Therefore, 
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.. (- Il"C (n) 2: 3 diverges. 
,,=1 Iii 

In fact, the contributions of individual spherical shells do not 
tend to zero. Q.E.D. 

SO it is not at all appropriate to define Madelung's con· 
stant via the method of expanding spheres. We turn to the 
method of expanding cubes. Let 

{ 
(_ 1)J+k+l 

S3(n) = 2: Ii + k2 + 12)112: 

- n<j,k,l<n, (j,k,/)¥(O,O,O)}. 

Theorem 4: lim S3(n) exists. 
" ..... 

Proof We proceed as in the proof of Theorem 2 in Sec. 
II. For j,k,l> 1 let 

g(j,k,/) = Ii + k 2 + 12) - 112 _ (f + (k + 1)2 + 12) - 112 

_ (f + k 2 + (I + 1 )2) - 112 

+ (f + (k + 1)2 + (I + 1)2) - 1/2 

_ ((j + 1)2 + k 2 + 12) - 1/2 

+ ((j + 1)2 + (k + W + 12)-112 

+ ((j + 1)2 + k 2 + (/ + W) - 112 

- ((j + W + (k + 1)2 
+ (/ + 1)2) - 112, 

Then, ( - 1 Y + k + I g (j,k,/) represents the contribution to the 
potential at the origin of a basic unit cell whose closest comer 
is at (j,k,/). An appropriate use of the monotonicity Of!3,112 
from the lemma in Sec. II shows that g(j,k,1 ) > 0, for all 
j,k,I>l. 

Let 

h (k,/) = (2k ~ + 12) - 112 _ (2k 2 + ([ + 1 )2) - 112 

+ (2(k + W + [2) - 112 

- (2(k + W + (I + 1 )2) - 1/2. 

USing!2,1/2' we get that h (k,l) > 0, for all k,l> 1. 
Let PIn) denote that part of S3(n) that comes from the 

positive octant. That is, for n> 1, 

" (_I)}+k+1 
P(n)= ~ . 

j.lc.~ I(f + k 2 + [2)112 

Then in a manner similar that used for the Q (n)'s, it can be 
shown that lim_ .. Pin) exists. We proceed with the details 
of this demonstration. 

The following identities are most easily seen by drawing 
a three-dimensional version of Fig. 1, but they can be verified 
directly: 

II 

P(2n + 1) - P(2n - 1) = 3 '5' g(2n,2k - 1,2/- 1) 
k,t=l 

II 

+ 3 Lh (2n,2j - 1) 
}=1 

+ (1/~)(1/2n - 1/(2n + 1)), 
(14) 
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II 

P(2n + 2) - P(2n) = - 3 k'~ 19(2n + 1,2k - 1,2/- 1) 

II 

- 32:)(2n + 1,2n + 1,2j - 1) 
j=1 

- g(2n + 1,2n + 1,2n + 1). (15) 

Both (14) and (15) hold for all n> 1. From (14) and (15) we get 
the properties of odd or even element monotonicity of the 
sequence of P(n)'s. 

Property 1': 
P (2n) - P (2n - 2) < 0, for all n>2. 
Property 2': 
P(2n + 1) - P(2n - 1) > 0, for all n> 1. 
Notice that the inequalities are reversed from those of 

properties 1 and 2 in the two-dimensional case. To get the 
analogs of properties 3 and 4 for the P (n)'s we need to refer to 
the lemma one final time. For n,j,k> 1, let 

ho(n,j,k) = (n2 + f + k 2) - 112 _ (n2 + (j + 1)2 + k 2) - 112 

_ (n2 + l + (k + 1 )2) - 1/2 

+ (n2 + (j + W + (k + W)-1I2. 

Witha=(k+ W_k2, 

ho(n,j,k) = AII2 (n2 + l + k 2) -/2,112 (n2 + (j + 1)2 + k 2), 

which is positive for all n,j,k> 1. 
With this notation 

II 

P(2n + 1) - P(2n) = - 3 ~ ho(2n + 1,2j - 1,2k - 1) 
),t:.1 

- 3 i [(2(2n + 1)2 + (2/- 1)2)-112 
1=1 

_ (2(2n + 1)2 + (21)2) - 112], 

- l/((2n + lW3). (16) 

This leads to the following property. 
Property 3': 
P (2n + 1) - P (2n) < 0, for all n> 1. 

Therefore, the decreasing even indexed elements are all 
greater than the increasing odd indexed elements. To see 
that there is a unique limit to the sequence ofthe P(n)'s, we 
only need the last property, which implies that the distance 
between successive terms approaches zero. This follows 
from (16) and 

P(2n + 1) - P(2n) > - 3/((2n + W + 2)112 

- l/((2n + lW3). (17) 

To verify (17) let 

2,. (_ 1)1+)+k 
X = ~ , for 1 ~<2n + 1. 
'j k~1 ((2n + 1)2 + f + k 2)112 

Using the function ho' defined above, write 

II 

Ix}I-lxi+11 = Lho(2n+ l,j,2k-l»0. (18) 
k=1 

Note that Xj itself is an alternating sum of decreasing terms, 
so the sign of Xj is ( - 1) j • With (18), this implies that 

211+ I _ 1 
0> ~ x >x >----=---

j~1 j 1 ((2n + W + 2) - 1/2 

Then, 
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211+ I 1 
P(2n+ 1)-P(2n)=3 LX) ----

j= I (2n + lW3 
3 >-------

((2n + 1)2 + 2)112 
1 

((2n + lW3) 

So (17) holds. Thus, the following property has been estab
lished. 

Property 4': 

lim P(2n + 1) - P(2n) = O. 
n-oo 

Properties 1'- 4' imply that lim Pin) exists. 
n-oo 

Finally, 

S3(n) = 8P(n) + 8Q(n) + 6X(n), 

where, as before, 

and 

n (_ 1)i+k 
Q(n)=.L ('2+k2)112 

J,k= I ] 

II ( l)k 
X(n) = L---' 

k=1 k 

(19) 

Since each of the terms on the right-hand side of (19) ap
proach a limit as n-+oo, we have that limn_ oo S3(n) ex
ists. Q.E.D. 

Remark J: Although this method of summing over ex
panding cubes is not rapidly convergent, it is extremely well 
behaved. The alternation of the P (n) and Q (n) above and be
low their limiting values provide precise error bounds, which 
may be useful in theoretical considerations. 

Remark 2: The work of Campbe1l3 must be mentioned 
at this point. He states general conditions on a doubly in
dexed series and concludes a convergence result, which is 
stronger than Theorem 2 above. However, there is a serious 
error in his proof and his general theorem is false. A simpli
fied version of Campbell's claimed result would be the fol
lowing: Let {alJ } :: I ,j"= I be a doubly indexed "sequence" of 
reals satisfying (A) for all i, {Ia il I, 10121, 1013 I, .. ·} is a mono
tonically decreasing sequence with lim}-+co alj = 0, and for 
allj, (Ialj I, 102) I, ... } is a montonically decreasing sequence 
with lim/_co 0 1) = 0; and (B) the sign of ail is (- 1)1+i+ I. 

Then :Ii= I (:Ij'''= I alj) exists. 

Here is a counterexample to this claim. Let the al}'s be 
defined as in the array in Table I. Let 

TABLE I. The ij th entry in the array is denoted aij • to form a counterex
ample to the general convergence resUlt claimed by Campbell. 

2 -! _10-2 

3 ! 
4 -! -10-3 

5 ! 
6 -1-10-4 

2 

-! 
! - 10-3 

-! 
! -10-4 

-1 
1- 10-' 

3 4 

! -1 
-! - 10-4 1- 10-5 

1 -1 
_ ! _ 10-5 ! _ 10-6 

! -1 
-1- 10-6 1- 10-7 

5 

1 
-1- 10- 6 ... 

1 
_+_10-' ... 

+ 
-1 - 10-8 

... 
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00 

Ui = 2: ail' for i = 1,2,3, .... 
j= I 

Clearly, each Ui exists and the sign of Ui is ( - l)i+ I. The 
odd indexed Ui are all positive and easily calculated: 

UI = In 2 = 1/1 X2 + 1/3x4 + 1/5X6 + ... , 
U3 = In 2 + 1 = 1/2 X 3 + 1/4 X 5 + 1/6 X 7 + .... 

In general, 

UZk _ I = ( - l)k + I [In 2 - (1 -! + ... + ( - W I(k - 1))] 

00 1 

= l~O (k + 2j)(k + 2j + 1)' k>2. 

Any U Zk is negative and given by 

00 1 to- k 

UZk = l=f2+ I - to j = - -9-' 

Note, that 

00 1(00) 2: UZk = -- 2: to- k = 
k=1 9 k=1 

1 
81 

On the other hand 

Since the sum of the positive terms diverge and the sum of 
the negative terms converge, it follows that limn_ oo 1:7= lUi 

does not exist. 
Thus, 

i~1 (~Iaij) diverges, 

even though it satisfies Campbell's conditions for conver
gence. Campbell goes on to claim that the analogous result 
holds for any dimension and that one could also prove con
vergence if one summed by expanding rectangles. Both these 
statements are unfounded. 

Remark 3: In light of the above, it appears that there is 
no simple proof in the literature of the convergence of any of 
the most elementary direct summation methods. That is why 
the detailed proofs of Theorems 2 and 4 are given. Emersle
ben's result (Theorem 3) indicates that a noncasual approach 
is justified. 

Remark 4: The proofs given to Theorems 2 and 4 are 
simple and intuitive, based as they are on the fact that the 
contribution of a basic unit cell to the sum is always of the 
sign of the nearest point in the cell to the origin. We have 
abstracted this property and have obtained quite general 
convergence results for multidimensional alternating series. 
These results will be published elsewhere. We will point out 
later that Theorems 2 and 4 also follow from the deeper 
considerations of the next section. 
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IV. INTEGRAL TRANSFORMATIONS AND 
ANALYTICITY 

Our purpose in this section is to establish a firm connec
tion between the elementary direct summation methods dis
cussed above and the integral transformation methods, 
which are described by Glasser and Zucker in their survey 
article. lOne major consequence of this connection is that we 
can give a definition of Madelung's constant, which has a 
firm mathematical foundation and is unique in a strong 
enough sense to indicate why diverse methods of performing 
the lattice sums lead to the same number. We begin with a 
general discussion of analyticity of certain lattice sums in N
dimensional space. Of course, N = 2 and 3 are the most in
teresting cases, but the general notation is just as convenient. 

For a complex number s, let Re s denote the real part of s 
and let 

A N(S) = {( - It/linWs: neZN I{O)}, 

where for n = (nl,nZ, .. ·,nN)eZN, (- It = (- It +···+nN 

and Ilnll = (ni + n~ + ... + n~)l/z. We also use the nota
tions 

Inl = (Ind,lnzl,,,·,lnNiJeZN, 

and for meZN, 

n>m, if n j >m j' for 1 <j.;.N. 

If Re s > N 12, then a simple comparison test shows that 
1:n .. O 1/1 Inl 12.< < 00. So the elements of AN (s) are absolutely 
summable if Re s > N 12. Let 

dN (2s) = 2:{ (- l)n: neZN I{OJ}. 
Ilnll2.< 

Then dN(z) is a function of the complex variable z for 
Re z > N. In fact, it is a multidimensional zeta function, ana
lytic on this domain. To see this, define for meZ" , with m > 0, 

dm(z) = 2:{ (- l)n: neZN I{O} and Inl<m}. (20) 
IlnW 

The ~ (z) is analytic for Re z > O. For fixed B> 0, if 
Rez>N+B, 

IdN(Z)-diZ)I';'~{ 1 :neZN'\{leZN: III<mJ}. 
~ IlnllNH 

(21) 

The right-hand side of (21) can be made arbitrarily small by 
letting the minimal coefficient of m get large. Thus, on the 
region (Re z> N + B), d N (z) is the uniform limit of analytic 
functions and is therefore analytic. Since B > 0 was arbitrary 
we have established the following proposition. 

Proposition 1: The function dN(2s) is analytic in s for 
Res>NI2. 

Now comes the crucial step for the definition of Made
lung's constant. The functions dN (2s) can be analytically 
continued to the region (Re s> 0). To accomplish this we 
follow the ideas of Glasser and Zucker! and introduce () 
functions and the Mellin transform. We need, in particular, 

n = - 00 

So 
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00 

04(e- t ) = L (- lte-"Zt, O<t< 00. (22) 
n= - co 

For a continuous functionf(t ) defined forO < t < 00, bounded 
as t-o and decaying sufficiently fast as t_ 00, one can define 
a normalized Mellin transform M. (f) for Re s > 0 by 

M.(f) = r -I(S)fof(t)t'- 1 dt, 

where r is the usual gamma function given by 

r (s) = Loo e - tt S - 1 dt, for Re s > O. 

Of course, rand r -I are analytic functions on (Re s> 0). A 
useful property of the Mellin transform is that for a> 0 andf 
such that its Mellin transform exists, Ms (Tal) = Ms if)/ as, 
where T aI(t) = f(at ) for all t> O. In particular, 

(23) 

Consider now a truncation of the series for 04' For some 
positive integer m, let (,brn (q) = 1::;'= _ m ( - It q"Z . IfmeNN, 
say m = (ml, ... ,mN)' then let m = min { ml, ... mN j. We wish 
to approximate the Nth power of 04 with products of (,bm,. 
ForO<t< 00, 

10Z'(e-
t
)- ;DI(,bm,(e-

t
)I 

"I ill [1 04(e-
t
) - (,bm,(e-t)1 

N N 

= IT (b; + a;) - IT ai> (24) 
;=1 ;=1 

where a; = (,brn, (e- t) and b; = 104(e- t) - (,brn,(e- t)l. Note 
that 0 < a;, b; < 1, for i = 1, ... , N and the last expression in 
(24), IIf= 1 (b; + a;) - IIf= 1 a; represents the difference in 
volume between an Nbox of side lengths b; + ai' i = 1, ... ,N 
and one of side lengthsa;,i = I, ... ,N. Clearly IIf= db; + ad 
- IIf= 1 a; < max {b;:I"i"NjN2N- I . Now 104(e- t ) 
-(,bm(e-tll is the maximum b; and 104(e- t ) 
- (,brn (et ) I < 2e - rnZt. So (24) becomes 

!oZ'(e- t ) - ;DI(,brn,(e- t )! <N2Ne-
rnZt

. (25) 

We also need the Mellin transform of IIf= l(,brn, (e- t
) - 1, 

which is easily found using linearity and (23): 

Ms[.IT (,bm,(e- t) -1] =Ms[L' (_l)De-IIDWt] 
,= 1 IDI<m 

, (-It 
=LIDI<m~ 
= d m(2s). (26) 

The prime on the summation sign indicates that the n = 0 
term is omitted. 

We are now ready for the main theorems of this section. 
DefineF(s) = M. [OZ'(e- t ) - I] wherever it exists. 
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Theorem 5: The Mellin transform F (s) of ° Z'(e - t) - I 
exists and is analytic for all s with Re s > O. Furthermore F 
provides an analytic continuation of dN (2s) to the region 
(Res>O). 

Theorem 6: For any meZN
, m ~ 0, m = min { m;: 

l"i"N j and Res>O 

IF(s) - d m(2s)1 < N2Nr (Re s)/(m2Re'lr (s) I). (27) 

Proof (of Theorems 5 and 6 combined): Let s be a com
plex number such that Re s > O. Since 

0,,1- 0Z'(e-t)"N [1- 04(e- t )]"Ne- t, 

for all 0 < t < 00, 

then 

LooIOZ'(e- t)-llltS - lldt 

"N LOOe-ttRes-1 dt = Nr(Res). 

Therefore, if Re s > 0, then 

Loo [OZ'(e- t) - 1 ]t s- I dt = F(s) 

exists. Using (25) and (26), with m as in Theorem 6, 

Ir(s)IIF(s) - d m(2s)1 

"roo !oZ'(e- t ) - IT (,bm,(e-t)!ltS-lldt Jo ;= 1 

"N2N Lao e- rnZtt Res- 1 dt 

= N2Nr(Re s)/m2 Re •• 

Thus (27) holds. In tum, (27) implies that F(s) can be uni
formly approximated by the ~ (18) on any region of the form 
Rt;,M = {s:lsl <M and Res>8j. To see this letKbe an up
per bound for the continuous function N 2N (Re s)/Ir (s) I on 
the closure of Rt;,M' Then, for any E> 0 and any m such that 
m = min{m ..... ,mN j > (K /E)I/2t;, 

IF (s) - d m(2s) I < E, for all SeRt;,M' 

Since E is arbitrary and dm is analytic, F is analytic on R,s,M 

for any 8> 0 and 0 < M < 00. Therefore F is analytic on 
(Re s > 0). Finally, it is now clear that F (s) agrees with d N (18) 
if Re s > N /2. Thus F is an analytic continuation of 
dN • Q.E.D. 

In light of Theorem 5, we will drop the use ofF and write 

dN(2s)=Ms [0Z'(e- t)-l], for Res>O. (28) 

A rigorous mathematical definition can now be given for 
Madelung's constant. 

Definition: For a three-dimensional NaCl-type ionic 
crystal, Madelung's constant is the number 

d3(1)=M1/2[0!(e- t )-l]. 
Of course, this is the very number that has been approxi

mated by many different methods over the years. We have 
just given a definition that avoids all the ambiguities of 
meaning that have existed. The uniqueness of analytic con
tinuation explains the special significance of this particular 
sum of elements of 
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{( - lV+J+ k l(i2 + f + k 2
)1/2: (i,j,k )eZ3/(0,0,0)}. 

Formula (27) emphasizes the strong connection between the 
integral transformation methods and the direct summation 
methods. In fact it is worthwhile to formulate a corollary to 
Theorem 6, which gives explicit error bounds for a finite sum 
approximation to Madelung's constant. 

Corollary 1: Let m; > 0, for i = 1,2,3 and 
m = min{m l ,m2,m3 }. Then 

Remark 5: The above corollary says the Madelung's 
constant for NaCI can be obtained, not only by expanding 
cubes, but by expanding any rectilinear shape and the order 
of convergence is the inverse of the minimum dimension. In 
fact, it is permissible to let some coordinates go to infinity 
before others. 

Remark 6: Of course Theorems 2 and 4 follow immedi
ately from Theorems 5 and 6 but we preferred to present the 
simple direct proofs of Secs. II and III for the reasons given 
in remark 4. 

V. BACK TO TWO DIMENSIONS 

In this section we consider the analyticity of various 
methods of summing the elements of the set 

As = {( - lY+ k 1(/ + k 2
)': (j,k )eZ/(O,O)}. 

From Theorem 6, it follows that the method of expanding 
squares leads to d2(2s), which is analytic for Re s > O. In fact, 
expanding rectangles of any shape with sides parallel to the 
axes lead to d2(2s). In Theorem 1, we showed that the method 
of expanding circles converged when s =!, but there is no 
reason to believe that d2( 1) is obtained unless one shows that 
the appropriate function is analytic. Using the notation of 
Sec. II, let 

(29) 

whenever the right-hand side converges. Then G (s) is the 
sum of the elements of As obtained by expanding circles. 

Theorem 7: The function G (s) exists and is analytic for 
Re s > ~. Thus, G (s) = d2(2s) if Re s >~; in particular, 
d2(1) = l::= d - 1)nC2(n)/nI/2. 

Proof As in the proof of Theorem 1, let Bn 
= l:k= 1(- l)k C2(k). By (8), 

Define Gn (s) for all s with Re s> 0 by 

G,,(s) = i (- 1)kC2(k). 
k=1 k S 

As in (9) 

(30) 

B " 
G,,(s) = " + L Bdk -s - (k + I)-a]. (31) 

(n + l)S k= I 

By (30), if Re s>~, then IBn I(n + 1)' 1-0, uniformly in s. 
Note that 
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Ik -O_(k+ 1)'1 

= I( -S)Lk+lt -(s+l)dt 1<lsILk+lt -(Res+l)dt 

< Islk - (Res+ I). (32) 

So for sER M = {z: Re z>~, Izl <M} with M a fixed positive 
number and l<N<N', 

Ik~NBdk -a - (k + I)-a] I 
N' 

< L IBkilk -O_(k+ 1)-01 
k=N 

N' 

<K L k I/3 -"lk -O_(k+ 1)-61 by(30) 
k=N 

N' 
<KM L k Il3 -,,-Reo-1 by (32) 

k=N 
<KMN 1/3 - ,,- Res 

<KMN-" 
-0 asN,N'--~, 

uniformly for sERm • Thus, the sequence of functions 
{Gn (s)}: = I is uniformly Cauchy on RM and it converges 
uniformly to a limit function G (s). Furthermore, each G n (s) is 
analytic, so G (s) is analytic for sERM • Since M is arbitrary, 
G (s) exists and is analytic for all s with Re s > ~. Q.E.D. 

Remark 7: It is not know what the minimum non-nega
tivepis, such that G (s) exists for alls with Re s > p. However, 
if we consider another method of summing the elements of 
As, we can get a very complete and illuminating analysis. 
This is the method of expanding diamonds. 

For each k = 1,2,3, ... , and complex s with Re s > 0, let 
k 

t5k(s) = L{(k-Jj2+f}-s. 
}=o 

For each n = 1,2,3, ... , let 

" ..1,,(s) = 4 L (- Wt5k(s) - 4Xn(s), (33) 
k=1 

where X,,(s) = l:k= d - l)k Ik s. Note that ..1 n(s) counts the 
contributions within the diamond Ik I + VI <no Now, 
limn_oo Xn(s) = l:k= d - l)k Ik s = -1](s) and 1] is known 
to be analytic for Re s> O. Therefore, in order to determine 
for which s the limit of the ..1 n (s) exists and is analytic, it is 
sufficient to analyze l:k= d - l)kt5k(s). We begin by estab
lishing a number of facts about the sequence of t5k • 

Proposition 2: (a) limk_ oo t5kHl =..[i In(..[i + 1). Thus 
l:k= d - Wt5kHl diverges. 

(b) For real r>!, t5k _ I (r»t5k (r), k = 2,3,4, .... 
(c) l:k= d - l)kt5k(s) exists and is analytic for Res>!. 

Proof:(a) 

t5k(~) = ± [(k - Jj2 + f] -112 
2 J=O 

=jto(!)[(l- ~r +(~r]-1I2 

--f [(1- t)2 + t 2] - 1I2dt, as k __ ~ 
=..[i In(..[i + 1). 
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For the proofs of (b) and (c) it is very convenient to introduce 
the following function. For Re s>!, let [

/4 

VIr) = 2r 0 (2 cos2 ())' d() - 1 

[

/4 

> 0 .J2 cos () d() - 1 = O. v (s) = 2s(2S) [/4 COS2s () d() - 1. 

We proceed now to the proof of (b). 
Then V is continuous and V m = O. If r>!, then Let r>! and k>2, 

c5k _ dr) - c5k (r) 
k 

= L {[(k - J12 + (j - W] -r - [(k - J12 + '] -r} - k -2r 
1-1 _ i (1 2ndt _ k -2r> i (1 2ndt _ k -2r 

-1-1J1-1 [(k-J12+t 2]'+1 1=IJ1-1 [(k_t)2+t 2]'+1 

_ i
k 

2n dt _ k - 2r _ k - 2r{il 2ru du _ I} 
- 0 [(k_t)2+t 2]'+1 - 0 [(I_U)2+U2]'+1 

k -2r{2 fill (v + 1/2)dv I} ( 1 ) 
= r -1/2 2'+ l(vl + 1/4)r+ 1 - V = U - '2 
= k - 2r{~i1/2 dv _ I} = k - 2r{2r[/4(2 cos2 ())r d() - I} (tan () = 2v) 

2r + 1 0 (V2 + 1/4)'+ 1 0 

= k -2rV(r»O. 

That is, 15k _ 1 (r»c5k (r), for r>!, k = 2,3,4,... . 
To prove (c), let E>O andM < 00 be arbitrary. Let 

R = {z: Rez>! + E and Izl <M}. 

For seR, let r = Re s. For k>2, we can write 
k-l 

c5k_.(s) -c5k(s) = L {[(k -Jl + (j - 1)2] -s - [(k -J12 +/] -S} + (k - 1)-2& - 2k-2& 
j=1 

k-
1ii =L 

1= 1 j-l 
Thus, 

Ic5k_ds)-c5k(s)I/~lrj 21sltdt +3(k_l)-2r 
j~IJj-l [(k - J12 + t 2]'+ 1 

<:"2Mk~1 (j tdt + 3(k _1)-2r 
jf-l Jj _ 1 [(k _ 1 - t )2 + t 2] r+ 1 

= 2Mik-1 tdt + 3(k _ 1)-2r 
o [(k - 1 - t )2 + t 2)' + 1 

= (k - 1)-2r{2Mi
l 

U du + 3} = (k _ 1)-2r{(M Ir)V(r) + (M Ir) + 3} <:..(k _ 1)- 2rC, 
o [(1 - U)2 + U2]'+ 1 

I 

(34) 

(35) 

where C is the maximum of the continuous function (M I 
r)V(r) + M Ir + 3 for ! + E<:..r<:..M. Now, for each n, 
l:~ = dc52k _ .Is) - c52k (s)) is an analytic function of s for 
Res> ! and 

Then lim"_", .1" (s) exists and is analytic for Re s > !. Al
though {.1" m} :' = 1 fails to converge, 

k~l( - l)kc5ds) = !~ [ - ktl(c52k - .Is) - c52k (S))] 

exists uniformly on R, by (35) and the Weierstrass M test. 
SinceE> 0 andM < 00 are arbitrary, (c) has been established. 

Q.E.D. 
We can now describe the behavior of the diamond sums. 
Theorem 8: For each complex number s with Re s > 0 

and each n = 1,2, .. , let 

.1"(s) = i(-I)/{:L [/+k 2 ]-s}. 
1= 1 VI + Ikl =1 
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d2(1) = lim (lim .1,,(r)). (36) 
r-1/2+ ,,_'" 

Proof: These claims all follow immediately from Propo
sition 2. 

Remark 8: Further analysis along the lines of Proposi
tion 2 shows that although 

is divergent, it is Cesaro summable or Abel summable to 
d2(1). 
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The diamond sums provide a nice illustration of how a 
method of summing the elements of As can be analytic in s 
for Re s large, then with decreasing Re s, this analyticity fails 
at a specific point. With the diamond sums it happens to be at 
!, with expanding squares or rectangles it is at O. It is not 
clear where the expanding circles fails; it is at some point less 
than i. In three dimensions the method of expanding spheres 
fails at some point greater then l' 

VI. THE HEXAGONAL LATTICE 

As an illustration of what is obtained when one studies 
other crystal lattices in the above manner, we include a brief 
summary of results on Madelung's constant of a two-dimen
sional regular hexagonal lattice with ions of alternating unit 
charge. 

In order to obtain a tractable expression for the terms 
appearing in the lattice sum, choose a coordinate system 
with an angle of tP = 11'/3 between the positive axes. Then an 

arbitrary site in the lattice has coordinates ( n,m) with nand 
m integers. A charge of + 1, - 1, or 0 is attached to that site 
in a regular fashion (see Fig. 2). By considering the two paral
lelograms indicated in Fig. 2, one can see that this charge 
may be expressed by 

q(n,m) = t[ - sin(n8 )sin((m - 1)8) 

+sin((m+ 1)8)sin((n+ 1)8)], 8=211'/3. 

The distance of the point ( n,m) from the origin is given 
by 

I( n,mll = [In + m/2f + 3(m/2fl 112. 

The set of numbers to be summed is then 

Cs = !q(n,m)/I( n,mWs: (n,m)eZ2/(O,O)), 

for Res>O. 

As before, the elements of Cs are absolutely summable for 
Re s > 1 and we wish an analytic continuation of their sum to 
a region which includes s = !. Arguments, like those used for 
the diamond sums, will show that direct summation by ex
panding shells of hexagons will converge analytically for 
Re s> i and even have a limit as s approaches i from the 
right. However, for precise calculation purposes an analytic 
continuation via the integral transform methods is far supe
rior. Let 

H2(2s) = I{ q(n,m) : (n,m)eZ2/(O,O)}, (37) 
I( n,m lI20 

for Res> 1. Then Hz is an analytic function of s and the 
series converges absolutely. Substituting the expression for 
q(n,m) and using elementary trignometric identities yields 

H2(2s) = ~ I,cos((m - n)8) 
3 I( n,mll 2o 

_ [~I' sin((m - n)8)], 
3 I( n,m)1 2o 

(38) 

where 1:' indicates the sum is over (n,m)eZ2/(O,O). By sym
metry considerations, the second term in the right-hand side 
of(38) is zero. Further manipulation of theta functions (using 
the modular equation of order 3) produces a rectangular sum 
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(39) 

A theta function identity due to CauchylO and a Mellin 
transform yields 

(40) 

where 5 (s) is the standard zeta function (1::= 1 n - S) and 

L_3(S) = 1_2-s+4-s_5-s+7-s_8-s+ .... 

The formula (40) can also be deduced directly from (38) by 
using results in Sec. IV of Glasser and Zucker. I While the 
intermediate sums (39) and (40) are only analytic for Re s > 1, 
the standard continuation of the zeta function, 

(I - 21
- S)5(S) = i (- I)n+ In -s = a(s), 

n=1 

gives 

H2(2s) = 3(1 - 31 -1(1 - 21
-

9
) -la (slL_3(S). (41) 

The right-hand side of (41) is an analytic function of s for 
Re s > 0 and therefore (41) provides the required analytic 
continuation, which is necessary for Madelung's constant of 
this hexagonal crystal lattice: 

H 2(1) = 3(.]3 - IHv'2 + l)a(l/2lL_3(l/2). (42) 

This can be considered as a solution to this lattice sum prob
lem, as both aHl and L_3(!) can be rapidly calculated by 
known techniques. At s = 1, we have an exact result: 

(43) 

VII. CONCLUDING REMARKS 

We have investigated some fundamental properties of 
the multiply indexed series involved in the definition of Ma
delung's constant for an NaCl-type ionic crystal in two and 
three dimensions. We have provided elementary proofs that 
convergent series are obtained if the series is summed by 
letting the shape of a basic unit cell expand. The natural 
method of summing the effects of all ions within a fixed dis
tance and letting the distance go to infinity leads to a conver
gent series in two dimensions but not so in three dimensions. 

FIG. 2. The hexagonal lattice. 
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We have provided a unity to the concept of Madelung's 
constant by the use of analytic continuation of a complex 
function. Thus, although conditionally convergent when 
summed by expanding squares (or cubes), other methods of 
summing will provide the same answer provided that they 
are "analytic" in the correct sense. We have provided an 
analysis of the expanding circles and expanding diamonds 
methods in two dimensions to illustrate this point. 

Perhaps the most important results are those in Sec. IV, 
rationalizing the integral transformation methods with the 
direct summation methods. These integral transform meth
ods are the most useful in practice as they lead to very rapid
ly convergent series. 

In the course of these investigations we have encoun
tered many curious facts, most of which are probably known 
to experts in the area. However, the formulas (42) and (43) 
seem to be unknown and may be of sufficient interest to have 
been included; at least, as an illustration that the techniques 
of analytic continuation are applicable to other lattices. 
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Bianchi I cosmological models consisting of a fluid with both bulk and shear viscosity are studied. 
It is shown how the dynamical importance of the shear and the fluid density change in the course 
of evolution. Exact solutions with an equation of state p = p for a stiff fluid are also obtained in 
several special cases, assuming the viscosity coefficients to be the power functions of the density. 
The results are, in some relevant cases, compared with those of Belinskii and Khalatnikov (1976) 
in the asymptotic limits and are seen to agree with them in that the models start withp = 0 at the 
beginning and evolve with the creation of matter by the gravitational field, finally approaching the 
Friedmann universe. 

I. INTRODUCTION 

The presence of viscosity in the fluid content introduces 
many interesting features in the dynamics of homogeneous 
cosmological models. I

-
5 The dissipative mechanisms not 

only modify the nature of the singUlarity usually occurring 
for a perfect fluid, but also can successfully account for the 
large entropy per baryon in the present universe. Misner6

•
7 

suggested that any anisotropy in an expanding universe 
would be reduced to a rather insignificant level today by 
neutrino viscosity. MurphyS presented an exactly soluble 
cosmological model of Friedmann type in the presence of 
bulk viscosity alone. Later Banerjee and Santos9 extended 
the calculations to more general cases such as k = ± 1. It 
was shown, however, that in all the cases where the singular
ity is said to appear at infinite past, the fluid did not satisfy 
Hawking-Penrose energy conditions. 

Exact solutions for homogeneous anisotropic models 
are not much known in the literature. There are, however, a 
few lO

•
ll which utilize certain simplifying assumptions to get 

exact solutions at the cost of a physically reasonable equa
tion of state. Belinskil and Khalatnikov4 assumed an equa
tion of state of the form p (Xp, but did not give any exact 
solution. They have, however, investigated some general fea
tures of the isotropic and anisotropic homogeneous cosmo
logical models in the presence of bulk as well as shear viscos
ity in asymptotic limits. We consider in this paper the 
Bianchi I model with a fluid characterized by both bulk and 
shear viscosity and having an equation of state p (Xp. The 
viscosity coefficients are further assumed to be power func
tions of the matter density as suggested by Belinskil and 
Khalatnikov.4 Exact solutions in several particular cases for 
stiff fluid p = p are worked out. 

In Sec. II we have considered Einstein's field equation 
for a Bianchi I cosmological model and discussed how the 
dynamical importance of the shear and matter change in the 
course of the cosmological evolution. The entropy variation 
is also explicitly stated. 

In Sec. III exact solutions are obtained and their asymp
totic characteristics are studied. The general behavior in the 
limits is compared with that of Belinskil and Khalatnikov4 at 
some places. Explicit solutions could be obtained consider
ing the viscous coefficients only for a few restricted power 
functions of the mass density. These include the special cases 

with constant viscosity coefficients. In many of these cases 
the matter density vanishes at the initial instant, then in
creases in the course of evolution and finally reduces to zero. 
In such cases, therefore, at the initial singularity the metric is 
determined by the free space Einstein equations. In this con
text Belinskii and Khalatnikov4 remarked that the gravita
tional field creates the matter in the course of evolution. 

II. EINSTEIN'S FIELD EQUATIONS AND SOME 
GENERAL RESULTS 

The metric of the homogeneous Bianchi type I model is 

dr = - dt 2 + e2a dx2 + e2fJ dy2 + e2y dr, (2.1) 

where a, /3, and r are functions of time alone. The energy 
momentum tensor of the viscous fluid 12 is given by 

Tij = (p + p)vivj + pgij - 1]f-lij' (2.2) 

with 

and 

f-lij = v;J + VJ;i + vivavj;a + vjvavi;a, 

where 

() = va;a. 

(2.3) 

(2.4) 

In the above equations ~ and 1] stand for the bulk and shear 
viscosity coefficients, p and p are the mass density and pres
sure, respectively, p is the effective pressure, and Vi repre
sents the four-velocity, so that 

(2.5) 

Choosing units 817'G = C = 1, Einstein's field equations can 
be written as 

(2.6) 

Using comoving coordinates, so that Vi = t5~, the explicit 
forms of Eq. (2.6) are 

~(R / R )2 - !(a2 + /:J 2 + yz) = p, (2.7) 

p+ r+ ~(R /R )rP+ r-a) 
+ !(a2 + /:J 2 + yz) = - (p - 21]a), 

r + a + ~(R / R )(r + a - /:J) 
+ ~(a2 + /:J 2 + yz) = - (p - 21]/:J ), 

(2.8) 

(2.9) 
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a + P + ~(R /R )(a + iJ - r) 
+ (a2 + iJ2 + y) = - (jj - 21/r), 

where the dot indicates time differentiation and 

R 3 = exp(a + P + r). 

(2.10) 

(2.11) 

The usual definitions of the dynamical scalars such as the 
expansion scalar () and the shear scalar u are considered to be 

() = v;; and u2 = ~u ijdj
, 

where 

(2.12) 

uij = v(;Jl + !(V;;kVkVj + Vj;kVkV;) + !()(gij + V;Vj)' (2.13) 

For the Bianchi type I metric with comoving coordinates we 
have 

()= 3(R/R) 

and 

2u2 = (a2 + iJ2 + y) _ !()2. 

The field equations (2.7)-(2.10) now yield 

T! =!() 2 - u2 = p 

and 

(2.14) 

(2.15) 

(2.16) 

gijGij = 20 + ~()2 + 2u2 =p - 3(jj - t()). (2.17) 

One can further obtain from the Bianchi identity 

p = - V1 + p)() + t()2 + 41/u2. (2.18) 

It follows directly from Eq. (2.18) that for contraction, that 
is, () < 0 we have p > 0 so that the matter density increases or 
decreases depending on whether the viscous heating is 
greater or less than the cooling due to expansion. It may be 
mentioned here that for an ultrarelativistic fluid p = 10 and 
t = 0, Stewart13 has shown that the rate of viscous heating 
does not exceed one-half the rate of adiabatic cooling due to 
expansion. 

Now, eliminating u2 from Eqs. (2.17) and (2.18), one 
readily obtains 

() = ~V1 - p + t() ) - () 2 (2.19) 

and 

p = - V1 + p)() + t()2 + 41/(!l~2 -pI, 

The relation (2.19) may be written as 

!!... [In(()2R 6)] = 3[V1- p)() -I + t]. 
dt 

(2.20) 

(2.21) 

Using Eq. (2.16), Eq. (2.19) can also be expressed in a differ
ent form such as 

This is exactly the Raychaudhuri equation. 14 Further, we 
have 

(2.23) 

The Hawking-Penrose energy condition is satisfied when 
RijvV<O. Thus, in a contracting model, so long as the fluid 
density and pressure remain positive, the energy conditions 
are satisfied. When the bulk viscosity is insignificant the en
ergy condition is independent of the viscosity of the fluid. 
Again from the Raychaudhuri equation (2.22) it is evident 
that with the energy condition being satisfied, 0 < 0, so that 
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there is no bounce from a minimum volume. 
Now for () =f: 0, that is, for a nonstatic model, one has, in 

view ofEq. (2.16), 

(u2 /() 2)' = - V1/() 2)' . (2.24) 

Using the expressions for p and 0 from Eqs. (2.19) and (2.20) 
in Eq. (2.24), one obtains after simplification the following 
result: 

(u2 /() 2)' = - V1/() 2) . 

(2.25) 

The reasonable physical properties of the fluid demand 
p>p>O, t>O, and 1/>0, so that for an expanding model 
(() > 0) we have V1/() 2) . > 0 and (u2 /() 2)' < O. It is evident, 
therefore, that V1/() 2) increases with time, while (u2 /() 2) de
creases. The dynamical influence of matter, therefore, in
creases with expansion, whereas that of shear decreases. For 
contraction, however, () < 0 and nothing can be said with 
certainty. It is interesting to note that for a stiff fluid, that is, 
p = p, V1/() 2) is greater than zero and (u2 /() 2) is less than zero 
so long as viscosity coefficients are positive and this behavior 
holds irrespective of whether the model expands or con
tracts. Combining Eqs. (2.21) and (2.25), one obtains 

[In(u2R 6)]" = - 41/, (2.26) 

which in tum can also be written as 

(u2)' = - 2(21/ + () )u2. (2.27) 

This is the shear propagation equation. It follows from Eq. 
(2.27) that for the expanding model () > 0 the shear decreases 
with time. The rate of work done by anisotropic stresses aug
ments the shear dissipation. It is also evident from Eq. (2.27) 
that the shear dissipation depends on the expansion rate (), 
which is again affected by the presence of bulk viscosity as is 
evident from Eq. (2.22). The bulk viscosity has thus a signifi
cant role in the process of the shear dissipation mechanism. 

When 1/ is assumed to be a constant the relation (2.27) 
can be directly integrated to yield 

u2 = (cro/R 6) e- 4
'1t, (2.28) 

Uo being the integration constant. The effect of shear viscos
ity is to reduce the anisotropy in the course of time in the 
form of an exponential factor. This purely relativistic result 
is due to Misner.6

•
7 

Following BelinskiI and Khalatnikov4 the time deriva
tive of the entropy density in the model is given by 

(2.29) 

where.2' is the entropy density. Defining the total entropy by 
S = R 3.2', one gets from Eq. (2.20) using Eq. (2.29) the rela
tion 

(2.30) 

We now restrict ourselves to an equation of state of the form 

p = (r - 110, 1<r<2, (2.31) 

and assume that the viscosity coefficients are constants so 
that t = to and 1/ = 1/0' The qualitative aspects of the pres
ence ofviscosity will, however, be present in such a restricted 
case also (see Misner6

•
7 and Treciokas and EllisIS

). In this 
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case Eq. (2.30) can be written as 

SIS = [~o + 4110(a2 18 2) 11*18 2). (2.32) 

By further differentiation with respect to time and using Eqs. 
(2.25) and (2.32), we find 

S -18 = r-21;o182)-2[~~ - (a218 2)1;o18 2) 

X {1611~ + r(2 - r)(3~0 + 4110)8 } 

+ 8110(r - 1)(~0 + j11o) + 3r~~]. (2.33) 

For an expanding model, (a2 18 2
) decreases with time, 

whereas 1;018 2) increases, as was already discussed. The mini
mum of (a218 2) is zero, when pI8 2=! and 
S -18 = ~~r-21;o182)-2, which is greater than zero. In the 
course of time 1;018 2) decreases and we consider the extreme 
case whenpl8 2 = O. At this instant a2 18 2 = ! and from Eq. 
(2.33) it is evident that 8 <0. The relation (2.32) indicates 
that S > 0, that is, the total entropy always increases for non
negative values of matter density, whereas for expansion, 8 is 
initially negative and later becomes positive in the course of 
time. SinceSIS-+ 00 aspl8 2 -+0, wehavetheS - tcurve 
intersecting the time axis. It means that S reduces to zero at 
some finite time. The picture is more clear for a stiff fluid 
whenp = p. We have then from Eq. (2.25) 

(a218 2)7(o218 2
) = (3~0 + 4110)' 

which yields on integration 

a218 2 =A 2e -(3,"0+4'70)t, (2.34) 

where A 2 is the magnitude of the ratio 0218 2 at t = O. It is 
evident from Eq. (2.34) that for both ~ and 11 as constants the 
ratio of shear to expansion decays exponentially and the rate 
falls in the absence of either bulk or shear viscosity. From 
Eqs. (2.16) and (2.34) one gets the expression for 1;018 2) in the 
form 

pl8 2 =! -A 2e -(3,"0+4'70)t. (2.35) 

So, initially, if one starts with zero mass density at some 
finite time one must have 1;018 2)max = i at t -+ 00. In view of 
Eqs. (2.34) and (2.35), Eq. (2.32) can now be written as 

S _ ~o + 4110A 2e - (3,"0 + 4'70)t 
S - 2H -A 2e -(3,"0+4'70)t) , 

which in tum yields on integration 

(2.36) 

S = So [!e3,"ot - A 2e - 4'7ot ] 112, (2.37) 

with So being the constant of integration. It is evident that at 

t = [In(3A 2)](3~0 + 4110)-1, (2.38) 

the total entropy S = 0, when we also have pl8 2 = O. Again 
ast-+ oo,S-+ 00 andpl8 2 approaches its maximum value. 
Combining Eqs. (2.35) and (2.37) together one can also write 

S2 = S~1;o18 2)e3,"ot, (2.39) 

which in tum demands that the matter density must be non
negative in this case. 

III. SPECIAL SOLUTIONS FOR A BIANCHI I MODEL 
WITH A VISCOUS FLUID 

In what follows we consider some special cases with re
strictions on the behavior of the bulk and shear viscosity 
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coefficients. It is true that the assumptions regarding these 
viscosity coefficients may not always be valid in an actual 
fluid throughout the entire evolution history of the cosmolo
gical models hitherto discussed: the solutions are neverthe
less interesting in indicating the role of viscosity in cosmolo
gical evolution. 

In view ofEqs. (2.18) and (2.26) we now have the relation 

!{ [1;0 + a2)R 6] = ~82R 6. (3.1) 
dt 

Using Eq. (2.16) in Eq. (3.1) we further obtain 

!{ [In(8 2R 6)] = 3{ (3.2) 
dt 

A. Case I 

In this case, 

~= 0, 11 = 11opn, 

where 110 and n are constants. Equation (3.2) can immediate
ly be integrated in this case to yield 

R3=R~t, (3.3) 

where Ro is an arbitrary constant and the time coordinate is 
chosen such that the proper volume vanishes at t = O. It is, 
however, not difficult to show that one will get the same 
solution (3.3) if one assumes the shear and bulk viscosity to 
be absent for a perfect fluid. The expansion scalar 8 is given 
by 

8 = t -I. (3.4) 

Equation (2.26) now yields in view of Eq. (2.16) 

(a218 2)-1(a218 2)' = - 41108 2nH - a218 2)". (3.5) 

Writing a2 18 2 = y and using the relation (3.4), Eq. (3.5) can 
be written as a first-order differential equation 

Ny = - 4110t - 2nB - y)". (3.6) 

In view ofEq. (2.16)p is positive when! - y>O. For n = 1 
the solution for y is obtained by integrating Eq. (3.6) as 

(3.7) 

where a2 is a positive constant. It follows from Eq. (3.7), in 
view of Eq. (3.4), that 

a2 = (1/3t 2)(1 + a2e-(4/3)('7.,1t))-I. (3.8) 

Using Eq. (2.16) we, therefore, obtain 

p = (a2/3t 2)e-(4/3)('7.,1t)(1 + a2e-(4/3)('7.,1t))-I. (3.9) 

Now consider an expanding model, for which 8 > O. In 
this case at t -+ 0, R 3 -+ 0 and both the shear and expansion 
scalars attain infinitely large magnitUdes, while the density 
reduces to zero. It is an interesting behavior as noted pre
viously by BelinskiI and Khalatnikov. 4 The singularity at 
t = 0 in this case corresponds to vanishing proper volume 
R 3 = O. But, unlike in the usual case of cosmological singu
larity, the density vanishes in the limit instead of increasing 
to infinity. The matter density subsequently increases and 
again decreases to approach zero magnitude at the final 
stage at t -+ 00, as is evident from Eq. (3.9). In this limit, 
however, both the expansion (8) and shear (a2) scalars vanish 
and R 3 -+ 00. In other words the model may be said to ap-
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proach asymptotically the isotropic Friedmann universe (cf. 
Belinski! and Khalatnikov4

). On the other hand, collapse 
may be discussed for a negative value of t when t < 0, 0 < 0, 
which represents a contracting model. As t -- - 00, all the 
quantities such as 0, 02, and p vanish with infinitely large 
proper volume representing a Friedmann model. In the 
course of time as t __ 0, the proper volume reduces to zero 
whereas 10 I, 02, andp all increase indefinitely. These proper
ties in asymptotic limits only are discussed by Belinski! and 
Khalatnikov.4 

For n = ~ the relation (3.2) takes the following form: 

Ny = - (41101t3)(! - y)3/2. (3.10) 

Since (0210 2)' <Of or positive t and 11, that is,y <0, tshould 
assume only positive values and thus one can have only ex
pansion allowed in this case (0 > 0). Integrating Eq. (3.10), we 
have 

{
I - (1 - 3y)I/2 } 2 

In 1 + (1 _ 3y)I/2 + (1 _ 3y)I/2 

= 2110 t -2 + const. 
3/3 

(3.11) 

For n = 2 in Eq. (3.6) we find that the solution of y is 
given by 

3 In [yl(! - y)] + l/(! - y) = 3110t -3 + const. (3.12) 

Though the solutions (3.11) and (3.12) are not in closed form, 
it is not very difficult to investigate the properties of these 
models at limits. The analysis is done in an identical manner 
as for n = 1. The behavior can be seen to be almost identical 
in the limits t __ 0 or t -- 00 • 

For n = !, Eq. (3.6) can be expressed as 

Ny = - 41101 -1(1 - y)I/2, (3.13) 

which on integration yields 

1 - (1 - 3y)I/2 = (.!.) _ (4/,13)'10, 
1 + (1 - 3y)I/2 to 

where to is the constant of integration and is less than t as is 
clear from the above equation, which on further simplifica
tion gives 

(t It ) - (4/,13)'10 
Y = ~ 0 (3.14) 

(l + (t Ito) - (4/J3)'I°f 

One can now use Eq. (3.4) in Eq. (3.14) to obtain an expres
sion for 02(' .'y = 021( 2) as 

02 = (4/3t 2)(t Ito) - (4/,13)'10(1 + (t Ito) - 41,13)'10)-2 (3.15) 

and also 

p = (l/3t 2)(1 - (t Ito)-(4;J3)'Io)2(l + (t Ito)-(4/J3)'Io)-2. (3.16) 

For an expanding model 0> O. In this case as t -- to, 0, R \ 
and 02 all remain finite, while the matter density vanishes. 
On the other hand, as t -- 00 the expansion (0 ) and the shear 
(02) scalars vanish although the proper volume increases in
definitely. The matter density p approaches zero, thus repre
sentive asymptotically of an isotropic Friedmann universe. 

The simplest case is for n = 0, that is, 11 = 110' We now 
have from Eq. (3.6) 

(3.17) 
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so that y = 0210 2 cc e - 4'1o
t
, yielding the relation 

02 = (ailt 2)e- 4'1ot. (3.18) 

Further, 

p = !02 - 02 = (l/t 2)B - aie-4'1ot]. (3.19) 

The behavior in this case is quite different from the previous 
cases at least in the initial phase of expansion. Here at t -- 0, 
the physical and geometrical quantities such as p,O,o2 be
come infinitely large. The magnitude of the constant ai, 
however, cannot be greater than! for positive values of mat
ter density p. On the other hand, as t -- 00, all the quantities 
p, 0, 02 reduce to vanishingly small quantities. 

It should be mentioned at this point that in all the mod
els discussed so far, one can conclude that the Hawking
Penrose energy condition (RifvV,,;;O) is satisfied so long as 
p>O. This is clear from the relation (2.23) and the fact that in 
the above models we have assumed t = o. 

B. Case II 

Let us now turn our attention to the nonvanishing val
ues of bulk viscosity coefficients, that is, the situation where 
the bulk viscosity of the fluid cannot be completely ignored. 

We assume 

(3.20) 

where to and 110 are constants. Now, integrating Eq. (3.2) one 
gets 

0= (OoiR 6)e(312)&ot, (3.21) 

00 being the constant of integration. Remembering that for 
the Bianchi I metric 0 = 3(R I R ) and so integrating further 
Eq. (3.21), we have the solution for R, which is given by 

R 3 = (20olto)(e(3/2)&ot + D). (3.22) 

Equation (3.20) therefore yields 

o = ~0(e(3/2)&ot I [e(312)&ot + D ]). (3.23) 

Now from Eqs. (2.25) and (3.20) one gets 

Ny = - (3to + 411opQ)· 

which in turn can be written in view ofEq. (2.16) as 

Ny = - 3to - 411002q(! - y)Q. (3.24) 

The special case for D = 0 is particularly simple and we dis
cuss only this case. We therefore have 0 = ~o so that iJ = O. 
Here the expansion is steady and the rate is constant. One of 
the relatively simple cases is q = 1. In this case 11 = 110 P and 
hence we obtain from Eq. (3.24) -

Ny = - 3to - 41100 2{! - y). (3.25) 

Writing 3to = ao and 911~t~ = bo, the relation (3.25) may be 
written as 

Ny = - ao - bo{! - y). 

where both ao and bo are greater than zero. Integrating Eq. 
(3.25) we further obtain 

y/(co - y) = eboC.,(to-t), 

So that one can write explicitly 

0210 2 = col(l + ~oC.,(t-to)), 
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(3.27) 
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where Co = aolho + i and to is the constant of integration. 
Since here f} = ~o' the expansion scalar f} is positive for the 
physical requirement to> O. The above solution, therefore, 
represents an expanding model only. The density p vanishes 
at a finite time, when cr If} 2 =~, so that cr remains finite. 
The proper volume represented by R 3 also has finite magni
tude. But for t ..... 00, R 3 ..... 00, cr ..... 0, and p ..... ~ ~. The 
singularity of vanishing volume R 3 = 0 exists at t..... - 00, 

where the density is negative infinity. In fact prior to the 
instant corresponding to cr If} 2 = ~ the density assumes only 
negative values. If one calculates RijvV in this model, one 
finds it to be positive so that the energy condition is violated 
throughout. 

Particularly, simple models can be constructed in this 
case, taking q = 0 in Eq. (3.20), so that 

t = to, 1/ = 1/0' (3.28) 

The expressions for R 3 and f} remain unaltered from those 
given in Eqs. (3.22) and (3.23), respectively. Equation (3.24) 
then reduces to 

jl/y = - (3to + 41/0)' (3.29) 

This case is already mentioned in Eq. (2.34). Integrating Eq. 
(3.29), the solution can be obtained in the form 

y = crlf}2 =A 2e -(3&-0+4'1)0)t, 

so that 

cr = ~ 2t ~e - 4'1)ot [e(3l2)&-ot _ D ] -2, (3.30) 

and the matter density p is expressed as 

p=f}2(~_ ~) 
9 r02e3&-ot 

=- ~ [~_A2e-(3&-0+4'1)0)t]. (3.31) 
4 [e(3/2)&-ot + D ] 2 

The maximum of cr If} 2 is ! and this occurs at some finite 
time t given by Eq. (2.38). In this limit p = 0 and cr, f} 2 are 
both finite. For D>O the proper volume never reduces to 
zero magnitude as is evident from Eq. (3.22). On the other 
hand, as t ..... 00, f} ..... ~o, which is finite, cr -0, and 
p ..... ~ ~, but R 3 ..... 00. We note that though the proper vol
ume increases to large dimension and the anisotropy reduces 
to zero the fluid density p does not vanish, unlike the Fried
mann universe. For D < 0 we note that at a finite time R 3 = 0 
and f},cr, p all become infinitely large. But t ..... 00, R 3 ..... 00, 

cr ..... 0 but f} andp both remain finite. In the limit t ..... 00 the 
behavior of the model is independent of the sign of the con
stantD. 

For D>O it can be shown that the Hawking-Penrose 
energy conditions are violated throughout and for D < 0 this 
happens for large time t. 

IV. CONCLUSION 

In summary, we have considered the Bianchi type I cos
mological model with a viscous fluid, assuming the coeffi
cients of viscosity as power functions of the matter density 
and considering an equation of state for a stiff fluid (p = p). 
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In most of the cases it has been observed that the matter 
density is zero at the initial singularity but then increases in 
the course of evolution, finally vanishing again in the asym
totic limit, which implies that the gravitational field creates 
matter. In the case of expanding models it is found that the 
dynamical importance of matter increases while that of 
shear decreases in the course of evolution. For a stiff fluid, in 
particular, this result is shown to hold also for contracting 
models. In addition to the role of shear viscosity in the dissi
pation of shear it is pointed out that the bulk viscosity can 
also augment the shear dissipation. For the stiff fluid with 
constant viscosity coefficients it is observed that the bulk 
viscosity can be an effective mechanism for large entropy in 
the asymptotic limit when the model approaches the isotrop
ic Friedmann universe. Although the role of shear viscosity 
also is to increase the entropy in the course of the expansion, 
its effect becomes gradually less compared to that of the bulk 
viscosity in the asymptotic limit. The magnitude of the en
tropy is low at the highly anisotropic initial phase of evolu
tin, as is observed from Eq. (2.37), and then increases subse
quently. 

In the preceding section we have considered two differ
ent cases. The first case is 1/ = 1/0 pn and t = O. Solutions for 
particular values of n such as n =!, 1, ~, 2 are explicitly 
given. It is found that in all these cases except for n = 1, only 
expanding models are allowed. For n = !, I, and 2, the mod
els have been found to approach the isotropic Friedmann 
universe asymptotically. The matter density vanishes at the 
initial phase of singularity, increasing subsequently during 
the evolution, ultimately reducing to zero in the asymptotic 
limit. For n = ~, the solution is not in the closed form and as 
such the behavior cannot be studied. For n = 1 as t..... - 00 

the proper volume R 3 tends to infinity whereas f},cr, and p 
vanish, representing a Friedmann model. In the course of 
time as t ..... 0 the volume contracts and reduces to zero and 
the other physical scalars become infinitely large. In the case 
where the shear viscosity coefficient is assumed to be con
stant, i.e., n = 0, the behavior is different. Here at the initial 
phase of expansion p, f}, and cr are infinitely large, but as
ymptotically, however, all of them reduce to vanishingly 
small quantities. 

In the second case we have considered, 1/ = 11opQ, 
t = to· For q = 0 and 1 only expansion is found to be al
lowed. For q = 1, P vanishes at a finite time, keeping the 
proper volume finite. In the limit t ..... 00, the model isotro
pizes with infinite proper volume but the matter density is 
nonvanishing, unlike the previous cases. For q = 0, either of 
the two cases is observed, depending on the sign of an inte
gration constant D. For D>O, the asymptotic behavior is the 
same as for q = 1. Butfor D < 0, the proper volume vanishes 
at a finite time while f}, cr, andp take infinitely large magni
tude at this instant. In the asymtotic limit, t ..... 00, the model 
is again identical to the case q = 1. 
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ERRATUM 

Erratum: New Inequalities for the Coulomb T matrix in momentum space 
[J. Math. Phys. 25, 3033 (1984)] 

H. van Haeringen 
Department 0/ Mathematics and Informatics, Delft University o/Technology, Delft, The Netherlands 

L. P. Kok 
Institute/or Theoretical Physics, P. O. Box BOO, Groningen. The Netherlands 

(Received 4 June 1985; accepted for publication 12 June 1985) 

The four-line paragraph just before Eq. (1.3) was mista
kenly replaced by a duplicate of the four-line paragraph at 
the end of Sec. I. Instead, it should read as follows: 

sively, by analytical means and by numerical calculations, 
and a number of inequalities have been derived. One particu
larly interesting inequality, viz. 

In Ref. 1, theratiosRc andRc/ have been studied exten-
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